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Abstract Semiconductor nanowires with strong Rashba spin-orbit coupling are currently on
the spotlight of several research fields such as spintronics, topological materials and quantum
computation. While most theoretical models assume an infinitely long nanowire, in actual
experimental setups the nanowire has a finite length, is contacted to metallic electrodes and
is partly covered by gates. By taking these effects into account through an inhomogeneous
spin-orbit coupling profile, we show that in general two types of bound states arise in the
nanowire, namely confinement bound states and interface bound states. The appearance
of confinement bound states, related to the finite length of the nanowire, is favoured by a
mismatch of the bulk band bottoms characterizing the lead and the nanowire, and occurs even
in the absence of magnetic field. In contrast, an interface bound states may only appear if a
magnetic field applied perpendicularly to the spin-orbit field direction overcomes a critical
value, and is favoured by an alignment of the band bottoms of the two regions across the
interface. We describe in details the emergence of these two types of bound states, pointing
out their differences. Furthermore, we show that when a nanowire portion is covered by a
gate the application of a magnetic field can change the nature of the electronic ground state
from a confinement to an interface bound state, determining a redistribution of the electron
charge.

1 Introduction

Bound states play a relevant role in nanotechnological applications. For instance, it has
been known for decades that a suitable engineering of semiconductor heterostructures yields
nanometer scale confined bound states along the growth direction, forcing the electron dynam-
ics to effectively take place in a two-dimensional plane, thereby creating a 2DEG. Also, since
bound states are characterized by discrete energy separations that can even be greater than
thermal energy, one can exploit them to realize optical devices, such as photodetectors or
lasers. In the field of hetero-junctions, the existence of interface bound states at the separation
between two materials can reduce or even mask the desired features of the current–voltage
characteristics, so that suitable techniques such as lattice matching have to be adopted to
prevent their formation.
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However, bound states are also crucial in terms of fundamental Physics. In Condensed
Matter Physics, for instance, it has been realized that bound states can be the hallmark of
topological transitions: When a material enters a topological phase, a bound state emerges at
the interface with a topologically trivial material [1–3]. The Su-Schrieffer-Heeger model for
trans-polyacetylene, for instance, describes a one-dimensional topological insulator, which
exhibits localized bound states at the two ends of the chain when in the topological phase [4–
7]. Even more strikingly, at the boundaries of a topological superconductor, peculiar bound
states have been predicted to emerge, which are equal to their anti-particles and are thereby
called Majorana quasi-particles [8–11]. Due to their exotic braiding properties and their
robustness to decoherence effects, they are considered a promising platform for quantum
computing [12–16].

The huge advances in the analysis of topological materials has also renewed the interest
of the scientific community in the spin-orbit coupling. Such relativistic effect, which opened
up in the 90s the way to spintronics [17–22], is nowadays on the spotlight in the search for
innovative topological materials [23]. Indeed spin-orbit is for instance the mechanism under-
lying the appearance of topological helical edge states in quantum Spin Hall effect [24–28].
Also, when a semiconductor is proximitized by an ordinary s-wave superconducting pairing,
the spin-orbit coupling gives rise to an effective p-wave superconducting pairing, necessary
for the appearance of Majorana quasi-particles [29–34], as observed in ferromagnetic atomic
chains deposited on a superconductor [35], and in proximizited InSb and InAs nanowires
[36–43]. Furthermore, the remarkable progress in gating techniques allows a broad tunability
of the spin-orbit coupling [44–51], making previously unexplored regimes accessible now.

While early studies have focussed on the topological bound states of proximitized spin-
orbit coupled nanowires, more recent works have pointed out that in the presence of a super-
conducting coupling both topological and trivial bound states may exist [52–63]. Also, quite
recently it has been realized that peculiar bound states can appear even when no supercon-
ducting coupling is present, if magnetic domains induce an inhomogeneous magnetic field on
the nanowire [64], similarly to the magnetic confinement effects predicted in other materials
[65–67].

