
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-efficient coordinated electric truck-drone hybrid delivery service planning / Donkyu, Baek; Chen, Yukai; Chang,
Naehyuck; Macii, Enrico; Poncino, Massimo. - ELETTRONICO. - (2020), pp. 1-6. (Intervento presentato al  convegno
2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)
tenutosi a Turin (Italy) nel 18/11/2020-20/11/2020) [10.23919/AEITAUTOMOTIVE50086.2020.9307420].

Original

Energy-efficient coordinated electric truck-drone hybrid delivery service planning

Publisher:

Published
DOI:10.23919/AEITAUTOMOTIVE50086.2020.9307420

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2869803 since: 2021-02-05T16:19:29Z

IEEE



Energy-Efficient Coordinated Electric Truck-Drone
Hybrid Delivery Service Planning

Donkyu Baek∗, Yukai Chen†, Naehyuck Chang§, Enrico Macii†, Massimo Poncino†
∗School of Electronics Engineering, Chungbuk National University, Cheongju , Korea
†Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

‡School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon , Korea
§Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Turin, Italy

Abstract—Recent works have shown that a coordinated delivery
strategy in which a drone collaborates with a truck using it as
a moving depot is quite effective in improving the performance
and energy efficiency of the delivery process. As most of these
works come from the research community of logistics and
transportation, they are instead focused on the optimality of
the algorithms, and neglect two critical issues: (1) they consider
only a planar version of the problem ignoring the geographic
information along the delivery route, and (2) they use a simplified
battery model, truck, and drone power consumption model as
they are mostly focused on optimizing delivery time alone rather
than energy efficiency.
In this work, we propose a greedy heuristic algorithm to deter-
mine the most energy-efficient sequence of deliveries in which
a drone and an EV truck collaborate in the delivery process,
while accounting for the two above aspects. In our scenario, a
drone delivers packages starting from the truck and returns to
the truck after the delivery, while the truck continues on its
route and possibly delivers other packages. Results show that,
by carefully using the drone’s energy along the truck delivery
route, we can achieve 43-69% saving of the truck battery energy
on average over a set of different delivery sets and different drone
battery sizes. We also compared two “common-sense” heuristics,
concerning which we saved up to 42%.

Index Terms—Electric Truck Delivery, Drone Delivery, Vehicle
Power Modeling and Simulation, Vehicle Routing, Drone Routing,
Hybrid Vehicle-Drone Routing, Heuristic Algorithm, SystemC.

I. INTRODUCTION

EV trucks are expected to replace traditional Internal Com-
bustion Engine (ICE) ones progressively; besides the obvious
environmental benefits, they also have better performance
thanks to the high-efficiency electric motor characteristics,
which provides high torque at low Rotations Per Minute
(RPM). Also, 98% of the kinetic energy can be restored during
regenerative braking, making the electric truck even more
energy efficient.
In the context of a package delivery business in a small-
to-medium geographic scale, EV trucks’ efficiency can be
significantly improved by assisting drones, both in terms of
delivery time and energy efficiency [1]. While delivery trucks
can cover vast distances and carry heavyweights, their energy
efficiency is strongly affected by the road slope, and delivery
time can be limited by narrow, rough roads and the traffic.
On the other hand, drones can carry limited weights but
are unrestricted by traffic and terrain, and can travel in a

