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a b s t r a c t 

The morphodynamic evolution of the shape of dunes and piles of granular material is 

largely dictated by avalanching phenomena, acting when the local slope gets steeper than 

a critical repose angle. A class of degenerate parabolic models are proposed closing a mass 

balance equation with several viscoplastic constitutive laws to describe the motion of the 

sliding layer. Comparison among them is carried out by means of computational simula- 

tions putting in evidence the features that depend on the closure constitutive assumption 

and the robust aspects of the models. The versatility of the model is shown applying it to 

the movement of sand in presence of walls, open ends, columns, doors, and in complicated 

geometries. 
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1. Introduction 

Four phenomena contribute to wind-induced sand movement and eventually to the formation and evolution of dunes:

erosion from the sand bed, transport by the wind, sedimentation due to gravity, and sand grain slides occurring when the

slope of the accumulated sand exceeds a critical repose angle [1] that depends on the specific granular material [2] . In par-

ticular, erosion, sedimentation, and sand sliding determine the evolution of the free-boundary over which wind blows and

transports the sand. As explained in detail in [3] and in the recent review [4] , the need of coupling a multiphase turbulent

fluid-dynamics model with the morphodynamics of the sand surface requires the deduction of mathematical models for

such phenomena that are able to describe the evolution of the sand bed in a way that is at the same time accurate and

computationally fast. However, applications are not restricted to sand dynamics but can be extended to debris and other

granular material in general as they present similar behaviours. 

Referring again to [4] for a more detailed review, many modeling frameworks were developed to study the phenom-

ena involved, both for sand and snow, and for other granular materials in general. Savage and Hutter [5] proposed a hy-

drodynamical models, based on Saint-Venant equations. They start from the incompressibility condition and momentum

conservation equations in the flowing layer and then integrate them over the thickness of the rolling layer, not considering

erosion and deposition. This gap was then filled, for instance, by Douady et al. [6] , Khakhar et al. [7] and Gray [8] . A detailed

analytical study of Savage and Hutter’s model was performed by Colombo et al. [9] . 
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Variational approaches have been proposed as well. Firstly, Aronsson et al. [10] introduced the p-Laplacian operator in

order to model a non-homogeneous superficial diffusion to determine the height of a growing pile of a noncohesive sand.

Mathematical properties were studied in a functional analysis framework by focusing on the theoretical results when the

parameter p tends to infinity. Prigozhin [11] developed a variational model based on mass balance for the sand pile and

assuming the surface flow is directed down in the direction of steepest descent subject to a slope constraint. Prigozhin et al.

[12] allowed a leading coefficient to vanish if the slope is below a threshold corresponding to the repose angle. 

Bouchaud and coworkers [13,14] divided the sand pile in a static zone and a moving layer, giving rise to the so-called two-

layers models . Such models are characterized by two state variables, the local height of the static part and the local density

(or height) of the rolling layer, linked by an exchange term which governs the transfer of mass from one status to the other.

Of course, in the static zone the advection velocity vanishes, while in the rolling layer it is usually considered constant

and strictly positive downhill. Also de Gennes and coauthors [15–18] and Prigozhin and Zaltzman [12] proposed modified

versions of this type of models, with the latter that assumed a proportionality of the drift velocity with the gradient of

the height of the sandpile. In the models proposed by Hadeler and Kuttler [19–21] , velocity is again constant, though it

is mentioned that it might depend on the slope (see, for instance, [22] ). An exchange term proportional to the difference

between the slope of the sand bed and the repose angle governs the transfer of sand between the static and the rolling

layer. 

A detailed analytical study of two-layers models was performed by Cannarsa and coworkers [23–26] for different bound-

ary conditions. Falcone and Finzi Vita [27–29] instead focused on the proper numerical method to integrate two-layers

models putting in evidence some unrealistic features such as the presence of blow-ups when the boundary of the domain

changes type, e.g., from a wall to an open end. Others are (i) the formation of artificial valleys on the top of the sand pile

obtained by pouring sand on its top, due to the discontinuity of downhill velocities on the two slopes in 1D simulations, or

in situations in which the maximum height of the sand pile should be reached close to a wall; (ii) the dependence of the

evolution and of the final configuration from the non-uniquely defined initial partitioning of the sand pile in a static and

a rolling region, e.g., if all the mass is set to be initially static, then there is no evolution even if the initial configuration

exceeds the repose angle. 