In this paper, we focus on a spin-orbit coupled nanowire in its normal phase, i.e. without
superconducting coupling, characterized by an inhomogeneous Rashba spin-orbit coupling
(RSOC). Such inhomogeneities appear quite naturally not only because of disorder, but also
when a clean nanowire is contacted to metallic electrodes (leads) and/or when a portion of the
nanowire is covered by a gate that locally changes its Structural Inversion Asymmetry (SIA).
By considering also the presence of a magnetic field applied perpendicularly to the spin-
orbit field direction, we are able to identify two essentially different types of bound states,
namely the confinement bound states, and the interface bound states. After introducing in
Sect.2 the model and the method, in Sects.3 and 4 we discuss in details the origin and the
differences of these two types of bound states. Then, in Sect.5 we consider the case where
a nanowire portion covered by a gate acquires a locally different RSOC value, and we show
how an applied magnetic field can change the electronic ground state from a confinement to
an interface bound state. Finally, in Sect.6 we draw our conclusions.

2 The model and the method

We consider a nanowire along the x direction deposited on a substrate. Because of the SIA
arising at the interface with the substrate, in the nanowire a Rashba spin-orbit “magnetic”
field arises, lying on the substrate plane, perpendicularly to the nanowire axis. We denote
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by z such direction and by α its Rashba spin-orbit coupling (RSOC) constant. Furthermore,
the presence of local gates deposited above some portions of the nanowire, or of leads
contacted to the nanowire, locally alters the SIA. These situations can thus be modeled by an
inhomogeneous RSOC profile α(x). If we denote by Ψ̂ (x) = (Ψ̂↑(x) , Ψ̂↓(x))T the electron
spinor field, where ↑,↓ identify the spin projections along the spin-orbit field direction z,
the Hamiltonian of the system reads

Ĥ =
∫

Ψ̂ †(x)

(
p2
x

2m∗ σ0 − {α(x), px }
2h̄

σz − hxσx

)
Ψ̂ (x) dx (1)

where px = −i h̄∂x is the momentum operator, m∗ is the electron effective mass, σ0 the 2×2
identity matrix, and σx , σy, σz are the Pauli matrices. Furthermore, hx describes the Zeeman
energy related to an external magnetic field applied along the nanowire axis. Note that, since
px does not commute with the inhomogeneous RSOC profile α(x), the anti-commutator
is needed [68–74]. For the homogeneous case, the solution is straightforwardly obtained,
whereas to treat the inhomogeneous case we applied an exact numerical diagonalization
approach, as we shall briefly illustrate here below.

2.1 The homogeneous case

Let us start by briefly recalling the well know case of a nanowire with a homogeneous RSOC
profile α(x) ≡ α. In such case the momentum px trivially commutes with the uniform α(x),
the Hamiltonian can be diagonalized by Fourier transform, and the eigenstates are labelled
by the wavevector k. If the magnetic field is absent, the problem is particularly simple, as
it is diagonal is spin space: The RSOC lifts the degeneracy of spin-↑ and spin-↓ states,
whose parabolic spectra get centered at k = ±kSO and lowered by the spin-orbit energy
ESO = h̄2k2

SO/2m∗, where kSO = m∗|α|/h̄2 is the spin-orbit wavevector. When a magnetic
field hx is applied, it causes the opening of a gap 2ΔZ between the two bands E±(k) =
h̄2k2/2m∗ ±

√
(αk)2 + Δ2

Z of the spectrum, where ΔZ = |hx | shall be called the magnetic
gap energy. Two regimes can be distinguished, namely i) the Zeeman-dominated regime
(ESO < ΔZ/2) where both bands have a minimum at k = 0, and ii) the Rashba-dominated
regime (ESO > ΔZ/2), where the lower band exhibits a local maximum at k = 0 and two

minima Emin− = −ESO (1 +Δ2
Z/4E2

SO ) at k = ±kmin , where kmin = kSO
√

1 − Δ2
Z/4E2

SO .
Furthermore, the spin of the eigenstates tilts with varying the wavevector k.

