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Abstract 

A new method in the frequency domain for the identification of nonlinear vibrating structures is 

described, by adopting the perspective of nonlinearities as internal feedback forces. The technique 

is based on a polynomial expansion representation of the frequency response function of the 

underlying linear system, relying on a z-domain formulation. A least squares approach is adopted to 

take into account the information of all the frequency response functions but, when large data sets 

are used, the solution of the resulting system of algebraic linear equations can be a difficult task. A 

procedure to drastically reduce the matrix dimensions and consequently the computational cost – 

which largely depends on the number of spectral lines – is adopted, leading to a compact and well 

conditioned problem. The robustness and numerical performances of the method are demonstrated 

by its implementation on simulated data from single and two degree of freedom systems with 

typical nonlinear characteristics. 

 

1. Introduction 

The research activity in the wide field of nonlinear system dynamics is attested by the continuous 

publication of numerous books, PhD theses, papers and benchmarks – see for example [1-9]. In 

particular the nonlinear system identification, just like the sector of modal parameters extraction, 

exhibits a sort of time–frequency ambivalence. As an example, a time-domain subspace 

identification algorithm, extended to nonlinear system and named nonlinear subspace identification 

(NSI), was proposed in [10] and later developed in the frequency domain in [11]. Each 

implementation has advantages and disadvantages as pointed out in [12], so that it should be 

advisable to rely on different data processing techniques to investigate structures properties. The 

objective of the present paper is to present a new frequency domain method for the identification of 
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nonlinear systems, inspired by the basic principle of the nonlinear identification through feedback 

of the outputs (NIFO) technique introduced in [13]. Each frequency response function (FRF) of the 

underlying linear system is expressed by a polynomial ratio in the z-domain, shifting the problem 

from the estimation of the FRFs to the definition of the constant coefficients describing both the 

linear and nonlinear parts of the system. Poles and zeros of the various FRFs are in other words 

simultaneously computed with the (assumed frequency independent) parameters characterizing the 

nonlinear terms, thus achieving a complete identification of the structure in the same step of the 

procedure. The nonlinear identification by polynomial expansion in the z-domain (NIPEZ) method 

here proposed can deal with multiple input multiple output (MIMO) systems containing different 

and (possibly) many nonlinearities and is designed in order to efficiently compute a least squares 

solution, which takes into account the information contained in each FRF. 

The paper is organized as follows. Section 2 introduces the theoretical background of the NIPEZ 

method, describing the procedure in details. Section 3 is devoted to the numerical examples, with 

single and two degree of freedom systems. Synthetic data sets are corrupted by additive noise to 

show its influence on estimates of linear and nonlinear parameters. Stabilisation diagrams are used 

for validating the identification procedure. The conclusions of the study are presented in Section 4. 

 

2. Outline of the method 

For a time invariant, viscously damped system with N degrees of freedom and S nonlinearities, the 

second order time domain equations of motion can be written in the form [13] 

        (1) 

where M, C, K are symmetric square matrices, x(t) is the displacement column vector, f(t) is the 

external forces column vector, gs(t)  indicates the kind of nonlinearity and has to be specified a 

priori, ms is the constant parameter of the nonlinear term and vector L s specifies its position, with 

Ls = L1s … Lks … LNs
é
ë

ù
û
T

 and Lks = 0  or Lks = ±1. In this model any nonlinear contribution 

is acting as a force whose position and form is entirely defined, while its intensity depends on the 

unknown constants ms. 

It’s worth noticing that the methodology relies on the feedback of the outputs stated by eq.(1): the 

same principle has been used in [10, 11, 13] which can therefore be assumed as valuable terms of 

comparison. 

The frequency domain model corresponding to eq. (1) is 
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BL (w)X(w)= F(w)+ L smsGs(w)
s=1

S

å          (2) 

where BL (w)  is the linear impedance matrix and X(w), F(w) , Gs(w) are the Fourier transforms of 

x(t), f(t) and gs(t)  respectively – L s and ms are constant quantities. In particular it is assumed that 

the nonlinear terms ms do not vary with frequency, which distinguishes the NIPEZ method from 

both NIFO and NSI techniques [13, 10].  

With the position H(w) =BL
-1(w), where H(w)  is the (linear) frequency response matrix, eq. (2) 

becomes 

X(w) =H(w)F(w)+ H(w)L smsGs(w)
s=1

S

å         (3) 

which represents the structure of the identification model. 