straight line. By combining the two vehicles, we can achieve
a complementary “virtual vehicle” that can reduce the total
route time and energy.
A typical situation in which this collaborative scenario is prac-
tical is when customers were grouped in one area (typical of
districts with high-density housing) and just a few customers
scattered outside these areas. In this case, the drone will deliver
to the outliers while the truck carries out the delivery in
the main areas. Previous work has shown that a truck-drone
combination can yield 30 % faster deliveries in the case of
favorable distribution of the locations [2].
An orthogonal dimension of this scenario is when we also
consider the altitude of the locations or road conditions.
The last-mile delivery by a drone is incredibly efficient for
locations that exhibit significant altitude differences from the
current position. As the battery discharge depends non-linearly
on the drawn power, steep uphills impact the truck battery
more significantly than the drone one.
While some works have addressed collaborative truck-drone
delivery, they mostly focus only on a subset of the involved
variables. The vast majority focuses only on the improvement
of delivery time as the sole metric of cost and does not
consider the energy efficiency of the delivery schedule [3], [4],
[5]. Those including energy in the metric [4], [6], [7] assume
a simplified battery discharge model not based on an accurate
vehicle-drone power consumption models. Moreover, the 3D
topographic information is ignored in previous works; the
problem is solved as a planar instance where all the locations
are at the same altitude. However, altitude has a significant
impact on the EV truck’s energy consumption, while it is less
critical for the drone.
In this work, we devise a heuristic algorithm to determine the
most energy-efficient sequence of delivery tasks in which a
drone and a truck collaborate in the delivery. We adopt the
drone and the truck’s accurate power models, and the battery
model is sensitive to the current discharge dynamics. We also
consider road information. The combined truck-drone route
is determined offline before the delivery service starts and is
derived by perturbing an initial solution based on a Traveling
Salesman Problem (TSP) referred to as a truck-only delivery.
From this initial route, the estimated deliveries to draw the
most energy from the truck battery are greedily selected and
assigned to a drone, provided that the corresponding weights



can be handled.
Results show that, depending on the size of the delivery area,
the number of locations, the altitude profile, and the drone’s
battery capacity, battery energy savings of up to 69% can be
achieved. We have tried two “common-sense” heuristics, as
it was not possible to implement complex solutions in the
literature based on sharply different assumptions concerning
ours. The proposed method shows up to 42% energy saving.

II. MOTIVATION AND BACKGROUND

A. Motivation

In the literature, the advantages of a coordinated truck-drone
delivery have been mainly focused on the benefits deriving
by shifting part of the packages to drones. Therefore, the
emphasis has on the “last mile” aspect of the delivery problem.
The drone higher energy efficiency and small weight allowance
are exploited for delivering packages to a single destination
entirely off the main truck driving route or several light
packages geographically close locations.
When considering the topographic details of the delivery area,
several variables should be taken into account. Observing
the instance depicted in Fig.1, where five locations along a
delivery route are shown together with their altitude location.
It is evident (Fig.1-(a)) that because of altitude differences, the
roads will consist of bends and possibly steep uphills, which
will significantly deplete battery charge from the truck.

Figure 1: Truck-only (a) and truck-drone scenarios (b).

The non-straight-line distance between locations can quickly
be taken into account even in a planar instance of the problem:
it would suffice to replace road information and label distances
with the actual length. For example, two locations on a 2-D
map may have a Euclidean distance of 1 mile, but the road
connecting them is 1.5 miles. Concerning the traditional planar
analysis, it would not be able to model the different altitudes of
the locations: in a planar model, two locations that are 1 mile
apart would be modeled in the same way regardless of their

altitude difference. Therefore, it is intuitive that offloading
deliveries to locations with relatively high altitude differences
to drones would be more energy efficient.
The case of Fig.1 shows one such (somewhat extreme) exam-
ple; in a truck-only delivery (Fig.1-(a)), the truck will have to
go up and down (see the profile in the bottom part of the figure)
to serve the destinations in sequence. In Fig. 1-(b), destinations
2 and 4 are served by a drone, which will return to a truck
while it is moving. In this way, the truck can follow an almost
flat route to serve destinations 1,3 and 5, approximately at the
same altitude.
The reduced battery stress and several stops for the truck can
either use a smaller truck for the same set of deliveries, or for
the given battery size, to add one destination within a planned
delivery route.

