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Abstract— Magneto-Inertial technology is a well- established 

alternative to optical motion capture for human motion 

analysis applications since it allows prolonged monitoring in 

free-living conditions. Magneto and Inertial Measurement 

Units (MIMUs) integrate a triaxial accelerometer, a triaxial 

gyroscope and a triaxial magnetometer in a single and 

lightweight device. The orientation of the body to which a 

MIMU is attached can be obtained by combining its sensor 

readings within a sensor fusion framework. Despite several 

sensor fusion implementations have been proposed, no well-

established conclusion about the accuracy level achievable with 

MIMUs has been reached yet. The aim of this preliminary 

study was to perform a direct comparison among four popular 

sensor fusion algorithms applied to the recordings of MIMUs 

rotating at three different rotation rates, with the orientation 

provided by a stereophotogrammetric system used as a 

reference. A procedure for suboptimal determination of the 

parameter filter values was also proposed. The findings 

highlighted that all filters exhibited reasonable accuracy (rms 

errors < 6.4°). Moreover, in accordance with previous studies, 

every algorithm’s accuracy worsened as the rotation rate 

increased. At the highest rotation rate, the algorithm from 

Sabatini (2011) showed the best performance with errors 

smaller than 4.1° rms.  

I. INTRODUCTION 

Instrumented movement analysis is central for evaluating 
the level of mobility in populations with and without motor 
impairments, for diagnosis, for assessing the efficacy of 
innovative treatments and for optimizing athlete performance 
[1]. Optical stereophotogrammetry (SP) is considered the 
gold standard for instrumented human movement analysis 
since it can measure the instantaneous 3-D position of 
markers with submillimeter accuracy and a temporal 
resolution of milliseconds. When used in gait analysis, SP 
measurements allow to estimate spatio-temporal parameters 
and joint kinematics. Their main limitation is that the 
subject’s movement is captured within a limited volume. As 
recently highlighted in the literature, these type of 
measurements, although useful to assess motor capacity, may 
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not be indicative of the typical performance in daily-life 
[2],[3]. 

A miniaturized Magneto and Inertial Measurement Unit 
(MIMU) in its full configuration integrates, in a single small 
and lightweight device, a triaxial MEMS accelerometer, a 
triaxial gyroscope, and a triaxial magnetometer. Some of 
their features accelerated their employment in tracking 
human movement. In particular, being “wearable”, they can 
be used to record movements not only outdoor but also 
indoor, an advantage over location-based services depending 
on GPS which suffers from signal attenuation and multiple 
reflections. On the other hand, the use of MIMUs in this 
context has shown limitations [4]. Whereas, specific 
accelerations and angular velocities can be directly measured, 
MIMU 3-D orientation can be only estimated by means of 
sensor fusion algorithms. In theory, from a known initial 
condition, the simple integration over time of the gyroscope 
angular velocity provides an estimate of the orientation. 
However, the gyroscope readings are affected by a slow-
varying bias which, once integrated, introduces a drift in the 
orientation estimate that grows unbounded over time. 
Accelerometer and magnetometer readings can be utilized to 
contain the effects of such drift. In fact, since the 
accelerometer measures the “specific force” (the vector 
difference between the external acceleration and the gravity), 
when  stationary, the accelerometer senses only gravity, 
distributed on its three axes, allowing the estimate of  the 
MIMU inclination (roll and pitch angles, also jointly known 
as “attitude”), which  can be used to limit the drift in the 
estimated attitude component of the orientation. The 
magnetometer readings can be used to determine the MIMU 
orientation in the horizontal plane (yaw or “heading”) and be 
used to contain the drift in the heading component. Although 
helpful, the above-mentioned observations are not sufficient 
to contain the effects of the drift in the orientation estimate. 
In fact, in dynamic conditions a moving accelerometer senses 
both gravity and its own acceleration and the two cannot be 
separated unless additional information is used. Moreover, 
magnetic fields, generated by electrical appliances and metal 
objects, are superimposed to the Earth’s magnetic field thus 
making the use of the magnetometer critical, especially 
indoor [5]. Finally, electronics noise of the MIMU sensors, 
non-orthogonality of the sensor axes, misalignment, 
sensitivity to changes in temperature, further affect the 
quality of the reliability of the readings.  