The input and output time histories (appropriately sampled and sufficiently long), the number, kind 

and position of the nonlinearities are given so that X(w), F(w) , L s and Gs(w) are completely 

defined. 

The question is how the modal parameters (frequency, damping ratio and mode shape, all of them 

buried in the FRF matrix H(w)) of the underlying linear system as well as the ms parameters of the 

nonlinear terms can be extracted. 

To explain the proposed NIPEZ procedure we firstly focus the attention on the single input Fp 

single output Xq  (SISO) equation, extracted from eq. (3) – w is removed for the sake of simplicity: 

Xq = HqpFp + H L smsGs

s=1

S

å
æ

è
ç

ö

ø
÷
q

          (4) 

or also, in an expanded notation 

Xq = HqpFp +m1G1 Hqk Lk1

k=1

N

å +… +mSGS Hqk LkS
k=1

N

å        (5) 

Lacking the nonlinear terms, eq. (5) would give Xq = HqpFp as expected. This also reminds us that a 

sound computation of a FRF, i.e. Hqp , is better achieved by adopting one of the usual estimators 

based on power spectral density (PSD) functions [14] than by simply performing the ratio Xq / Fp . 

It is then advisable to multiply eq.(5) by the complex conjugate output Xq
*  so to pave the way for 

the computation of PSD functions by means of the Welch periodogram: 

Xq
*Xq = HqpXq

*Fp +m1Xq
*G1 Hqk Lk1

k=1

N

å +… +mSXq
*GS Hqk LkS

k=1

N

å      (6) 
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A rational fraction expression is then assumed for the FRF, based on the z-transform of the linear 

system impulse response function [15] 

Hqp =
Nqp

D
=

b1z+… +b2nz
2n( )

qp

a0 +a1z +… + a2n-1z
2n-1 + z2n

        (7) 

where z= ejwDt , Dt  is the sampling period, fs =1/Dt  is the sampling frequency and 2n is the order 

of the model, theoretically equal to twice the number of degrees of freedom N of the system. 

Eq.(7) corresponds to a common denominator model [16, 17] so that numerator Nqp, and 

consequently the zeros of the FRF, varies with the input p and the output q whilst denominator D , 

and consequently the poles of the system, remains unchanged. Substituting eq.(7) into eq. (6) gives 

Xq
*XqD = NqpXq

*Fp +m1Xq
*G1 Nqk Lk1

k=1

N

å +… +mSXq
*GS Nqk LkS

k=1

N

å      (8) 

and then 

z0 … z2n-1é
ëê

ù
ûúXq

*Xqa+ z
2nXq

*Xq = z1 … z2né
ëê

ù
ûúXq

*Fp bqp +  

+m1Xq
*G1 z1 … z2né

ëê
ù
ûúbqk Lk1

k=1

N

å +… +mSXq
*GS z1 … z2né

ëê
ù
ûúbqk LkS

k=1

N

å    (9) 

where a= a0 a1 … a2n-1
é
ë

ù
û
T

  and bqp = b1 b2 … b2n
é
ë

ù
ûqp

T

 

The sums on the right hand side can be assembled into new vectors dqs so that eq.(9) boils down to 

z0 … z2n-1é
ëê

ù
ûúSXqXqa+ z

2nSXqXq = z1 … z2né
ëê

ù
ûúSXqFp bqp + z1 … z2né

ëê
ù
ûú SXsGsdqs

s=1

S

å  (10) 

with SXqXq , SXqFp  and SXsGs indicating auto and cross power spectral densities (PSD) and 

dqs = ms bqk Lks
k=1

N

å            (11) 

Eq.(10) has been written for a single spectral line, i.e. for z= ejwDt , but may be repeated for every 

frequency w so as to obtain a set of M equations, M being the number of spectral lines in exam. In 

matrix form 

Aqa+nq +Bqp bqp + Dqsdqs

s=1

S

å = eq          (12) 

where nq ÎC
M 1́ is the known vector, eq Î C

M 1́  is the error vector and matrices Aq ÎC
M´2n , 

Bqp ÎC
M´2n and Dqs ÎC

M´2n  are defined according to the elements in eq.(10). 

Eq.(12) links the linear (a  and bqp) and nonlinear (dqs) vectors of a SISO system and drives 
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straight to the following multiple input single output –MISO– formulation  

Aqa+ Bqp bqp

p=1

P

å + Dqsdqs

s=1

S

å +nq = eq         (13) 

P  being the number of inputs. 

Finally a multiple input multiple output –MIMO– expression is found directly from eq.(13) 

        (14) 

with q = 1,…,Q , Q  being the number of outputs. 