Starting from the just mentioned computational needs [3,4] , in [30] we proposed a model for the height of the sand

pile that does not present the problems mentioned above. It is based on a reduction of a mass balance equation obtained

assuming that (i) the thickness of the sliding layer is small, (ii) the grains move along the direction of steepest descent, (iii)

the speed is given by the limit velocity of a body sliding down a slope under the action of gravity, Coulomb friction, and a

drag force taken to be proportional to the sliding speed. 

It is proved that assumptions (i) and (ii) lead to an evolution equation for the height h (x, y, t) of the sand pile with the

following structure 

∂h 

∂t 
= ν∇ ·

[ 
f sl (|∇ h | ) ∇ h 

|∇ h | 
] 

+ q, (1) 

where f sl is called the sliding term, related to the mean sliding speed w through the relation f sl (|∇h | ) = 

δ
ν w (|∇h | ) where

δ is the thickness of the sliding layer and ν is an effective diffusion coefficient. The last term q in (1) takes into account

of external volume supplies of sand per unit area. The existence of a repose angle triggering the motion of the sand grains

reflects into the fact that the sliding term vanishes for slopes, and therefore | ∇h |, below a threhsold value. This gives to the

parabolic equation (1) a degenerate character, that justifies calling this type of models Degenerate Parabolic Sliding Models

(in the following shortened as DPSMs). 

Specifically, in [30] assumption (iii) led to 

f sl (|∇h | ) = 

(|∇h | − tan αcr ) + √ 

1 + |∇h | 2 , (2) 

where (g) + = (g + | g| ) / 2 stands for the positive part of g , so that f sl vanishes when | ∇h | ≤ tan αcr , where αcr is the repose

angle. 

Of course, it is possible to model in other ways the complex fluid-like behavior of the thin layer sliding on the top

of the sand pile when the angle of steepest descent is larger than the repose angle (a configuration that will be called

supercritical in the following), giving rise to different sliding terms f sl . In particular, still working under the hypotheses (i)

and (ii) above, we here consider several viscoplastic constitutive models named after Bingham, Casson, and Herschel-Bulkley

(see, for instance [31,32] for more details). All these models are characterized by the presence of a yield stress that must be

overcome before the material can flow. This common feature is related to the existence of a repose angle for the sand pile.

Exploiting the fact that for these models it is possible to determine the velocity profile of a flow down an inclined plane,

our aim is to extend DPSMs to different closures and to point out robust features and evolutionary differences among the

mathematical models. 

As we shall see, regardless of the constitutive closure, in spite of their simplicity, all the models above reply many well

known features of sand slides, such as the non-uniqueness of static configurations in subcritical conditions, i.e., with slopes

always smaller than the angle of repose and the link between critical stationary configurations and the solution of the

same eikonal equation. So, starting from supercritical conditions the solution of all models tends towards an equilibrium

identified by the same equation. The difference is in the way this solution is reached, especially when the slope gets close
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to the repose angle, with the model (1) –(2) being the fastest to reach the equilibrium and the one in which the closure is

achieved using a Herschel-Bulckley constitutive equations with a small power being the slowest. 

The paper is organized as follows. In Section 2 we derive the viscoplastic closures of the DPSM, starting from different

constitutive laws. Section 3 presents the result of comparative tests between the different models obtained, in order to

evaluate the differences between them in terms of final configuration and convergence speed. Some examples of application

of the models in practical situations are given in Section 4 . A final discussion section concludes the paper. 