2.2 The inhomogeneous case

The inhomogeneous case cannot be treated analytically in general. Except for the case of a
piecewise profile, where the solution can be constructed by matching homogeneous solutions
with appropriate boundary conditions [68,69,75], a numerical approach is needed to obtain
the spectrum and the eigenfunctions. To this purpose, denoting by Ω the length of the whole
system and imposing periodic boundary conditions over Ω , we rewrite the Hamiltonian as

Ĥ =
∑
k1,k2

∑
s1,s2=↑,↓

ĉ†
k1,s1

Hk1,s1;k2s2 ĉk2,s2
, (2)
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where ĉk,s (with k = 2πn/Ω and s =↑,↓) are the discrete Fourier mode operators of the

electron field operator Ψ̂ (x) = Ω−1/2 ∑
k e

ikx (ĉk↑, ĉk↓)T , and

Hk1,s1;k2s2 =
[(

ε0
k1

σ0 − hxσx
)
δk1,k2 − αk1−k2

k1 + k2

2
σz

]
s1,s2

. (3)

Here αq is the (discretized) Fourier transform of the RSOC profile α(x). An exact numer-
ical diagonalization of the Hamiltonian matrix Eq. (3) enables us to obtain the set Eξ of
eigenvalues and the matrix U of its eigenvectors. Then, the original Fourier mode opera-
tors can be rewritten as ĉa = ∑

ξ Ua,ξ d̂ξ , where a = (k, s) is a compact quantum number

notation for the original basis and d̂ξ are the diagonalizing operators, while the system Hamil-
tonian can be rewritten as Ĥ = ∑

ξ Eξ d̂
†
ξ d̂ξ . By re-expressing the electron field operator

Ψs(x) with spin component s =↑,↓ as Ψ̂s(x) = Ω−1/2 ∑
k,ξ e

ikxUks,ξ d̂ξ and by exploiting

〈d̂†
ξ d̂ξ ′ 〉◦ = δξξ ′ f ◦(Eξ ), with f ◦(E) = {1 + exp [(E − μ)/kBT ]}−1 denoting the Fermi

distribution function, the equilibrium expectation value of the density operator

ρ(x) =
〈
Ψ̂ †(x)Ψ̂ (x)

〉
◦ (4)

can be straightforwardly evaluated as ρ(x) = ∑
ξ ρξ (x), where

ρξ (x) = 1

L

∑
s=↑,↓

∑
k1,k2

e−i(k1−k2)x U∗
k1s,ξUk2s,ξ f ◦(Eξ ) (5)

is the contribution arising from the ξ -th eigenstate. In this way, the contribution of each
eigenstate (in particular the bound state) can be singled out.

3 Confinement bound states

In order to illustrate the emergence of confinement bound states, it is sufficient to consider
the case without magnetic field (hx = 0). In this case, the Hamiltonian in Eq. (1) is diagonal
in spin space and, by performing the spin-dependent gauge transformation

Ψ̂ (x) = e
i m

∗
h̄2 σ3

∫ x
0 α(x ′)dx ′

Ψ̂ ′(x) , (6)

it can be rewritten as

Ĥ =
∫

Ψ̂ ′†(x)
(

p2
x

2m∗ +USO(x)

)
Ψ̂ ′(x) dx , (7)

where the effective potential

USO(x) = −ESO (x) = −m∗α2(x)

2h̄2 (8)

depending on the RSOC profile α(x) corresponds to (minus) the inhomogeneous Rashba
spin-orbit energy. Notice that, due to the absence of magnetic field hx , the problem becomes
purely scalar when rewritten in terms of the new fields Ψ̂ ′ = (Ψ ′↑ , Ψ ′↓)T . In terms of

the original fields Ψ̂ (x) = (Ψ̂↑(x) , Ψ̂↓(x))T , the spin-↑ and spin-↓ components acquire
opposite space-dependent phase factors, as shown by Eq.(6). As an example, for a uniform
RSOC α(x) ≡ α, one has

Ψ↑,↓(x) = e±i sgn(α) kSO x Ψ ′(x) (9)
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E = 0