The total number of unknown real constants, pertaining to a , bqp  and dqs, is 

2n+ 2n×P ×Q+ 2n ×S×Q while the number of equation is M ×Q: the linear system of equations (14) 

can then be solved, by minimising the error vectors eq. 

In order to obtain a reliable solution, an overdetermined system of equations is sought for and then 

the number of rows of eq.(14) should be at least equal to the number of columns. This last 

requirement is easily fulfilled by choosing a number of spectral lines M big enough: notice that this 

value can also be very large, depending on the initial calculation of the PSD functions. 

Unfortunately this approach is numerically not effective, because of the potentially huge number of 

complex-valued equations to be solved, even when few nonlinearities and degrees of freedom are 

involved. The development of an alternative least squares procedure is then well worth the quite 

cumbersome algebra briefly summarised as follows. 

Let Eq
2 = eq

Heq be the real valued scalar error (H indicates the Hermitian transpose), computed on the 

M spectral lines of output q as per eq.(13). The global error, taking into account all the outputs is  

E2 = Eq
2

q=1

Q

å             (15) 

The former quantity is minimised by setting 

 

¶E2 ¶a= 0

¶E2 ¶bqp = 0

¶E2 ¶dqs = 0

ì

í
ïï

î
ï
ï

 with 

p=1,… ,P

q=1,… ,Q

s=1,… ,S

        (16) 

Tedious algebraic developments (Appendix A) lead to the compact expression 

Sx=m            (17) 
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where S is a Hermitian matrix formed by a proper multiplication of Aq , Bqp and Dqs matrices, m is 

the vector of known coefficients formed by Aq , Bqp, Dqsand nq , x contains the real unknown 

vectors a , bqp  and dqs– examples of the structure of S, m and x are given in the next section. 

Eq.(17) is completely equivalent to eq.(14) but contains a reduced number of equation, i.e. 

2n+ 2n×P ×Q+ 2n ×S×Q, thus requiring a much lower computational effort. Its solution gives the 

coefficients a of the denominator of the FRF –eq.(7)– which in turn allow to compute the poles of 

the system; also vectors bqp  and dqs are determined so that the nonlinear parameters ms can be 

identified by using eq.(11). It may be worth noticing that the solution of eq.(17) directly provides 

vectors a  and bqp  that is, with a straightforward manipulation, natural frequencies, damping ratios 

and mode shapes of the linear system. The validation of the model, as indicated by the examples in 

the next section, is mainly based on a correct usage of stabilization diagrams of both linear and 

nonlinear parameters. 

The proposed procedure can be summarized as follows: 

1) measurement of the input and output time histories; 

2) definition of a model based on M, C, K matrices and feedback of the outputs – eq.(1); 

3) reformulation of the problem in the frequency domain – eq.(3); 

4) choice of a rational fraction formulation, written in the z-domain, to describe the frequency 

response function of the underlying linear system – eq.(7); 

5) definition of a least square procedure to minimize the error between the model and the 

measures – eqs.(14-17); 

6) definition of the modal parameters (related to the linear underlying structure) and the 

nonlinear coefficients by exploiting the capabilities of stabilization diagrams. 

It may be useful to notice that it is not possible to apply the proposed technique to calculate the 

outputs on the basis of given inputs and estimated linear and nonlinear parameters. In fact the 

method can not reconstruct matrices M, C, K but only the related modal parameters, in particular 

natural frequencies and damping ratios. 

 

3. Numerical examples 

Examples based on single and two degrees of freedom systems with different sort of nonlinearities 

are discussed in this section. They all are very similar to the test cases presented in [10] so to have a 

direct comparison with a well established but totally independent time domain algorithm. The 

proposed method proves numerically efficient, results are very good, and stabilisation diagrams 

reveal useful in choosing both the linear and nonlinear solutions. 
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The integration of all the following differential equations has been performed by a Runge-Kutta 

scheme, implemented in the Matlab® script ode45. 

 

3.1 Example 1: single degree of freedom system with cubic stiffness 

The first example of application for NIPEZ method is a most classical one: the single degree of 

freedom system with a cubic hardening stiffness. Its motion is described by the Duffing equation 

         (18) 

whose parameters are listed in Table 1. The chosen excitation f(t) is a zero-mean Gaussian noise 

and the underlying linear system has natural frequency fr=3.948 Hz and damping ratio =3.10% 

By comparing eq.(18) and eq.(1) it’s obvious that N=P=Q=S=1, Ls º L1 = L11 = -1, 

gs(t) º g1(t) = x
3 and ms º m1 = k3 . Eq.(11) also is very simple and reads d11 = m1b11 L11 = -k3b11  

Auto and cross PSD, see eqs. (10) and (12), are computed by Welch periodogram method, with the 

parameters listed in Table 2. 