B. Related Work

Although research on the application of truck-drone collabo-
rated delivery in logistics is still in its infancy, the results so
far have been promising. According to the optimization target,
the previous works can be classified into two main categories:
reducing delivery time or improving energy efficiency.
[3] proposed a continuous approximation model for a disaster-
affected region where drones can be considered potential
transportation except trucks to transport emergency supplies.
Although the work set the delivery time as the critical point,
it ignores the combined truck-drone delivery system’s energy
efficiency. In [4], the authors proposed a multi-trip vehicle
routing problem that considers battery and payload weight
when calculating energy consumption. However, the battery
model used in this work is vague, and the work concentrates on
extending drone flight time by increasing the battery size and
reducing available payload capacity, which does not consider
the integrated truck-drone system’s energy efficiency. [5] has
the same limitation as to the previous two; it simulates truck-
drone delivery analysis only considering delivery time. In
addition to the simulation-based method, [8] combines a theo-
retical analysis in the Euclidean plane with real-time numerical
simulations on a road network, but they only provide data on
delivery time.
Besides the works focus on delivery time optimization, another
type of research focuses on the drone-truck system’s energy
savings compared to the truck-only system. However, most
of them use a simplified battery discharge model to run the
simulation, such as [4], or use the simplified truck and drone
power models. One example is provided in [6], which proposes
an optimization algorithm that determines the optimal number
of launch sites and locations, and the number of drones
per truck to increase the total energy efficiency. This work
focuses on implementing an optimization algorithm without
using accurate models. Most of the existing works under this
category have the same issue [7], they focus on improving
the algorithm to achieve better energy efficiency performance
while neglecting the fundamental characteristics of power
consumption in the whole system.



Besides the inaccurate models adopted, the existing works
usually assume the delivery locations in a two-dimension
plane with uniform or non-uniform distributions and ignore
the geographic information. However, the road slope strongly
affects trucks’ power consumption, and the amplitude of
location is the crucial point to decide how to partition the
delivery tasks between trucks and drones.

III. SYSTEM MODELING

A. Electric Truck Powertrain Model

When a vehicle drives on a road, four resistances act on
the vehicle: rolling resistance FR, gradient resistance FG,
inertia resistance FI , and aerodynamic resistance FA. Power
consumption to overcome the resistances Pres is a function
of torque T and angular speed ω as shown below equation.
All resistances except FA are linearly proportional to vehicle
mass m.

Pres = Tω = Fds/dt = (FR + FG + FI + FA)v

FR ∝Crrmg, FG ∝ mgsinθ, FI ∝ ma, FA ∝
1

2
ρCdAv

2

where v is the vehicle speed, Crr is coefficient of rolling
resistance, m is total weight of EV, g is gravity, θ is road
slope, a is vehicle acceleration, Cd is coefficient of drag, and
A is the area of the front side.
Practical power consumption by electric motors PEV is sum
of the power to overcome the resistances Pres and power loss
Ploss from the motor rotation, the detailed model data refer
to [9]. The PEV depends on m, θ, v, and a:

PEV = Pres + Ploss = f(m, θ, v, a)

B. Electric Drone Powertrain Model

A typical drone power model [10] consists of three forces
act on a quadcopter. FW pulls down the drone by gravity
and horizontal and vertical movements of a drone are resisted
by dragging forces FDH and FDV , respectively. Thrust FT

opposes these three forces to keep the drone flight constant.
FW , FDH and FDV are modeled as functions of drone weight
wd, payload wp and horizontal and vertical drone flight speeds
vh and vv:

FW = (wd + wp)g, FDV =
1

2
ρAtCdv

2
v , FDH =

1

2
ρAfCdv

2
h

where g is gravity; Af and At are cross sectional areas in
horizontal and vertical directions; Cd is drag coefficient; ρ is
air density.
Required thrust to oppose above three forces is

FT,v = FW + FDV and FT,h =
√
F 2
W + F 2

DH

and modeled as a function of motor angular speed:

FT = 0.5ρApCt(ωr)
2

where Ap is the disk area of propellers; Ct is a thrust
coefficient; ω is angular speed of motors; r is radius of

propellers. We can derive the required angular speed while
take-off, horizontal flight and landing with above equations
by following a modeling methodology described in [9].
We assume a simple drone flight model, which consists of
(i) take-off from a place with constant vertical speed to a
given height, (ii) flight horizontally during distance with a
constant speed and (iii) landing with the same vertical speed
on a destination. The drone returns to the starting point after
taking down a package.