To overcome such variety of sources of errors and 
limitations, several sensor fusion algorithms have been 
designed to optimally estimate the orientation based on 
selection of most reliable observations at each time step. The 
majority of the published sensor fusion algorithms belong 
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either to the family of the Kalman filters (KF) or to that of 
complementary filters (CF) [6]. Although several 
formulations have been proposed, consensus about the level 
of accuracy and the best performing algorithms has not been 
reached yet [1]. 

The aim of this preliminary work was to quantitatively 
compare the accuracy of the orientation estimates of four 
sensor fusion algorithms, namely the KF algorithm proposed 
by Sabatini [7], the KF recently integrated in the MATLAB 
software, the open source CF proposed by Madgwick et al. 
[8] and the proprietary Xsens filter. The accuracy of the 
orientation estimate was evaluated at three different rotation 
rates using the orientation provided by a SP system as a 
reference. To enable a “fair comparison” among the sensor 
fusion algorithms, we also proposed a procedure for sub-
optimally determine the values of the filter parameters. 

II. RELATED WORKS 

The scientific community has often been stirred by the 
challenges associated with the assessment of the accuracy of 
sensor fusion algorithms. Over the years, various 
experimental procedures have been designed to this purpose. 
Cutti et al. [9] and Picerno et al. [10] proposed two spot-
checks for evaluating the orientation consistency as estimated 
by a commercial sensor fusion algorithm among a set of 
aligned MIMUs. Although, in the ideal case, orientation 
differences would be null, Picerno and colleagues found 
errors up to 11.4° in static conditions. Other studies provided 
a direct comparison among the orientation accuracy of two or 
more sensor fusion algorithms. Lebel et al. in [11] tested 
three commercial MIMU systems by using an instrumented 
gimbal table in a magnetic clear environment. The orientation 
of each system was provided by its proprietary algorithm. 
Algorithms from Xsens and APDM were based on the KF 
principles, whereas the third from Inertial Labs belonged to 
the CF family. For each system, MIMUs were aligned on the 
table center and data were collected while rotating the gimbal 
axes to obtain both planar (2D) and 3D motions at quasi-
constant low and high rotation rates (90°/s and 180°/s) for 
two minutes. All the three algorithms exhibited a worsening 
of the performances when the rotation rate increased (mean 
errors compared with a SP system up to 7°), although this 
effect was less evident for Xsens. Madgwick et al., in their 
popular paper [12], compared the proposed CF with the 
Xsens KF during static and dynamic acquisition conducted 
by manually moving a single MIMU. The authors found their 
algorithm to perform slightly better for both conditions (rms 
errors 1.1° vs 1.3°). Valenti et al. in [13] collected data from 
a MIMU mounted on a micro aerial vehicle to evaluate their 
proposed CF against the CF by Madgwick et al. and the KF 
by Sabatini [7]. The comparison was made by using ground-
truth data from a SP system. The CF proposed by the authors 
showed the best performance (rms errors < 1.7° for pitch and 
roll and rms yaw errors ≈ 16.6°), while the CF by Madgwick 
et al. showed the worst (rms errors < 3° for pitch and roll and 
rms yaw errors ≈ 76.2°). In their study, Bergamini et al. [6] 
tested the filters from Madgwick et al. and Sabatini as 
representative of the CF and KF approaches during manual 
and locomotion tasks. Manual tasks involved slow velocities, 
short time recordings and small capture volume, as opposed 
to the locomotion task which required a larger capture 

volume (likely more prone to ferromagnetic disturbances) 
and three minutes of acquisition without static phases. The 
errors ranged from less than 5.5° for the manual tasks to 21° 
for the locomotion tasks and they were not dependent on the 
sensor fusion approach, as pointed out by the authors. In [4], 
the proprietary KF from APDM was tested against the CF 
from Tian et al. described in [14]. Experiments were 
executed involving a robot arm both in static and dynamic 
conditions. The authors outlined the better performance of 
the CF in static conditions (1° vs 1.6° of maximum error). 
The dynamic tests consisted in different sinusoidal rotations 
generated around one axis of the MIMUs. The protocol was 
repeated by orienting that axis along and perpendicular to the 
gravity direction, and by varying the frequency (from 0.18 
Hz to 5.6 Hz) and the range of the rotations (from ± 3° to 
± 18°). The rms of the resulting angular velocity ranged from 
2.1°/s to 150°/s. In the dynamic trials, the KF exhibited the 
best performance. Higher frequency and amplitude of the 
movement led to greater errors in accordance with the work 
of Lebel et al. [11]. The authors hypothesized a strong 
relationship between the selection of the parameter values 
required by the algorithms and the corresponding orientation 
accuracy. Finally, a recent work of Ludwig et al. [15] 
compared two CFs from Madgwick et al. and Mahony et al. 
and one KF from Marins et al. [16] by using the data 
collected by a MIMU mounted on a quadcopter. In this case 
the CF from Mahony et al. was found to be the most accurate 
with errors up to 11° rms. The parameters were set by means 
of a genetic algorithm as described in [17].  