 

Table 1 

Parameters of the Duffing equation 

m (kg) c (Ns/m) k (N/m) k3 (N/m3) 

1.3 2 800 1.5 106 

 

Table 2 

Parameters for PSD estimation 

Number of spectral lines 

M 

Overlap 

(%) 

Window Number of time samples Sampling frequency 

fs (Hz) 

4096 67 Hann 50000 100 

 

Eq.(14) involves a single equation A1a+B11 b11 +D11d11 +n1 = e1 and the least squares procedure 

outlined by eqs.(15-16) leads to the following square 2n ×3( ) ´ 2n×3( )system: 

A1
HA1 A1

HB11 A1
HD11

B11
HA1 B11

HB11 B11
HD11

D11
HA1 D11

HB11 D11
HD11

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

a
b11

d11

ì

í
ï

î
ï

ü

ý
ï

þ
ï
=

-A1
Hn1

-B11
Hn1

-D11
Hn1

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï

       (19) 
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Figure 1 represents the H2 (w)  linear estimation of the FRF, based on the input and output time 

histories of the nonlinear Duffing oscillator. As expected the resonance band is right shifted with 

respect to the linear natural frequency fr at about 4 Hz. The output has also been corrupted with 

Gaussian zero-mean noise, whose root mean square (rms) is 3% of the output rms, roughly 

corresponding to a 30dB signal-to-noise ratio. The effect of the noise is appreciable above 12 Hz 

whilst in the resonance region the magnitude of FRFs curves are almost equal. 

The NIPEZ technique has been applied in both cases in the frequency range 0-8 Hz with model 

order 2n varying from 2 to 80, in order to highlight the importance of this parameter. The 

stabilisation diagram for the nonlinear stiffness k3 is plotted in Figure 2, in the noisy condition. It is 

clear that a single degree of freedom model, corresponding to model order 2, is not sufficient to 

achieve an acceptable estimate of k3, which is largely underestimated; on the contrary the identified 

frequency, related to the linear parameters, is only 5% higher than expected. The wrong 

approximation of the nonlinear parameter at the ideal model order, which is a weakness of the 

methodology and is indeed shared with other nonlinear identification techniques, highlights the 

importance of the stabilization diagram, as also proposed in [12], which is in fact very stable 

beyond 2n=10 (Fig. 2). The mean value and the standard deviation of the linear parameters, f1 and 

1, and nonlinear stiffness k3 (10<2n<80) are reported in Table 3: the relative error on the nonlinear 

stiffness is below 0.5%. A very limited dispersion of data around the mean value is present, with a 

particularly low standard deviation when no noise is added. It is worth noticing that also the 

damping ratio is determined with high precision and low dispersion. 

The same example is reported in [10] where the error on k3 is particularly low without noise and 

increases to 1.62% in the 3% noise case. 

 

Table 3: linear and nonlinear parameters of the Duffing equation estimated by NIPEZ method 

 No noise 3% noise

 k3 (N/m3) f1 (Hz) 1 (%) k3 (N/m3) f1 (Hz) 1 (%) 

Mean value 1.5061106 3.951 3.10 1.5041106 3.951 3.10 

Standard deviation 5.1102 4.1610-4 0.008 2.23103 6.7810-4 0.022 
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Figure 1: H2 (w)  linear estimate of the FRF of the Duffing oscillator, with (solid line) and without 

(dashed line) noise on output, with a zoom in the resonance band. 
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Figure 2: stabilisation diagram of the nonlinear stiffness coefficient k3 (Duffing oscillator). 

 

3.2 Example 2: single degree of freedom system with clearance 

The second example is still dedicated to a SDOF system, with the same linear parameters as in 

Section 3.1, but with clearance type nonlinearity. The equation of motion is 

         (20) 

where 

Fd(t) = 0    for x £ d  

Fd(t)= kc x-dsgn(x)( )  for x > d  

d=0.01 m is the deadspace (clearance) and kc=1000 N/m is the stiffness. 