C. Non-linear Dynamic Battery Model

The battery pack model must be able to account for the
non-ideal discharge characteristics of the battery. We model
a single battery cell using a circuit equivalent model that
considers the capacity dependencies on the current magnitude
and dynamics [11]. As shown in Fig.2, the circuit equiva-
lent model consists of a battery lifetime model on the left-
hand side and a battery voltage model on the right-hand
side, respectively. In the battery lifetime model, a capacitor
C represents the battery capacity, and a current generator
Ibatt represents the discharge current. Two voltage generators
Vlost(fload) and Vlost(Iload) are used to express dependencies
on the amplitude and frequency of the load current. Both larger
amounts and higher frequency of the load current decrease
state of charge (SOC). Battery voltage Vbatt on the right-hand
side is then calculated based on the SOC, battery internal
resistance R(SOC), and two RC pairs tracking the time
constants of an instant response.

R(SOC)

Voc(SOC)

Ibatt

+

SOC

Ibatt

+

CS(SOC) CL(SOC)

+
Vlost(Ibatt)

+

Vlost(fload)

C

RS(SOC) RL(SOC)

Vbatt

Figure 2: Adopted circuit-equivalent model for battery cell.

We adopt the commonly used method that assuming all the
cells behave identically within the battery pack. Therefore,
we built the pack model for both truck and drone by ideally
scaling all electrical parameters according to the serial and
parallel connectivity of the battery cells within the pack. In
this way, not all the cells have to be simulated individually.

IV. ENERGY-EFFICIENT COORDINATED SCHEDULING

A. Scenario Definition

We assume the following delivery scenario: we have a truck
equipped with one drone, supposed to deliver n of packages
to a set of n destinations. The truck starts from a depot node;
it visits all customers once from the depot and returns to the
depot again. The overall delivery task is denoted by T =
{t1, . . . , tn} and is defined upfront. Each delivery task ti
to destination i is a 4-tuple (wi, xi, yi, zi), where wi is the
package weight, and xi, yi, zi are the Cartesian coordinates of
the location. We assume that the graph describing the locations



is fully connected, i.e., there exists a route between any two
locations, including the depot. The distance between each node
pair corresponds to the actual driving distance.
Concerning the movements of the two vehicles, we assume
that the drone has a payload capacity of one package and
hence must return to the truck after each delivery. Moreover,
there is no drone battery replacement, and the drone will be
used until it is totally depleted. The truck must follow a given
speed on each road and not temporarily stop on the road; it
can only stop at the depot or customer locations for delivery.
Our objective is to maximize the utilization of drone delivery
and therefore deplete it as much as possible.

B. Algorithm

The problem under analysis is challenging to solve to opti-
mality because it is a generalization of the TSP that requires
considering the locations where the truck and the drone can
meet. For this reason, we propose a greedy heuristic that meets
the above-described constraints of our scenario.
Fig. 3 sketches our coordinated truck-drone delivery algorithm.
Its objective is to find the optimal sequence of delivery tasks
for the truck and drone minimizing energy consumption of the
truck under a given drone battery size. It takes as inputs the
set T = {t1, . . . , tn} of n deliveries, the distance matrix D
between any of the n + 1 vertices (including the depot), and
the drone battery capacity ED; it outputs the list of deliveries
carried out by each vehicle (SD and ST ).

Figure 3: Algorithm for coordinated truck-drone delivery.