α = 0 α = 0α

+kSO−kSO

ESO

L

Fig. 1 Sketch of a nanowire coupled to two metallic leads in the absence of magnetic field, and of the related
energy bands characterizing the bulks of the outer leads and of the nanowire. While the leads are characterized
by a vanishing RSOC and by a spin-degenerate parabolic spectrum, the RSOC α present in the nanowire lifts
the spin degeneracy even without magnetic field. Furthermore, the energy bands are lowered by an amount
corresponding to the spin-orbit energy ESO = m∗α2/2h̄2, giving rise to the potential well described by
Eq. (8) and depicted by the thick black line. The finite length of the central nanowire yields the presence of
confinement bound states, whose energy lie in the energy window between the band bottoms of the leads and
the nanowire

which corresponds, in momentum space, to shifting horizontally the parabolic spectrum by
a spin-orbit wavevector kSO = m∗|α|/h̄2, in opposite directions for spin s =↑,↓.

For suitable inhomogeneousα(x) profiles, a possibility opens up that the effective potential
Eq. (8) represents a quantum well hosting confinement bound states. This occurs, for instance,
when a nanowire characterized by a RSOC α in its bulk is sandwiched between two metallic
electrodes with vanishing RSOC, as sketched in Fig. 1. The simplest model describing this
situation is a square profile, α(x) = θ(L/2 − |x |), with θ denoting the Heaviside function.
Then, Eq. (8) represents a square quantum well with a width L and a depth −ESO given by
the bulk value of spin-orbit energy ESO = m∗α2/2h̄2 of the nanowire. As is well known,
at least one bound state is always present, and the number of bound states increases with
the magnitude of the RSOC in the nanowire. Furthermore, if the nanowire length L is short
enough, the energy separation between the bound states becomes appreciable (see Fig. 1).
A more realistic model to describe the nanowire+leads system assumes a smoothened profile
of the RSOC

α(x) = α

2

[
Erf

(√
8

λs
(x + L

2
)

)
− Erf

(√
8

λs
(x − L

2
)

)]
, (10)

which goes from zero (leads) to α (nanowire bulk) within 2% over a smoothening length λs . In
Fig. 2 we analyze this case for a 500nm long InSb nanowire (effective mass m∗ = 0.015me)
contacted to two metallic electrodes, and for a smoothening length λs = 50 nm, for three
different values of RSOC corresponding to three different values of spin-orbit energy ESO .
Panel (a) displays the spectrum, which exhibits both a continuum branch for energies above
the band bottom E = 0 of the outer leads, and some additional discrete bound states,
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(a) (b)
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Fig. 2 Panel (a): The energy spectrum of a InSb nanowire+leads system, sketched in Fig.1 and described by the
inhomogeneous RSOC Eq. (10), with a nanowire length L = 500 nm and a smoothening length λs = 50 nm.
The effective mass is m∗ = 0.015me . No magnetic field is applied (ΔZ = 0). Different colors and symbols
refer to three different values of the spin-orbit energy of the nanowire, ESO = 0.05 meV (black triangles),
ESO = 0.30 meV (red squares), ESO = 0.60 meV (blue circles). Besides the continuum spectrum, discrete
bound states appear, in spin-degenerate pairs, in the energy window between the bulk band bottom E = 0 of
the outer leads and the bulk band bottom −ESO of the nanowire (indicated by an horizontal dashed lines as
a guide to the eye). Panel (b): for the case ESO = 0.30 meV, the spatial profiles of the density ρ(x) of the
ground bound state (solid red curve) and the first excited bound state (dashed red curve) are shown. The thin
green curve displays the inhomogeneous spatial profile α(x) in Eq. (10)

always appearing in spin-degenerate pairs, whose number increases with the magnitude of
the RSOC. As expected, the bound states energies Ebs are located in the energy window
−ESO ≤ Ebs < 0 between the bulk band bottom −ESO of the nanowire (indicated by
dashed horizontal lines as a guide to the eye) and the bulk band bottom E = 0 of the leads, as
also sketched in Fig. 1. Figure 2b shows, for the case ESO = 0.30 meV, the spatial profile of
the density ρ(x) of the ground bound state (solid red curve) and the first excited bound state
(dashed red curve), as well as the inhomogeneous spatial profile α(x) (thin green curve).