Also in this case the NIPEZ method has been applied in the frequency range 0-8 Hz with model 

order 2n varying from 2 to 80 (results are presented for noisy data only). Assuming d=0.01 m, the 

stabilisation diagram for the nonlinear stiffness kc is similar to Figure 2 (except for the numerical 

values), and again model order 2 is not sufficient to achieve an acceptable estimate of the nonlinear 

parameter. A very stable diagram is obtained beyond 2n=10 leading to the mean value kc=1.002 

103 N/m and standard deviation 1.52 N/m. 

This is of course an ideal situation because the deadspace is usually unknown and has to be 

determined together with the stiffness kc. The stabilisation diagram of coefficient kc is of help also 
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in this case because when a wrong deadspace is selected, the standard deviation of the stiffness is 

much larger than in the correct case  – Table 4. It is also worth mentioning that in this conditions 

the natural frequency fr and damping ratio  not only are no more correctly estimated (which would 

be impossible to tell without a reference value) but also are quite variable with the model order, thus 

suggesting some drawback in the identification procedure. 

 

Table 4: influence of the clearance length on the stiffness coefficient kc. 

d (m) 0.007 0.008 0.009 0.010 0.011 0.012 0.013 

kc mean value (N/m) 829.5 886.7 942.8 1002 1057 1105 1142 

kc  standard deviation (N/m) 55.8 34.8 14.5 1.52 8.24 29.8 43.9 

 

3.3 Example 3: single degree of freedom system with polynomial nonlinearity 

The third example is still dedicated to a SDOF system, with the same linear parameters as in 

Section 3.1, but with a polynomial expression of the nonlinearity in the form 

Fp(t) = k2x
2 (t)+ k3x

3(t)+ k4x
4(t)+ k5x

5(t)+k6x
6 (t)+ k7x

7(t)       (21) 

Six ms constant parameters of the nonlinear term – m1 = k2 , …, m6 = k7  – are to be found and the 

dimensions of matrix S – eq.(17) – increase accordingly. For the sake of brevity eq.(17) is expanded 

for two terms only: 

A1
HA1 A1

HB11 A1
HD11 A1

HD12

B11
HA1 B11

HB11 B11
HD11 B11

HD12

D11
HA1 D11

HB11 D11
HD11 D11

HD12

D12
HA1 D12

HB11 D12
HD11 D12

HD12

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

a
b11

d11

d12

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
ï

=

-A1
Hn1

-B11
Hn1

-D11
Hn1

-D12
Hn1

ì

í

ï
ïï

î

ï
ï
ï

ü

ý

ï
ïï

þ

ï
ï
ï

     (22) 

with d11 = m1b11 L11 = -k2b11  and d12 = m2b11 L12 = -k3b11, but the same structure applies to any 

similar expansion. It must be stressed that it is not possible to incorporate a linear term in the 

polynomial expression (21), because its contribution would mix with the linear term kx(t) : in the 

identification procedure it would consequently be impossible to tell which is which. 

The results, again with model order up to 80 and noisy data, are summarised in Table 5 where the 

nonlinear stiffness constants and their standard deviations are reported. In the equation of motion k3 

and k5 only have been set different from zero, and in fact coefficients k2 - k4 - k6 - k7 exhibit standard 

deviations of the same order of their mean values (or even larger), thus revealing not to be reliable 

at all. The remaining terms k3 and k5 do not exactly match the actual values but can still copy with 

good accuracy the nonlinear force. In Figure 3 the dashed line representing the nonlinear original 
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force – eq.(21) – is almost overlaid on the solid line representing the force reconstructed by using 

the coefficients reported in Table 5.  

Good approximation is reached also for the linear parameters: the natural frequency is 3.937 Hz 

(standard deviation: 0.0056 Hz) and the damping ratio is 3.08 % (standard deviation: 0.08%). 

 

Table 5: coefficients of the polynomial stiffness. 

 k2 (N/m2) k 3 (N/m3) k 4 (N/m4) k 5 (N/m5) k 6 (N/m6) k 7 (N/m7) 

Ideal value 0 1.00105 0 1.00108 0 0 

Mean value 106 9.42104 -2.03105 1.17108 6.47107 -7.45109 

Standard deviation 56 3.07103 1.30105 5.49106 1.08108 2.64 109 

 

 

Figure 3: the original nonlinear polynomial force (dashed line) and its fitting (solid line). 