As our method is based on the selective replacement of some
truck deliveries using the drone, we need to start from an
initial P schedule. The initial P is obtained by running a
conventional TSP algorithm (Line 1). We use one of the state-
of-the-art TSP heuristics for directed graphs, which relies on
calculating the Minimum Spanning Tree (MST) algorithm as
a pre-processing step [12]. This step yields a path P = (p0 →
· · · → pn+1) in the distance graph D, where p0 ≡ pN+1 is
the depot. We then initialize (Line 2) the two delivery lists by
assuming all deliveries are served by the truck.
Given the initial schedule, we calculate (Line 4) the amount
of energy required by each delivery, according to the order
defined by P , for both the truck and the drone. More precisely,
for an edge pi → pi+1, the energy required to deliver the
corresponding package is calculated using both the truck and

the drone energy models. It is essential to observe that for
the truck, and this calculation must account for its current
weight: at step i, the truck will have delivered some packages
but still carry the remaining ones, so the energy consumption
depends on the “state” of the delivery sequence. Conversely,
the drone delivers each package individually, so only the
individual delivery’s energy is considered.
This generates two lists of energy values ∆ET and ∆ED,
with one entry for each of the n + 1 edges (i.e., legs of the
schedule). We then pick from ∆ET the leg pm that incurs
in the most massive energy demand for the truck and that is
compatible with a drone delivery (Line 5). This represents a
delivery that a drone can carry out, and that relieves the truck
maximally. Compatibility with the drone delivery consists of
two conditions: (1) the corresponding package should not
exceed the maximum carrying capacity, and (2) the requested
energy for the delivery is still available.
If one such leg exists, the corresponding energy is subtracted
from the drone energy. Let the two nodes connected by pm
be i and j, with j is followed by node k in the schedule P .
Thus, node j is selected to be served by the drone. As the latter
needs to fly back to the truck, the actual energy drawn to serve
j implies flying back and forth. As the exact takeoff/landing
time and location of the drone depends on the remaining route,
we approximate this by assuming that the drone leaves when
the truck leaves i and returns before the truck reaches k. As a
conservative estimate, we subtract the energy from the drone
required to fly from i to j and j to k (Line 7). We then add
the corresponding delivery task tk to the set SD and subtract
it from truck deliveries ST .
The assignment of one delivery to the drone results in the
removal of two edges ((i, j) and (j, k)) from the original
sequence; the route includes now a new edge (i, k) that was
not initially there. Therefore we need to update the route (Line
8). It implies removing the two edges (i, j) and (j, k) from P
and replacing them with the corresponding bypass edge (i, k).
In the next iteration, the values of ∆ET are recomputed for
all the edges of the new P . The process is repeated until there
is residual energy in the drone.

V. SIMULATION RESULTS

A. Simulation Setup

1) Truck Powertrain Model: We select the Tesla Semi truck in
our simulation; this is currently the only source of information
for the specs as Tesla is preparing to release the Semi [13].
We implement powertrain and battery pack models based on
the released information: A powertrain system consists of four
192 kW electric motors, and a battery pack capacity is 156 Ah
with 346 V of battery voltage. We assume Semi’s curb weight
as the sum of the typical weight of class 8 truck and battery
pack weight. Coefficients of the Tesla Semi truck powertrain
model are obtained from [14].
2) Drone Powertrain Model: For our simulations, we selected
a quadcopter DJI Matrice 100 as a delivery drone. The
maximum weight to take off is 3.4 kg and the longest flight
time is 16 minutes with one kg payload. The maximum



speed is 79 km/h without payload. We obtained measurement
data from [15], which includes the required angular speed of
the rotors by thrust and related battery voltage and current
consumption. We implement the drone powertrain model as a
function of drone speed and weight [10].
3) Non-linear Battery Pack Model: We choose a DJI TB48D
LiPO battery pack, in which six battery cells are connected
in series. Nominal battery capacity is 5700 mAh and nominal
voltage is 22.8 V. We use physical parameters of a 5700 mAh
LiPO single cell from [16]. Then, we build the battery pack
model as described in Section III-C. Concerning the electric
truck battery pack model, we adopted the same model used
in [12].
4) Delivery Task Model: In this paper, we evaluate the overall
energy saving with respect to battery size for a set of different
delivery area and range of altitude. The deliveries refer to:

• A set of 30 locations uniformly distributed within 10 km
by 10 km, 20 km by 20 km, and 30 km by 30 km area;

• A set of range of altitude of 0 (float road), ±100 m and
±200 m;

• A set of package weights uniformly distributed between
100 g to 300 g.