2. Viscoplastic models for the sliding speed 

Modelling the motion of granular materials can be rather complicated, especially when there is massive relative motion

among the grains. Luckily, in many situations involving the redistribution of the granular mass, the motion is limited to a

sliding layer that has a thickness much smaller than the characteristic dimension of the sand pile. This suggests to work

with integrated variable on the thickness of the moving layer. Having this in mind, we will assume that the thickness of the

sliding layer is small and constant δ and that the behaviour of the ensemble of sand grains is fluid-like with viscoplastic

characteristics. 

So, coming briefly to the deduction of the model and referring to [30] for more details, we consider a control volume V
with vertical lateral surface and the basis A deep in the sand. The integral form of the mass balance equation then writes

as 

d 

dt 

∫ 
A 
ρh dA = −

∫ 
∂V air 

q · n d� −
∫ 
∂V∩S 

ρv · n d� , 

where ρ is the sand density and h ( x, y, t ) is the height of the sand pile. The first integral on the rhs refers to the sand flux

sedimenting through the top and the second one to that within the thin creep layer denoted by S . 

We then assume that sand grains slide along the surface h ( x, y, t ) in the direction of the steepest gradient 

t = − ∇h + |∇h | 2 k 

|∇h | √ 

1 + |∇h | 2 , 

with speed w , that depends on the local slope of the surface, so that v = w t . Therefore, one can re-write the sand flux

within the thin creep layer as ∫ 
∂V∩S 

ρv · n d� = 

∫ 
∂A 

ρwδ
t · n 

| t · n | d� = −
∫ 
A 
∇ ·

(
ρwδ

∇h 

|∇h | 
)

dA , 

where we used the fact that we can rewrite the surface element as d� = 

δ
cos θ

w (|∇h | ) = 

δ
| t ·n | c where d � is the line element

along ∂A and that the lateral walls are vertical. 

Defining q := −q · k /ρ and νf sl (| ∇ h |) := w (| ∇ h |) δ where ν is an effective diffusion coefficient and f sl is a dimensionless

term that we will call sliding term because of its dependence from | ∇h | we finally have 

∂h 

∂t 
= ν∇ ·

[ 
f sl (|∇ h | ) ∇ h 

|∇ h | 
] 

+ q. (3)

The crucial point is now to evaluate the sliding speed w or equivalently f sl . However, as we shall see the existence of a

minimal slope triggering the motion of the grains implies that f sl vanishes below a certain threshold for | ∇h | giving (3) a

degenerate character. For sake of clarity, we explicitly remark that for this reason we extend to zero the value of the square

parenthesis in (3) when |∇h | = 0 . 

In order to identify the mean sliding speed we work in the vertical plane containing the direction of steepest gradient

t represented in Figure 1 and assume that in the thin sliding layer the velocity profile can be approximated to that of a

viscoplastic fluid flowing down an inclined plane with slope α, such that tan α = |∇h | . In this geometry, neglecting inertia,

the equilibrium of forces locally reads 

∂T x ′ y ′ 

∂y ′ = −ρg sin α , 

where T x ′ y ′ is the shear stress and g is the gravitational acceleration. The above equation joined with stress-free boundary

condition at the free surface 

T x ′ y ′ 
∣∣∣

y ′ = δ
= 0 , 

can be trivially integrated to give the shear stress 

T x ′ y ′ = ρg(δ − y ′ ) sin α. (4)

If we take now constitutive models characterized by the presence of a yield stress τ , then there is flow only if an

invariant measure of the stress is above it. One of the most common yielding criteria in viscoplastic flows is based on
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Fig. 1. Velocity profile within a layer of moving sand behaving like a viscoplastic fluid in the vertical section containing the direction of steepest descent. 

The layer has thickness δ and ȳ distinguishes the shear layer for y ′ < ȳ (full curve) from the plug layer for y ′ > ȳ (dashed curve). 

 

 

 

 

 

 

 

 

 

the second invariant of the stress tensor [31,32] , that in the two-dimensional section of our interest writes | T x ′ y ′ | > τ : This

means that there is flow only if 

sin α > sin αcr := 

τ

ρgδ
, 

so that αcr represents the repose angle. We will call this case supercritical, while we will call subcritical a configuration

with α < αcr everywhere. In this case, as shown in Fig. 1 , the upper layer 

y ′ > ȳ := δ

(
1 − sin αcr 

sin α

)
, 

is a plug layer moving rigidly with the same velocity, while the lower layer y ′ < ȳ where T x ′ y ′ > τ undergoes a shear flow.