 

On the basis of these results it could be advisable to limit the survey to the couple of stable 

nonlinear parameters only, the others being discarded. Estimates and variances would in fact 

improve to k 3 = 1.006105 N/m3 (standard deviation 9.68102 N/m3) and k 5 = 1.023108 N/m5 

(standard deviation 1.00106 N/m5). 
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3.4 Example 4: two degrees of freedom system with three nonlinearities 

A two degrees of freedom system with three nonlinear elements (Fig. 4), whose parameters are 

listed in Table 6, is the focus of this example. The last term of eq.(1) is 

L smsgs(t)
s=1

S

å = -1
0

ì
í
î

ü
ý
þ
k3x1

3 t( ) + -1
0

ì
í
î

ü
ý
þ
k4x1

2 t( ) + -1
1

ì
í
î

ü
ý
þ
k5 x1 t( ) - x2 t( )( )3

    (23) 

A zero-mean Gaussian noise is acting on mass 2 so to mimic real conditions where the number of 

inputs P is generally (much) lower than the number of outputs Q. The outputs have been corrupted 

by zero-mean Gaussian noises with rms equal to 6.3% of the outputs rms, roughly corresponding to 

a 24dB signal-to-noise ratio. The linear estimates – obtained with the same parameters of Table 2 – 

of the nonlinear system FRFs are plotted in Figure 5, with no added noise. Resonances are right 

shifted with respect to the natural frequencies f1=2.463 Hz (damping ratio 1=1.83%) and f2=7.511 

Hz (2=5.05%.) of the underlying linear system, whose FRFs are also drawn in Figure 5. 

The NIPEZ method has been applied in both cases in the frequency range 0–12 Hz with model 

order 2n varying from 2 to 80. Results are summarised in Table 7 and reveal a good accuracy in the 

estimation of the nonlinear coefficients (k3, k4, k5) and the modal parameters (natural frequencies 

and damping ratios). As expected the standard deviation is much larger in presence of noise, which 

is also confirmed by Figure 6 where the trend of the most variable parameter, stiffness k3, is plotted 

(black dots). The inspection of the stabilisation diagrams suggests to rely on only a part of the 

extracted values, i.e. 20<2n<70 which exhibit a smaller variability, to compute the nonlinear 

constants. 

Table 7 and Figure 6 also present an improved solution, obtained by doubling the number of 

spectral lines (M=8192). This result suggests that a large number of points in the frequency domain 

is advisable but only if a minimum reasonable number of data block , e.g. 10, is used to compute the 

mean values involved in the definition of the PSDs in eq.(10). 

The inaccuracies on the nonlinear coefficients k3, k4, k5 are comparable with the results in [10] 

where 2.3%, 1.1% and 1.9% errors are reported in a 2% noise condition. Very accurate damping 

ratios are again achieved, even in the noisy condition, which distinguishes NIPEZ from NSI [10]. 

Figure 7 presents the differences between the estimated frequencies and the theoretical values as a 

function of the model order, with 6.3% noise and M=8192 spectral lines. With model order 4, 

namely ideal for a two degree of freedom system, a maximum error of about 2.3% is present on the 

second mode frequency; the amplitude (Fig. 5) of the first mode is much larger and the frequency 

difference is well below 0.5%. The errors then decrease at higher orders, as a consequence of a 

stable identification. Figure 7, and similar plots valid for the single degree of freedom examples of 

the previous sections (not presented for the sake of  brevity), indicates that the proposed method can 
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give a correct identification of the linear parameters even with the ideal model order but that 

stabilisation diagrams are very useful for increasing the accuracy of both linear and nonlinear 

estimates. 

 

It is important to mention that vectors bqk  are necessary, with q=1,… ,Q and k =1,… ,N  (k 

indicates the input) to compute the nonlinear parameters ms from eq.(11). In the present example a 

single input is present on mass 2, i.e. k º 2 , and then bq2  vectors only can be determined, q=1,2. 

Since vectors bqk  are related to the zeros of the underlying linear system – eq.(7) – it’s possible to 

set bkq = bqk , and then b2q = bq2 , which allows for a correct usage of eq.(11). For example the 

nonlinear coefficient m1 may be evaluated with the following expression  

d21 = m1 b21 L11 +b22 L21( ) = m1 b12 L11 +b22 L21( )        (24) 

 

 

Figure 4: sketch of the two degrees of freedom system 

 

Table 6: parameters of the two degrees of freedom system. 