We assume that the truck’s speed is 20.76 km/h, which is
an average rush-hour speed on urban arterial streets in San
Francisco [17]. Although the speed variations impact the bat-
tery energy consumption, for the purpose of our analysis, the
assumption is reasonable. Moreover, adding time-dependent
speed values would yield results too much dependent on the
specific speed profile. Our framework can be adapted to actual
speed traces or estimates using traffic-aware navigation data
(e.g., as done in [9]). We assume that the drone flight speed
is 40 km/h, half of the maximum speed of DJI Matrice 100.
Alternatively, we can adapt energy-optimal speed as done in
[9]. We choose the drone’s height during horizontal flight is
40 m over the ground level, which is the 33% of the maximum
allowable height to fly the drone in Europe by the European
Aviation Safety Agency (EASA) [18].

B. Delivery Schedule of Coordinated Truck-Drone Delivery

Fig.4 shows a schedule P of the truck delivery for two
different the drone battery sizes with altitude on the y-axis and
distance on the x-axis. Black dots and lines in each subgraph
indicate n+ 1 deliveries as in the initial schedule. Intuitively,
where altitude changes are large, we expect a larger energy
demand for the truck than for the drone.
In the middle plot, orange lines and circles denote the revised
truck schedule of the truck when the battery size of the drone is
50% of its nominal battery size (5.8Ah). The remaining black
dots in the second subgraph are served by the drone. In the
bottom plot, we can see how doubling the battery size allows
to serve more tasks with the drone, with the truck following a
route with much lower total altitude difference. We save 43%
and 61% of truck energy consumption with the truck schedules
in the middle and bottom plots.
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Figure 4: P of the truck by different battery size of the drone.

C. Truck energy saving by different delivery task set

Fig.5-(a) shows energy saving of the truck by different ranges
of altitude and battery size of the drone. The delivery area
is set as 10 km by 10 km. X-axis in the subgraph means
size of the drone battery, and Y-axis means the energy saving
of the truck compared with the initial schedule of the truck
delivery. Each dot means a simulation result of each delivery
set. Each color indicates different ranges of altitude: green
color means ±200 m range of altitude; blue means ±100 m
range of altitude; red color means flat roads. Lines of each
color mean average energy savings in different drone battery
size. The energy saving on ±200 m and ±100 m ranges of
altitude and flat road with 100% of drone battery size is from
43% to 69%, 28% to 61%, and 21% to 39%, respectively. Also,
the average energy gain in each range of altitude is 59%, 50%
and 31%, respectively.
As the range of altitude gets larger, average slope of roads
also increases. However, the energy demand of the truck is too
much because tasks located on too high or too low altitude are
served by the drone. On the other hands, energy demand by
the initial schedule increases by the increase in slope of roads.
Therefore, the energy saving on ±200 m range of altitude is
nearly double of that on flat road.
Fig.5-(b) shows energy saving of the truck on different delivery
area and drone battery size. The range of altitude is set as ±
200 m. The delivery set on 10 km by 10 km delivery area is
the same as the results on ±200 m range of altitude in Fig.5-
(a). The energy saving on delivery area of 20 km by 20 km
and 30 km by 30 km with 100% of drone battery size is from
23% to 51% and 18% and 39%, respectively.
As the delivery area becomes larger, the average distance
among locations increases. Therefore, the slope of the road
between locations decreases, which reduces the impact of
drone delivery on energy saving.