We conclude this section by emphasizing once more that a prerequisite for the formation
of a confinement bound state is that the RSOC profile varies non-monotonically. In the case
e.g. of one single interface separating two regions characterized by different RSOC values,
where the profile α(x) varies monotonically from the value αL on the left of the interface
to the value αR on the right, the effective potential in Eq. (8) never creates a quantum well.
Indeed, if αL and αR have the same sign, USO also changes monotonically, whereas if αL

and αR have opposite signs, so that the profile α(x) crosses zero, USO describes a barrier
at the interface. In neither case a monotonic α(x) profile can give rise to bound states. This
means that no interface bound state is present, without magnetic field. As we shall see in
next Section, the situation is different when a magnetic field is applied.

4 Interface bound states

When a magnetic field hx is applied along the nanowire axis, i.e., perpendicularly to the
spin-orbit field, another type of bound states can emerge when the RSOC profile α(x) is
inhomogeneous. Before discussing the formation of such bound state, we wish to point
out that the inhomogeneous RSOC problem in the presence of an applied magnetic field is
intrinsically more difficult than the field-free case. To illustrate that, we apply again the gauge
transformation (6), and rewrite the Hamiltonian (1) as
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Ĥ =
∫

Ψ̂ ′†(x)
(

p2
x

2m∗ +USO (x) − hx
(
σx cos θSO(x) + σy sin θSO (x)

))
Ψ̂ ′(x) dx ,(11)

where θSO(x) = 2m∗ ∫ x
0 α(x ′)dx ′/h̄2 is called the spin-orbit angle. In terms of the new

fields Ψ̂ ′ the RSOC has been re-absorbed into the previously discussed potential Eq. (8),
whereas the original uniform magnetic field has transformed into an effective inhomogeneous
magnetic field, whose effects are more subtle. Still, the problem can be attacked, without even
performing the gauge transformation, by the method described in Sect. 2.2. The results, which
we shall now illustrate here below, show the emergence of interface bound states.

Differently from confinement bound states, the interface bound states can emerge even
when the RSOC profile varies monotonically across one single interface from a value αL (on
the left) to αR (on the right), over a lengthscale λs ,

α(x) = αR + αL

2
+ αR − αL

2
Erf

(√
8 x

λs

)
, (12)

where we have located the interface at x = 0 without loss of generality. It turns out that the
formation of an interface bound state is particularly favorable when the sign of the RSOC
changes across the interface, as can be achieved by appropriate gating techniques [45,76–
78]. To illustrate such effect, we shall thus focus on the case where the RSOC changes from
αL = α > 0 to αR = −α < 0. Notice that, since the spin-orbit energy ESO = m∗α2/2h̄2

depends on the square of the RSOC, the bulk band bottoms take the same values on both
sides of the interface, as sketched in Fig. 3. In Fig. 4a, the energy spectrum is explicitly
shown for such interface with smoothening length λs = 50 nm in a InSb nanowire, for the
case of spin-orbit energy ESO = 0.50 meV, and for three different values of the magnetic
gap energy ΔZ = 0 (black triangles), ΔZ = 0.5 meV (red squares) and ΔZ = 1.0 meV
(blue circles). While the spectrum is purely continuous for vanishing magnetic field, when
ΔZ > 0 one single bound state appears. For ΔZ = 0.5 meV and ΔZ = 1.0 meV, the density
profile of the bound states is plotted in Fig. 4b, showing that the bound state is located at the
interface.