Mass (kg) Damping 

(Ns/m) 

Linear stiffness (N/m) Cubic nonlinear 

stiffness (N/m3) 

Quadratic nonlinear 

stiffness (N/m2) 

m1 = 1.0 c1 = 2.0 k1 = 800 k3 = 8.0 107 k4 = 8.0 104 

m2 = 1.5 c2 = 2.0 k2 = 1000 k5 = 1.0 108  

 

43 , kk  

1c
1m  

x1 t( )

5k  

2c  

2m  

x2 t( ), f2 t( )

2k
k1
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Figure 5: linear estimates (solid lines) of the nonlinear FRFs of the two degrees of freedom system, 

H12 (w)  (top) and H22 (w)  (bottom). Ideal linear FRFs are represented with dashed lines. 
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Figure 6: variation of the nonlinear coefficient k3 with model order, with 6.3% noise. 

Spectral lines M=4096: dots •, M=8192: asterisks *.  

 

 

Figure 7: errors on the estimated frequencies with increasing model order, with 6.3% noise and 

M=8192 spectral lines. o: f1, *: f2 
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Table 7: estimates of linear and nonlinear parameters, without and with noise, in the region 

20<2n<80. 

 k3 (N/m3) k 4 (N/m2) k 5 (N/m3) f1 (Hz) 1 (%) f2 (Hz)  2 (%)

Ideal 8.00107 8.00104 1.00108 2.463 1.83 7.511 5.05

M=4096 No noise    

Mean value 8.13107 8.06104 1.02108 2.464 1.89 7.515 5.08

Standard deviation 2.48105 2.10102 5.60105 8.3610-4 5.210-2 0.310-2 2.210-2

M =4096 6.3% noise    

Mean value 8.22107 7.95104 1.03108 2.463 1.75 7.519 5.13

Standard deviation 2.45106 2.48103 3.66106 0.2710-2 0.15 7.810-2 0.12

M =8192 No noise    

Mean value 8.13107 8.06104 1.01108 2.464 1.87 7.513 5.05

Standard deviation 1.14105 1.25102 3.10105 6.0210-4 2.6410-2 0.1110-2 1.910-2

M =8192 6.3% noise    

Mean value 8.01107 7.89104 1.02108 2.464 1.79 7.528 5.04

Standard deviation 1.41106 1.03103 3.41107 8.4410-4 2.6910-2 0.7510-2 0.14

 

Table 8 reports the results achieved by setting M=8192 and limiting the analysis to the frequency 

band 0–6 Hz, still in the 6.3% noise condition. The first mode only is selected and then it is not 

possible to get any estimate of the natural frequency and damping ratio of the second mode. It is 

nonetheless feasible to correctly evaluate the nonlinear terms, with a similar accuracy as in the 

previous 0–12 Hz band elaboration. 

On the contrary no stable solution is determined by selecting the 6–12 Hz band. The result is not 

surprising taking into consideration – Fig.(5) – that the amplitudes of the FRFs in the second mode 

region are at least one order of magnitude lower than the corresponding amplitudes of the first 

mode. 

 

Table 8: estimates of linear and nonlinear parameters, with 6.3% noise, M=8192, in the 0–6 Hz 

band. 

 k3 (N/m3) k 4 (N/m2) k 5 (N/m3) f1 (Hz) 1 (%) f2 (Hz)  2 (%)

Mean value 7.98107 7.91104 1.05108 2.464 1.81 – – 

Standard deviation 1.17106 1.19103 4.19106 9.4410-4 0.04 – – 
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4. Conclusions 

The paper presents a frequency domain procedure aiming at the synchronous identification of the 

nonlinear coefficients and the modal parameters of a MIMO system described by second order 

differential equations. A z-domain polynomial expansion of the underlying linear FRFs is 

incorporated into the identification process leading to an overdetermined linear system of algebraic 

equations. A least squares analytical solution of this latter problem is outlined, which is indeed 

necessary both to limit the data processing time and to increase the stability of the numerical 

solution. 

Numerical examples are given to show the correctness of the method, which actually attains very 

good results for both the linear and nonlinear parameters, even in presence of noise. The 

stabilisation diagram of the nonlinear coefficients revels very useful to define their true values and 

also makes it clear that the model order (2n) corresponding to twice the actual number of degrees of 

freedom is not an appropriate choice to identify the nonlinear parameters. The standard deviation of 

the coefficients, computed with 2n varying between a minimum and a maximum value, results to be 

a good indicator of the quality of the estimates, both linear and nonlinear. 

One of the merits of NIPEZ is the capability of extracting modal parameters and nonlinear 

coefficients simultaneously (even with non negligible noise levels), which allows to verify if all the 

parameters converge to reliable estimates. In particular numerical simulations lead to very precise 

and low scattered damping ratios, which are usually difficult to obtain. 