El
ec

tri
c 

tru
ck

  
en

er
gy

 s
av

in
g 

(%
)

0%

20%

40%

60%

80%

Drone Battery Size (%)

Pm200m 30 cost, 10km

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 9% 11% 20% 30% 31% 36% 39% 44% 55% 59%

0% 12% 22% 35% 40% 44% 49% 54% 54% 57% 58%

0% 16% 24% 35% 41% 42% 47% 45% 51% 54% 56%

0% 15% 24% 32% 31% 41% 47% 48% 52% 55% 58%

0% 14% 18% 28% 29% 40% 38% 44% 46% 51% 54%

0% 7% 18% 26% 34% 40% 45% 53% 55% 57% 59%

0% 18% 32% 40% 46% 50% 54% 57% 60% 61% 66%

0% 13% 22% 26% 37% 38% 44% 55% 60% 68% 69%

0% 17% 22% 22% 36% 45% 40% 49% 54% 59% 59%

0% 15% 30% 31% 35% 40% 40% 43% 48% 51% 53%

0% 21% 17% 34% 41% 44% 32% 45% 51% 53% 55%

0% 26% 32% 34% 40% 49% 53% 56% 62% 63% 66%

0% 17% 25% 35% 39% 50% 50% 57% 58% 63% 63%

0% 7% 16% 21% 27% 29% 32% 32% 35% 38% 43%

0% 15% 27% 35% 36% 44% 37% 45% 51% 53% 61%

0% 12% 29% 40% 48% 56% 51% 56% 45% 53% 59%

0% 17% 25% 32% 35% 43% 44% 52% 57% 64% 66%

0% 16% 22% 25% 29% 37% 47% 50% 52% 53% 53%

0% 14% 20% 27% 31% 37% 41% 45% 49% 52% 54%

0% 11% 21% 26% 27% 38% 43% 51% 52% 56% 61%

0% 15% 23% 30% 36% 42% 44% 49% 52% 56% 59%

Pm100m 30 cost, 10km

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 22% 32% 40% 43% 35% 44% 49% 50% 55% 55%

0% 11% 25% 16% 31% 37% 40% 41% 43% 46% 50%

0% 15% 23% 29% 33% 34% 44% 41% 49% 44% 52%

0% 24% 25% 39% 44% 50% 54% 58% 58% 60% 61%

0% 13% 21% 30% 39% 40% 47% 46% 54% 55% 55%

0% 16% 24% 32% 35% 40% 42% 46% 48% 52% 53%

0% 14% 26% 37% 37% 43% 45% 48% 49% 52% 56%

0% 12% 18% 20% 26% 34% 39% 46% 50% 54% 54%

0% 10% 14% 24% 33% 39% 41% 45% 40% 46% 50%

0% 12% 17% 23% 31% 33% 38% 41% 44% 47% 49%

0% 11% 21% 21% 28% 33% 34% 38% 39% 39% 43%

0% 6% 21% 23% 23% 35% 37% 40% 41% 47% 51%

0% 11% 6% 20% 18% 27% 32% 34% 38% 44% 49%

0% 6% 7% 13% 22% 24% 30% 31% 36% 40% 41%

0% 11% 17% 18% 26% 29% 35% 36% 42% 47% 49%

0% 6% 16% 22% 36% 39% 41% 44% 45% 47% 48%

0% 8% 7% 16% 20% 24% 27% 22% 28% 31% 28%

0% 11% 17% 26% 32% 32% 40% 43% 48% 52% 54%

0% 19% 21% 27% 36% 42% 48% 52% 53% 49% 53%

0% 11% 16% 29% 24% 29% 33% 33% 42% 49% 55%

0% 12% 19% 25% 31% 35% 40% 42% 45% 48% 50%

Pm0m 30 cost, 10km

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 3% 6% 10% 15% 18% 20% 21% 29% 31% 33%