We observe that at y ′ = ȳ the shear stress is continuous and equal to τ . 

At this point, in order to proceed further and explicit the velocity profile in the supercritical case α > αcr , we need to

specify the constitutive equation. In the following we will use, as examples, the widely used models by Bingham, Casson,

and Herschel-Bulkley because they allow to determine the analytical expression of the velocity profile. 

2.1. Herschel-Bulkley model 

The Herschel-Bulkley constitutive model writes as 

T = 

[ 

k 
√ 

| II 2 D | γ −1 + 

τ√ | II 2 D | 

] 

2 D , if II T > τ 2 , 

where D = 

1 
2 (∇v + ∇v T ) is the rate of strain tensor, II 2 D is the second invariant of 2 D and II T the one of the stress tensor

(see, for instance [31,32] for more details). If, instead, II T < τ 2 , then the shear rate vanishes. In two-dimensions it reduces

to 

T x ′ y ′ = τ + k 

∣∣∣∂v x ′ 
∂y ′ 

∣∣∣γ , (5) 

where T x ′ y ′ > τ and v x ′ constant elsewhere. Then, in the shear layer y ′ < ȳ Eq. (4) rewrites as 

∂v x ′ 
∂y ′ = 

(
τ

k 

)1 /γ
[

sin α

sin αcr 

(
1 − y ′ 

δ

)
− 1 

] 1 
γ

, (6) 

that need be solved with the no-slip boundary condition at y ′ = 0 . Because of the action of gravity, the flow will be downhill

for small y ′ . So, there 
∂v 

x ′ 
∂y ′ > 0 and, actually, the positive sign will be kept because of the stress-free boundary condition.

Therefore, overall the velocity profile is given by 

v x ′ (y ′ ) = 

{ 

A 
β

[ 
(β − 1) 1+ 1 γ −

(
β − 1 − β y ′ 

δ

)1+ 1 γ
] 

if y ′ < ȳ ;
A 
β
( β − 1) 1+ 1 γ if y ′ ≥ ȳ . 

(7) 
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where 

A = 

(
τ

k 

) 1 
γ

δ
γ

γ + 1 

, β = 

sin α

sin αcr 
, 

with β > 1 when and where α > αcr . In deducing (7) we also used the continuity of the shear stress in y ′ = ȳ , that implies

that ∂v x ′ / ∂y ′ vanishes, in addition, of course, to the continuity of v x ′ . 
The mean speed across the moving layer y ′ ∈ [0, δ] 

w = 

1 

δ

{ ∫ ȳ 

0 

A 

β

[ 

(β − 1) 1+ 1 γ −
(

β − 1 − β
y ′ 
δ

)1+ 1 γ
] 

d y ′ + 

∫ δ

ȳ 

A 

β
(β − 1) 1+ 1 γ d y ′ 

} 

, 

can then be used to close (3) . In fact, one can specify 

ν = 

(
τ

k 

)1 /γ γ

(1 + γ )(1 + 2 γ ) 
δ2 , (8)

and f sl as the product of two factors: a regular term f reg and a degenerate term f deg 

f sl (|∇h | ) = f reg (|∇ h | ) f deg (|∇ h | ) , (9)

that, recalling that sin α is a function of the slope h ( x , t ) given by 

sin α = 

|∇h | √ 

1 + |∇h | 2 , 

write as 

f reg (|∇h | ) = 

sin αcr 

sin α

(
1 + γ + γ

sin αcr 

sin α

)
, (10)

which is always positive, while 

f deg (|∇h | ) = 

[(
sin α

sin αcr 
− 1 

)
+ 

]1+ 1 γ
, (11)

vanishes when α ≤ αcr , i.e., when | ∇h | ≤ tan αcr . In fact, if α < αcr , T x ′ y ′ < τ and there is no flow. The presence of this last

term is the one that gives the parabolic equation (1) its degenerate character. 