The computational burden is very limited, mainly thanks to the least square procedure developed in 

Appendix A: all the results herewith presented have been obtained in few tens of seconds with 

Matlab® R2011a, on a 1.7 GHz Core i5 processor and 4 GB ram memory. 

Very long input and output time histories can simply be handled, and are even appreciated, since 

they’re quickly transformed in the frequency domain at the very beginning of the procedure; 

conversely too short time series may lead to an unsatisfactory frequency resolution and a 

consequently imperfect identification. This characteristic makes the proposed method somehow 

complementary to the previously developed time domain technique NSI [10] which has to limit the 

number of measured samples to avoid computational memory issues but can produce accurate 

results also with short time data sets. Also the possibility of arbitrarily setting the frequency band of 

analysis can somehow be seen as an advantage over time domain methods, although an incorrect 

decision on the frequency range can lead to inaccurate results. 

Gaussian random input has been imposed in the proposed numerical examples, so that proper 

choice of windows and overlap was mandatory; periodic random input could avoid both these 

selections but numerical examples showed that this assumption is not compulsory.  
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The main drawback of the described procedure is intrinsic to its formulation: in eq. (1) one has to 

know the number and location of nonlinearities to correctly express the equations of motion and 

also has to assume appropriate functions (e.g. cubic stiffness) and, sometimes, parameters (e.g. 

clearance) to describe the behaviour of nonlinear forces. The evaluation of the model order can be 

seen as a weakness of the method, which in fact generates unsatisfactory results on the nonlinear 

coefficients if the theoretical model order is used, although this limitation is not so severe when the 

linear parameters are considered. We stress the importance of using stabilization diagrams, and 

present results with both mean values and standard deviations for linear and nonlinear terms. 

Future work should address to the examination of the PSD related parameters (number of spectral 

lines and averages), mostly to limit the variability of the estimates caused by noise. A certain 

attention should also be dedicated to the influence of the frequency band of analysis and the kind of 

input, the latter in relation to the choice of the window function and the influence of harmonic 

components. A more accurate survey of the properties of stabilisation diagrams could also lead to 

an objective, automatic and reliable selection of the model order, based on all the identified 

information. Finally an application to real data and an extensive comparison with other techniques 

will certainly be compulsory. 
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Appendix A 

The algebraic passages that lead to the least squares solution given by eq.(17) are detailed in this 

section. The linear equation for generic output q, eq.(13), is 

Aqa+ Bqp bqp

p=1

P

å + Dqsdqs

s=1

S

å +nq = eq        (A.1) 

where eq is the error vector and a , bqp  and dqs are to be determined, for a total of 1+Q×P+Q ×S 

unknown vectors. The real valued scalar error Eq
2 = eq

Heq (
H indicates the Hermitian transpose) is 

one of the elements of the global error E2 , which takes into account all the Q outputs 

E2 = Eq
2

q=1

Q

å = aHAq
H + bqp

HBqp
H

p=1

P

å + dqs
HDqs

H

s=1

S

å +nq
H
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÷÷ Aqa+ Bqp bqp

p=1

P

å + Dqsdqs

s=1

S

å +nq
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è
çç

ö

ø
÷÷

q=1

Q

å  (A.2) 

With the aim of minimising E2 , partial derivatives with respect to vectors a , bqp  and dqs are set to 

zero, i.e. 

¶E2 ¶a= 0

¶E2 ¶bqp = 0 with

¶E2 ¶dqs = 0

q=1,… ,Q; p=1,… ,P

q=1,… ,Q; s=1,… ,S

ì

í
ïï

î
ï
ï

     (A.3) 

By remembering that the partial derivative of a matrix product gives 

¶ xHY z( ) ¶x= Y z

¶ xHY z( ) ¶z= Y x
          (A.4) 

we can also recognise that 

¶ xHYHY x( ) ¶x= 2YHY x          (A.5) 

The last equation displays the typical structure occurring when performing the products of eq.(A.2) 

and the subsequent derivatives; eq.(A.3) then reads 

Aq
HRq

q=1

Q

å = 0

Bqp
HRq = 0

Dqs
HRq = 0

ì

í

ï
ï
ï

î

ï
ï
ï

with q=1,… ,Q; p=1,… ,P

q=1,… ,Q; s=1,… ,S

      (A.6) 

where Rq =Aqa+Bq1 bq1 +… +BqP bqP +Dq1dq1 +… DqSdqS +nq  

By highlighting the unknown vectors a , bqp  and dqs, eq.(A.6) gives Sx=m – eq.(17) – with 
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