As it appears from the comparative analyses published 
during the last ten years, literature is inconclusive about the 
identification of the best algorithm and filtering approach (CF 
or KF). It is worth pointing out that the parameter values 
chosen in each work were different due to the different 
experimental conditions, different hardware, different 
environments, and no standard approaches for their selection 
were adopted. In this work we proposed a procedure for 
automatically determining the parameter values for each 
algorithm without using the knowledge of the orientation 
reference. Differently from the above-mentioned works, all 
selected algorithms were stressed to estimate the orientation 
in a wide range of angular velocities (from 120°/s to 380°/s 
rms). Finally, since the KF integrated in MATLAB has been 
made available from the latest release (R2018b), to the best 
of our knowledge, in the literature there are still no studies 
involving this filter. 

III. MATHERIAL AND METHODS 

A. Experimental Set Up 

Two MTx MIMUs (Xsens) were aligned on a wooden 
board. The board was also equipped with seven reflective 
markers attached as illustrated in Figure 1. The Local 
Coordinate System (LCS) of the board was defined by the 
three central markers and aligned to the LCS of the MIMUs. 
The four markers redundancy was exploited to estimate the 
orientation by means of the Singular Value Decomposition 
technique (SVD) [18]. An optical Vicon T20 system 
(software Nexus 2) with 12 cameras was used to obtain the 
gold standard orientation. One force platform integrated in 
the Vicon system was also used to synchronize MIMUs and 
optical systems by generating a mechanical shock. 



  

 

B. Experimental Protocol 

MIMUs and optical data were collected at 100 Hz. Before 
starting the experiments, a 5-minute warm-up was performed 
to limit the temperature influence on the sensor readings. 
Recordings started with the board placed horizontally on a 
tripod, over the force plate. A first vertical mechanical shock 
was generated to define the initial synchronization instant. 
After one minute of static acquisition to ensure the 
convergence of the filters and to enable the estimate of 
gyroscope biases, the operator executed a dynamic trial by 
continuously changing the board orientation to span the three 
rotational DoFs. The board was then repositioned on the 
tripod for one minute and finally the operator generated a 
second mechanical shock to define the final synchronization 
instant. This protocol was repeated for three rotation rates 
conditions: slow (angular velocity rms = 120°/s for 70 s), 
medium (260°/s rms for 45 s) and fast (380° rms/s for 30 s). 
The movements were executed in a volume of approximately 
1 m3. 

C. Filters  

The algorithms selected for the comparison were a 
popular constant gain CF (MAD, [8]), an extended KF (EKF, 
[7]), the MATLAB KF (MKF), and the proprietary Xsens KF 
(XKF, v1.7). MAD was implemented following the original 
formulation while EKF was adjusted to increase the weight 
of the accelerometer and magnetometer contribution during 
the static conditions. MKF was used as defined by “ahrsfilter 
System object”. The XKF, instead, being embedded in the 
Xsens software, was used as a black box. 

All algorithms were based on quaternions, which is an 
efficient four-term representation of the orientation. It allows 
to avoid singularities such as Gimbal Lock and it is not 
computationally demanding [6]. The orientation of the 
coordinate system embedded with the MIMU with respect to 
the global coordinate system (defined to have two axes 
aligned with the gravity and the magnetic North) can be 
expressed as follows: 

 q = [cos(θ/2), nxsin(θ/2), nysin(θ/2), nzsin(θ/2)]T.   (1) 

where n = [nx, ny, nz]T is the rotation axis and θ is the angle 
about which the rotation occurs (angle-axis representation). 