2.2. Bingham model 

As well known, Bingham constitutive model is a particular case of a Herschel-Bulkley model with γ = 1 (and k replaced

by μ) [31,32] . Hence, from ( 8,10,11 ) we readily have 

ν = 

τδ2 

6 μ
, (12)

f reg (|∇h | ) = 

sin αcr 

sin α

(
2 + 

sin αcr 

sin α

)
, (13)

and 

f deg (|∇h | ) = 

[(
sin α

sin αcr 
− 1 

)
+ 

]2 

. (14)

In particular, for the discussion to follow it is useful to observe that the degeneracy is quadratic, while for a Herschel-Bulkley

model it goes like 1 + 

1 
γ . 

2.3. Casson model 

Casson’s constitutive model can be written in three dimensions as 

T = 

[
√ 

μ + 

√ 

τ

| II 2 D | 1 / 4 
]

2 2 D , if II T > τ 2 . 

(see, for instance, [31,32] for more details) that in the two-dimensional section of our interest reduces to 

√ 

T x ′ y ′ = 

√ 

τ + 

√ 

μ

∣∣∣∣∂v x ′ 
∂y ′ 

∣∣∣∣. (15)
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Proceeding as in Section 2.1 , one has then to solve the differential equation 

∂v x ′ 
∂y ′ = 

1 

μ

(√ 

ρg(δ − y ′ ) sin α − √ 

τ
)2 

= 

τ

μ

( √ 

β

√ 

1 − y ′ 
δ

− 1 

) 2 

, 

with no-slip boundary condition at y ′ = 0 . The velocity profile is then 

v x ′ (y ′ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τδ2 

6 μβ

[ (√ 

β − 1 

)3 (
3 

√ 

β + 1 

)
−

(√ 

β

√ 

1 − y ′ 
δ

− 1 

)3 (
3 

√ 

β

√ 

1 − y ′ 
δ

+ 1 

)] 

if y ′ < ȳ ;

τδ2 

6 μβ

(√ 

β − 1 

)3 (
3 

√ 

β + 1 

)
if y ′ ≥ ȳ . 

(16) 

The mean speed across the moving layer y ′ ∈ [0, δ] can again be written as w = 

ν
δ

f reg (|∇ h | ) f deg (|∇ h | ) with ν = 

τδ2 

30 μ , 

f reg (|∇h | ) = 

sin 

2 αcr 

sin 

2 α

(
10 

sin 

3 / 2 α

sin 

3 / 2 αcr 

+ 6 

sin α

sin αcr 
+ 3 

sin 

1 / 2 α

sin 

1 / 2 αcr 

+ 1 

)
, (17) 

and 

f deg (|∇h | ) = 

[ ( √ 

sin α

sin αcr 
− 1 

) 

+ 

] 3 

, (18) 

where we also considered the fact that if α < αcr , T x ′ y ′ < τ and there is no flow. 

3. Comparison of slope evolutions 

From the structure of the equation it is clear that in absence of any mass input q , every subcritical configuration with

h ( x ) such that | ∇h | ≤ tan αcr , ∀ x is a stationary solution, because f deg in (11), (14), (18) , as well as in (2) , always vanishes

being the angle of steepest descent α < αcr . 

On the other hand, starting from an initial condition such that | ∇h | > tan αcr everywhere, then the evolution will tend

to a solution of f deg (|∇h | ) = 0 . Now, regardless of the closure assumption used, and therefore of the sliding model, this

configuration is a solution of the eikonal equation |∇h | = tan αcr , which then represents a robust feature of all the DPSMs

proposed here and in [30] . 