Two further differences from the confinement bound states are noteworthy. First the energy
of the interface state lies below the band bottoms of the two regions, corresponding to the
bottom of the continuum branch of the spectrum, as is clear from Fig. 3. Second, its appearance
is mostly favoured by an alignment—rather than a mismatch—of the bulk band bottoms
across the interface, as in the case illustrated in Fig. 3 and analyzed in Fig. 4. We mention
that, when the two spin-orbit energies across the interface are different, the alignment can be
restored if the applied magnetic is sufficiently strong. Then, the interface bound state appears
for magnetic gap energy above a threshold value Δ�

Z , as has been recently shown [75].
Before concluding this section, it is worth recalling that other types of bound states may

appear at the interface between two different materials. As is well known, interface states
may be caused by the band bending near the interface, which is particularly relevant in metal-
semiconductor junctions, where the difference between the Fermi energies is large. Those
interface states thus have an essentially electrostatic origin. In striking contrast, the interface
bound state described here only exists if a magnetic field is applied and only if RSOC is
present, as pointed out at the end of Sect. 3. Its emergence is thus an essentially magnetic and
spinorial effect. Indeed it can also exist if the band spectra across the interface are perfectly
equal (see Figs. 3 and 4), i.e. where the customary interface bound states are not expected to
exist. Of course, in a more general situation also the electrostatic interface bound states can
in principle be present.
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E = 0

α −α

Emin
−

Ebs

hx

Fig. 3 Sketch of an interface between two portions of a nanowire characterized by two different values of
RSOC, in the presence of an applied magnetic field along the nanowire axis. In particular, when the RSOC
takes equal and opposite values across the interface, the spin-orbit energy of the two sides, which depends on
the square of α, is the same, so that the two bulk bands exhibit the same spectrum and their band bottoms are
aligned. However, an interface bound state appears, energetically located below the continuum spectrum

(a) (b)

0 5 10 15 20 25 30 35 40 45 50

-1.1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Z [meV]
0
0.5
1.0E

[m
eV

]

n (eigenvalue)

interface 
bound state

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
0.0

0.5

1.0

1.5

2.0

-1.0

-0.5

0.0

0.5

1.0

bs
[µ
m

-1
]

x [µm]

Z [meV]
0.5
1.0 [e

V
Å
]

Fig. 4 Panel a: Energy spectrum of inhomogeneous RSOC profile (12) describing the interface sketched in
Fig. 3, i.e. αL = α and αR = −α, with smoothening length λs = 50 nm, in a InSb nanowire (m∗ = 0.015me).
The spin-orbit energy characterizing both sides is ESO = 0.5 meV and the three different curves refer to three
different values of the magnetic gap energy ΔZ = |hx |. While for vanishing magnetic field the spectrum
has a purely continuum branch, for non-vanishing magnetic field a bound state appears below the continuum
branch. Panel (b): the density profile of the bound state is plotted for the two non-vanishing magnetic field
values, showing that the bound state is located at the interface. The thin green curves describes the RSOC
profile Eq. (12)

5 Nanowire covered by a gate and exposed to a magnetic field

Let us now consider the case where a gate partly covers the nanowire, thereby locally chang-
ing the SIA and the RSOC of the nanowire region underneath, similarly to what occurs in
constrictions in quantum spin Hall systems [79–81]. This situation, sketched in Fig. 5a, can
be described by a RSOC profile
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α(x) = αout + αin − αout

2

[
Erf

(√
8

λs
(x + L

2
)

)
− Erf

(√
8

λs
(x − L

2
)

)]
, (13)

where L is the length of the central region, the origin x = 0 is set in its middle point, and αin

and αout denote the bulk RSOC values of the central region and outer regions, respectively.
For definiteness, we shall focus on the situation |αin | > |αout |, which generalizes the case
αout = 0 of the metallic leads discussed in Sect. 3. Furthermore, since the band bottom of
the central region is already modified indirectly through the RSOC, we shall neglect here
the change induced directly by the gate voltage, which only involves the charge and has no
effect on the spin degree of freedom.