The MAD exploits the complementary filter approach 
where the orientation computed from the gyroscope 
recordings is fused with that computed first from the 
accelerometer and then from the magnetometer readings 
without considering any statistical description of the noise. 
The fusion process is governed by the weighting factor β. A 
larger value of β gives more weight to the orientation 
computed from the accelerometer and magnetometer, to limit 
the orientation drift, but makes the resulting orientation more 
sensitive to body acceleration and ferromagnetic 
disturbances. The MAD requires a second parameter ζ, which 
represents the rate of convergence, to remove the drift of the 
gyroscope bias over time.  

The EKF is a direct KF where the absolute orientation is 
estimated within an optimization framework. The predicted 
state obtained by integrating the angular velocity is then 
updated with the accelerometer and magnetometer readings 
taken as measurements for the KF. The tunable parameters 
are the noise standard deviations (SDs) of the three sensors 
whose ratios govern the weighting process (for further details 
refer to equation of the Kalman gain reported in [7]). 
Differently from the MAD, which exploits the magnetometer 
only to update the heading component of the orientation (a 
ferromagnetic disturbance would not affect the attitude), the 
EKF does not decouple the updates due to the accelerometer 
and those due to the magnetometer, which is however 
without any relevant effect in most situations of interest 
[5][6]. One of the main features of KFs consists in the 
possibility of augmenting the state vector with variables that 
allow to keep track of the ferromagnetic disturbances, body 
acceleration components, etc. To limit the drift in the heading 
component it is necessary to know the North’s magnetic 
direction. However, when the MIMU is moving near to an 
additional external magnetic field, the estimate of the North’s 
magnetic direction is hampered, and the distortion is 
generally unpredictable. The EKF attempts to tackle this 
problem by assuming that the distortion is a time-variant bias 
superimposed to the magnetometer readings. In the present 
EKF implementation, the state vector was augmented with 
the three components of the magnetic bias, whereas the 
gyroscope biases computed during the initial static phase 
were subtracted from the gyroscope readings. 

The MKF and the XKF, are based on the indirect KF 
formulation proposed by Luinge et al. [19] and extended by 
Roetenberg et al. [20]. In the indirect KF formulation, the 
optimization is carried out by minimizing the uncertainty of 
the estimated orientation error rather than the uncertainty of 
the absolute orientation as done in the direct KF, [21]. In 
MKF and XKF the accelerometer and magnetometer readings 
are combined with the gyroscope to obtain two additional 
updates: the gravity direction estimated from both 
accelerometer and gyroscope and the global magnetic vector 
estimated from both magnetometer and gyroscope. The two 
pieces of information are included within the measurement 
vector to compute the orientation error update. In MKF the 
state vector is augmented with the gyroscope bias, the 

 
Figure 1: a wooden board (whose axes are represented in red) was 

attached on a tripod (height 1.5 m) on a force plate. The three central 

markers (blue) were used to define the SP Local Coordinate System. 

The MIMU Local Coordinate System is represented in green. 
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acceleration errors (the deviation from the gravity), and the 
magnetic disturbances. 

D. Parameter Values Definition 

All the filters implemented (MAD, EKF and MKF) 
required ad-hoc tuned parameters to work properly. A major 
problem when using the sensor fusion algorithms is to find 
the most suitable values for the parameters required [4],[11], 
[15],[17]. In fact, proper parameter selection depends on 
numerous factors, the most important being: sensors noise 
characteristics [12], type and velocity of motion [9],[11],[20], 
severity of the linear accelerations and ferromagnetic 
disturbances [20], and convergence speed [22]. The 
“optimal” values are usually chosen following a trial and 
error approach, by minimizing the difference of the estimate 
and the available orientation reference [6],[13]. This 
approach was also adopted by Madgwick and colleagues in 
[8], even if they proposed an equation to estimate the optimal 
value of the parameter. As sensor fusion algorithms can 
perform very differently depending on the specific set of 
filter parameter selected, to enable a meaningful comparison 
among different algorithms, it was necessary to define a 
common strategy for a sub-optimal determination of the 
parameter values specific for the hardware and movements 
tested. The optimization strategy was designed to work 
without relying on information about the actual MIMU 
orientation. 

The procedure implemented for selecting the parameter 

values exploited the assumption that the two MIMUs aligned 

and attached to a rigid body should have the same 

orientation. For each algorithm, the parameter values were 

determined by minimizing the orientation difference 

between the MIMUs for each rotation rate condition. 

Moreover, since experiments were conducted within a small 

volume of capture free from magnetic objects and at least 

1.5 m from the ground level, we decided not to tune the 

magnetometer parameters associated to the severity of the 

magnetic disturbances. 