0% 4% 7% 8% 12% 16% 18% 21% 23% 24% 27%

0% 3% 8% 11% 17% 20% 25% 26% 32% 35% 37%

0% 2% 10% 12% 14% 22% 23% 25% 27% 29% 30%

0% 2% 4% 8% 10% 12% 16% 18% 20% 19% 21%

0% 4% 9% 13% 16% 20% 22% 19% 23% 25% 25%

0% 2% 6% 7% 13% 18% 22% 24% 25% 27% 29%

0% 3% 8% 12% 13% 17% 18% 22% 23% 27% 28%

0% 4% 8% 14% 19% 22% 23% 25% 30% 32% 34%

0% 3% 8% 14% 17% 18% 23% 27% 31% 34% 38%

0% 4% 8% 10% 11% 13% 15% 18% 20% 22% 23%

0% 1% 5% 9% 13% 20% 24% 28% 29% 34% 35%

0% 4% 9% 15% 18% 21% 25% 27% 30% 33% 36%

0% 3% 10% 12% 16% 19% 19% 23% 25% 27% 30%

0% 2% 5% 8% 10% 11% 14% 17% 20% 21% 23%

0% 4% 7% 12% 16% 19% 21% 24% 27% 28% 30%

0% 2% 9% 12% 16% 22% 27% 30% 32% 36% 39%

0% 5% 9% 15% 20% 24% 27% 29% 33% 35% 36%

0% 6% 8% 11% 14% 16% 18% 19% 26% 29% 31%

0% 1% 8% 12% 15% 19% 22% 24% 25% 28% 29%

0% 3% 8% 11% 15% 18% 21% 23% 27% 29% 31%

±200 m altitude range ±100 m altitude range Flat road

0% 20% 40% 60% 80% 100%

El
ec

tri
c 

tru
ck

  
en

er
gy

 s
av

in
g 

(%
)

0%

20%

40%

60%

80%

Drone Battery Size (%)
0% 20% 40% 60% 80% 100%

30 km × 30 km20 km × 20 km10 km × 10 km

(a)

(b)

Figure 5: Electric truck energy saving by different drone
battery size, range of altitude and delivery area.

D. Truck energy saving comparison with baselines

We implement two “common-sense” heuristics to explore
strongly different assumption with respect to ours. In the first
one, the drone serves ‘random’ locations, i.e., locations that
can be served between two truck destinations: we call this one
random delivery. In the second one, the drone serves locations
at the highest altitude first (we call highest-first delivery).
We first sort locations by their altitude, then pick as many as
possible that can be served. We performed the three algorithms
on 20 delivery instances in which a truck and a drone serve
30 deliveries on 100 km2 area with ±200 m altitude range).
Fig.6-(a) shows the average energy savings by three algorithms
as the battery size of the drone increases. The proposed method
shows up to 42% and 39% more energy saving compared
with the random and highest-first deliveries, respectively. This
means the proposed method utilizes drone assistance most
efficiently among them. The delivery results by the highest-
first delivery method does not show better results compared
with random delivery. If the altitude of the current truck
destination is very low, it needs to ascent significantly to
move to the next destination. Fig.6-(b) shows the average time
savings by the drone assistance. The proposed method also
saved 5 to 6% more time than others.

VI. CONCLUSIONS

Coordinated delivery strategies in which a drone collaborates
with a truck have been focused on the optimality of the
algorithms in terms of distance of delivery route on a plane
or overall delivery time. However, altitude of the locations
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Figure 6: Energy (a) and delivery time (b) comparison among
drone random, highest first and the proposed delivery.

or road conditions makes climbing steep uphill more energy
consuming, and which is more energy efficient with a drone
delivery. In this work, we propose a heuristic algorithm to
determine the most energy-efficient sequence of deliveries in
which a drone and an EV truck collaborate in the delivery
process. Simulation results with accurate model of energy
consumption of both the drone and the truck, as well as a
battery model show up to 69% achievement of electric truck
energy saving on average.
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