We shall analyze the spectrum of such inhomogeneous system and, in particular, we shall
discuss how it is modified when a magnetic field is applied. Based on the material previously
discussed in Sects. 3 and 4, let us first point out the scenario one can expect in this situation.
On the one hand, when no magnetic field is present, the band bottom −ESO,in of the central
region is lower than the outer band bottom −ESO,out , and confinement bound states exist,
while no interface bound state may be present. On the other hand, when a magnetic field is
applied, the confinement bound states get modified by the magnetic field, while additional
interface bound states appear at the two interfaces. The latter are energetically located below
the lower bulk band bottom and are thus more favorable than confinement bound states. In
fact, when the magnetic field is sufficiently strong, the band bottoms of the central and outer
regions get aligned and the confinement bound states disappear completely, leaving only the
interface bound states.

We illustrate these effects in a InSb nanowire, where the central region has a bulk spin-
orbit energy ESO,in = 0.5 meV, while the outer regions are characterized by αout = −αin/2,
yielding ESO,out = 0.125 meV. The system in Fig. 5a is modeled by an inhomogeneous
RSOC profile Eq. (13), where the length of the central region is L = 1 μm and the smoothen-
ing length across each interface is λs = 50 nm. In Fig. 5b, the spectrum of the inhomo-
geneous nanowire is plotted for four different values of the applied magnetic gap energy
ΔZ = (0, 0.4, 0.8, 1.2) meV. As one can see, for vanishing magnetic field ΔZ = 0 (black
triangles), four doubly degenerate confinement bound states are present, within the energy
window between the band bottoms −ESO,out = −0.125 meV and −ESO,in = −0.50 meV
of the outer and central regions, respectively. When the magnetic field is increased (red
squares), the energy window determined by such band bottom mismatch reduces, and so
does the number of confinement bound states. Furthermore, if the magnetic gap energy over-
comes a threshold value ΔZ > Δ�

Z � 0.5 meV (blue circles), two additional interface bound
states appear. They are linear combinations of the two bound states appearing at the two
interfaces and are almost degenerate, with a tiny energy splitting caused by a non-vanishing
overlap due to the finite length L of the central region. Note that in this situation confinement
and interface bound states coexist, although the interface bound state are always energetically
more favorable, as they lie below the band bottoms. However, for even stronger magnetic
fields, ΔZ ≥ 2ESO = 1 meV, the confinement bound states disappear and only the interface
bound states survive (green stars).

In Fig. 5c we have plotted the density profile ρlowest of the lowest energy state, for each of
the four ΔZ values. One can thus clearly see that, while for vanishing magnetic field (black
curve) the energetically most favorable state is mainly located at the center of the nanowire,
by increasing the magnetic field the interface bound state becomes more favorable (blue and
green curves). By operating with the magnetic field one can thus displace the charge of the
electronic ground state from the center of the gated nanowire region towards the interfaces
located at x = ±0.5 μm, yielding a stronger coupling with the outer regions, which play the
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Fig. 5 Panel a: A 1μm-long portion of a InSb nanowire (effective mass m∗ = 0.015me) takes a RSOC
value αin different from the value αout characterizing the rest of the nanowire, e.g. due to the presence of
a metallic gate covering it. The RSOC αin corresponds to a bulk spin-orbit energy ESO,in = 0.5 meV for
the central region, while αout = −αin/2, and ESO,out = 0.125 meV. The smoothening length of the RSOC
profile (13) is λs = 50 nm. The inhomogeneous nanowire is exposed to an external magnetic field along the
nanowire axis. Panel b: The spectrum of the inhomogeneous nanowire is plotted for four different values of the
applied magnetic field: for vanishing or weak magnetic field (black triangles and red squares) only confinement
bound states are present. For ΔZ > Δ�

Z � 0.5 meV, two additional interface bound states appear below the
confinement bound states (blue circles), while for ΔZ > 2ESO = 1 meV (green stars) the confinement bound
states have disappeared and only the interface bound states survive. Panel c: The density profile ρlowest of the
lowest energy state, plotted for the same four values of applied magnetic field, shows a change in the nature
of the electronic ground state from a confinement to interface bound states, determining a displacement of the
electron charge from the center to the interfaces with the leads located at x = ±0.5 μm. Panel d: the profile
of the total density ρ, involving all occupied states up to a chemical potential μ = −0.45 meV is shown for
the four different values of applied magnetic field

role of leads. Finally, in Fig. 5d we have plotted the full electron density, due to all states
filled up to a chemical potential value μ = −0.45 meV, again for the four values of applied
magnetic gap energy. While for ΔZ = 0 the charge is purely localized in the center of the
nanowire, the application of a magnetic field leads the charge to be delocalized also in the
outer ‘leads’. Notably, even for the green curve at ΔZ = 1.2 meV, where both nanowire
regions are in the Zeeman dominated regime (ΔZ > 2ESO,in > 2ESO,out ) and their bulks
have the same band bottom, the stronger spin-orbit coupling in the central region causes the
density therein to exhibit a plateau higher than the density in the outer regions.

6 Conclusions

In conclusion, in this paper we have investigated the presence of bound states in spin-orbit
coupled nanowires characterized by inhomogeneous RSOC profile. This can account for
various effects, namely the finite length of the nanowire, the contacts to metallic leads or
the situation where the RSOC is locally modified by the presence of a gate covering part of
the nanowire. We have shown that two types of bound states exist, namely the confinement
bound states and the interface bound states, with quite different origin and features, which
we can now summarize.

123



Eur. Phys. J. Plus (2020) 135:597 Page 11 of 13 597

The confinement bound states, described in Sect. 3, exist when a non-monotonic RSOC
profile α(x) creates an effective confinement potential Eq. (8). The typical situation where
this occurs is when a nanowire with finite length L is contacted through two interfaces to two
electrodes where the RSOC vanishes. In this case Eq. (8) represents a quantum well, with a
depth given by the spin-orbit energy ESO of the nanowire and a width corresponding to the
nanowire length L . The confinement bound state energies lie in the energy window between
the bulk band bottom of the nanowire and bulk band bottom of the leads. The emergence of
these states is thus related to the mismatch of the two band bottoms. These states exist also
when no magnetic field is applied, and the application of a magnetic tends to hinder their
existence, since for a sufficiently strong magnetic field both the nanowire and the leads enter
the Zeeman-dominated regime where the band bottom equals −|hx |.

In contrast, the interface bound state described in Sect. 4 is present only when the mag-
netic field hx (perpendicular to the spin-orbit field) is applied. It may exist also for a mono-
tonic RSOC profile α(x), like in the presence of one single interface. This can be either a
nanowire/lead interface or an interface between two different portions of the nanowire, one
being, e.g. covered by a gate altering the RSOC underneath and possibly changing its sign.
Differently from the confinement bound states, the existence of the interface bound states is
favored by the alignment of the band bottoms of the two sides of the interface. For instance,
when the RSOC takes equal and opposite values across the interface, the two band bottom
energies, which depend only on the square of the RSOC, align and these bound states exist for
any weakly applied magnetic field. In general, for any two different bulk values of the RSOC
αL and αR across the interface, like for a lead/nanowire interface, the interface bound state
appears for a sufficiently strong magnetic field. In striking difference from the confinement
bound states, the energy of the interface bound state lies below the bulk band bottoms.

Finally, in Sect. 5, we have considered the case where a nanowire portion acquires a locally
stronger RSOC, e.g. due to a gate covering it. We have shown that, while for vanishing
magnetic field the lowest energy state is a confinement bound state characterized by an
electron density peaked at the center of the gated region, when a magnetic field is increasingly
applied the confinement bound states eventually disappear and the ground state consists of
interface bound states. The ground state charge can thus be magnetically displaced towards
the interfaces, leading to a stronger coupling to the outer regions, which play the role of leads.

The parameter values and the conditions described above are at experimental reach in
realistic setups with InSb and InAs nanowires [36–43]. The described bound states could
possibly be exploited for photo-excitation in spin-orbit nanowires, similarly to what has been
done with helical edge states of quantum Spin Hall effects [82–89] or for the analysis of out
of equilibrium effects caused by a quench, as recently proposed [90].
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