For instance, in the MAD filter, the sub-optimal values of 

the parameters the β and ζ were searched within the interval 

[0, p], where 0 describes an ideal gyroscope without noise 

and bias drift, and p is an arbitrary opposite extreme.  

For the EKF, the tuning was performed on the values of 

the SDs of accelerometer and gyroscope to test different 

ratios. The magnetometer SD was set to the constant value 

of 0.5 µT. The sub-optimal values for the gyroscope SD was 

searched within the interval [0, 5] °/s. A SD equal to 0 °/s 

meant that the final orientation estimate was based only on 

the gyroscope readings, modelled as ideal. Similarly, the 

research interval for the accelerometer SD ranged from 0 mg 

to 50 mg. The parameter which governed the estimate of the 

magnetic bias was set as suggested by Sabatini in [7]. 

In general, the MKF allowed for the tuning of eight 

parameter values, that is two for the gyroscope and three for 

the accelerometer and three for the magnetometer. However, 

to reduce the search space dimension, the tuning was limited 

to only two parameters: the gyroscope variance and the 

decay factor for linear acceleration which were found to be 

the most sensitive.  

Preliminary investigations carried out by the authors have 

supported the hypothesis that the parameter values which 

minimized the relative orientation differences are those that 

provided low absolute orientation errors (computed as 

described in the next paragraph). Figure 2 shows the results 

obtained for the MAD in the case of high rotation rate. 

E. Data Processing, Orientation Estimation and Error 

Computing 

The signal processing and the orientation estimation was 
performed in MATLAB, R2018b. To remove high frequency 
noise, marker trajectories were low-pass filtered using an 
anti-causal zero-phase Butterworth filter of the 6th order (cut-
off frequency set to 6 Hz as suggested in [6]). The gold 
standard orientation of the LCS (qSP) was defined using the 

 
Figure 2: heatmaps of the relative orientation differences vs absolute orientation errors averaged over the two MIMUs for MAD (fast rate). In this case 

the two selected values of β and ζ minimized both the relative differences and the absolute errors. All the units are in degrees. 
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three central markers, as described in Figure 1 and its 
orientation with respect to the SP global coordinate system 
(GCS) was obtained by means of the SVD technique. Data 
analysis was restricted between the synchronization points. 

Each algorithm was fed with the magneto-inertial data 
acquired with the two MIMUs to compute the absolute 
orientation (qm). Since the GCS and the MIMU systems were 
not aligned, the orientation computed by each system was 
referred to its initial frame. 

For each algorithm the quaternion error was computed for 
each MIMU and for each rate condition separately, in the 
quaternion form as follows: 

 Δq = qm
-1 ⨂ qSP.  (2) 

Then, Δq was decoupled into the attitude and heading 
components (Δqatt and Δqhead) to discriminate the different 
error contributions provided by accelerometer and the 
magnetometer in correctly estimating the gravity and the 
Magnetic North directions, as proposed by Bergamini et al. in 
[6]. The attitude and heading orientation errors were obtained 
from the scalar components of Δqatt and Δqhead. The 
orientation accuracy was computed as the rms value of the 
attitude and heading orientation errors (RMSatt and RMShead) 
evaluated only during the dynamic trial. Since no substantial 
differences were observed between RMSatt and RMShead, for 
sake of brevity, the orientation accuracy was expressed by 
computing the root sum square of the latter values. 

IV. RESULTS 

TABLE I reports the orientation accuracy for each 
algorithm separately for the two tested MIMUs and for each 
rotation rate condition. For ease of reading, the results for the 
two MIMUs were averaged and shown for each algorithm 
and for each rotation rate condition (Figure 3). The 
computation times required by MAD, EKF, and MKF to 
compute the orientation starting from a data set of 25400 
samples are 0.53 s, 4.15 s, and 7.29 s, respectively (Intel® 
Core™ i7-6500U CPU @ 2.50 GHz). 

V. DISCUSSION 

Based on the findings of the present study, all the tuned 
filters exhibited similar accuracy. In fact, the differences 
between the maximum and minimum filter errors amounted 
to 2.1°, 1.3° and 2.3° ad low, medium and high rotation rates, 
respectively. Moreover, the accuracy of the orientation 
estimate obtained with all filters resulted in general better 
than that reported in previous studies (rms errors smaller than 
6.5°), even at high rotation rate (angular velocity rms ≈ 
380°/s). This circumstance can be explained by the fact that 
the sub-optimal parameter values were defined on the 
specific rotation rate condition. It is important noting that 
when comparing orientation errors, differences smaller than 
0.5° are not considered as relevant, being of the same 
amplitude as the errors affecting the gold standard orientation 
[6]. 

In accordance with previous studies, orientation estimate 
accuracy worsened as the rotation rate increased [4],[23], 
with the exception of the EKF which seemed to be less 
sensitive to the rotation rate. At low rotation rate, the MKF 
exhibited the worst accuracy (rms error equal to 5.1° 

compared to rms < 3.5° for the second largest value); at 
medium rate the MAD was the less accurate (errors equal to 
4.9° compared to rms < 4.2° for the second largest value). At 
high rotation rate the worst accuracy was observed for the 
MAD and the MKF (6.4° and 6°). The EKF was the only 
algorithm achieving an orientation error smaller than 4.1° 
rms at high rotation rate. Overall, the best accuracy was 
observed for the EKF and the XKF. However, it is worth 
noting that a direct comparison with the proprietary XKF is 
difficult mainly for two reasons: a) it runs on the CPU of the 
MIMU at internal sampling frequency of 1800 Hz (18 times 
higher than the other filters); b) filter parameters values are 
not accessible and cannot be tuned. While the higher internal 
sampling frequency is expected to help the filter performance 
especially for high rotation rates, the factory calibration of 
the filter parameters cannot account for motion specificity as 
implemented for the other tested filters. This implies that the 
slightly worse accuracy achieved by the XKF at high rotation 
rate cannot be directly attributed to the filter structure. 

Among the KF family, the MKF showed the lowest 
accuracy at both low and high rotation rates. This may be 
explained since the MKF required the definition of eight 
parameter values and the tuning was limited to only two of 
them for computational reasons. The high computation time 
required by the MKF is due to the large dimensions of the 
state vector (12 elements vs 7 for the EKF). 

Finally, it is worth pointing out that the orientation 
computed using the magneto-inertial data of the MIMU #2 
was in general more accurate than the MIMU #1 for all filters 
and velocities. This trend may be partially justified by the 
fact that the y-axis offset of the MIMU #1 gyroscope 
presented a higher deviation from an ideal gyroscope (1.7 °/s 
vs 0.7 °/s for the MIMU #2 y-axis). It can be expected that 
the gyro-bias compensation strategies implemented in the 
various algorithms, using the same filter parameters values 
for both MIMUs, were not very effective in dealing with the 
high bias values of the MIMU #1. Further studies are needed 

 
Figure 3: effect of an increased rotation rate on the sensor fusion 

accuracy. 
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TABLE I: orientation accuracy for each algorithm at each rotation rate 

(the root sum square errors between the MIMUs are in bold). 

 
slow medium fast  

#1 #2  #1 #2  #1 #2  

MAD 5.4 2.9 4.2 5.3 4.5 4.9 7.6 5.2 6.4 

EKF 4.7 1.9 3.3 4.6 3.8 4.2 5.5 2.6 4.1 

MKF 5.6 4.5 5.1 4.2 2.9 3.6 6.8 5.1 6.0 

XKF 3.6 2.3 3.0 4 3.3 3.7 5.8 4.4 5.1 

All the units are in degrees. 



  

to improve the filters performance when the parameter values 
are tuned differently for each MIMU, according to the 
different noise characteristics. 

VI. CONCLUSION 

The findings of the present study suggest that, under sub-

optimal conditions, all filters analyzed showed reasonable 

performance (rms errors < 6.4°). Among the implemented 

algorithms, the EKF was the best performing, with errors 

smaller than 4.1° rms. 

A key aspect of the present study is the implementation of 

a procedure for the determination of the values of the filter 

parameters. The filter parameter values determined 

according to a common strategy enabled a fair comparison 

among the different algorithms. When real-time is a 

requirement, an important aspect to consider in selecting the 

most appropriate filter is the computation time. The MAD 

exhibited a lower accuracy at medium and high rotation 

rates, but on the other hand, it is the algorithm with the 

lowest computational burden and the simplest to use having 

only two parameters to be set.  In general, filters with a large 

number of parameters allow for a better modelling of the 

different sources of errors but are more difficult to tune due 

to the mutual influence of the parameters on the final 

orientation estimate.  
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