Therefore, in order to put in evidence the differences among the models proposed above one should not look at the

stationary configurations, but at transient behaviors. In order to do that, we will then integrate 

∂h 

∂t 
= ν∇ ·

[ 
f reg (|∇h | ) f deg (|∇h | ) ∇h 

|∇h | 
] 

+ q, (19) 

with f reg (|∇h | ) = 1 / 
√ 

1 + |∇h | 2 and f deg (|∇h | ) = (|∇h | − tan αcr ) + in what we will call the Coulomb case, (10) and (11) in

the Herschel-Bulkley case, (13) and (14) in the Bingham case, and (17) and (18) in the Casson case. 

The main difference in the evolutions is due to the convexity of the curves representing the dependence of f sl and

specifically of f deg on α close to αcr . In fact, while the sliding term related to Coulomb’s model goes linearly to zero, the

other models have a stationary point there. More precisely, they behave like (α − αcr ) n with n = 2 for Bingham model,

n = 1 + 

1 
γ for Herschel-Bulkley models, and n = 3 for Casson model. This means that when approaching the repose angle

the evolution becomes slower and slower especially for Casson fluids and Herschel-Bulkley models with γ < 1. The smaller

γ is, the slower the process of approaching the stationary configuration is. 

In Fig. 2 we plot the sliding velocity normalized with their maximum value obtained for α = 50 ◦. From the figure it can

be observed that at any angle the response to a Casson closure and to a Herschel-Bulkley one with γ = 0 . 5 are very close.

So, we expect the evolutions related to them to be quite close. 

Actually, it is useful to work in dimensionless variables scaling lengths with the reference size H of the sand pile, e.g., its

height, and times with T = 

H 2 

ν f sl (α∗) 
where α∗ is a reference slope angle, so that 

∂ ̂  h 

∂ ̂  t 
= 

ˆ ∇ ·
[

f reg (α) f deg (α) 

f reg (α∗) f deg (α∗) 

ˆ ∇ ̂

 h 

| ̂  ∇ ̂

 h | 
]

+ 

ˆ q , 

the hats denote dimensionless variables. 

In order to provide both a qualitative and quantitative comparison, DPMSs were implemented in the finite volumes open

source code OpenFoam. Finite-volume methods were successfully used for degenerate parabolic problems (see for instance

[33–35] ). As concerns spatial discretion, the diffusive term is evaluated by means of Gauss theorem and mean value theorem.

A generic diffusive term ∇ · ( f sl ∇h ) is written by means of normal boundary fluxes [36] 

∇ · ( f sl ∇h ) = 

1 

V 

∫ 
V 

∇ · ( f sl ∇h ) dV = 

1 

V 

∮ 
∂V 

f sl ∇h · dS = 

1 

V 

nF aces ∑ 

i 

f f 
sl 
(∇h ) f 

i 
· S f 

i 
, 
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Fig. 2. Sliding term 

ˆ f sl normalized with respect to the value achieved for a slope of 50 ◦ and a repose angle of αcr = 35 ◦ for different DPSM closure 

assumptions. We recall that Bingham fluids correspond to a Herschel-Bulkley model with γ = 1 . 

Fig. 3. (a) Spatial evolution of the profile of an initially supercritical conical sand pile with repose angle αcr = 35 ◦ at different times for a Bingham closure. 

(b) Comparison of the configurations achieved using the different DPSMs at ̂  t = 0 . 5 . (c) Differences between the heights of the left slopes as obtained using 

the different viscoplastic models with that obtained using Coulomb closure at the time for which the configurations have maximum height equal to 0.8. 

Temporal evolution of the height ̂  h (d) and of the velocity of the tip of the sand pile (e) for the different models. Bingham model corresponds to γ = 1 . 

 

 

 

where f 
f 

sl 
is the face-interpolated value of the sliding term and S f is the face area normal vector. Cubic interpolation is

used to get cell-face values from cell-center ones. Consequently, where the diffusivity becomes zero, the parabolic equation

degenerates to ∂h 
∂t 

= q which can be simply integrated in time. An implicit Euler scheme is used for time discretization. 

In order to show the effect of the different constitutive closures, we simulate the motion of a sand pile with an initially

conic shape with an angle of α∗ = 50 ◦ while the repose angle is 35 ◦. 
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Fig. 4. Sand pile entering a room through an opening: (a) Real situation ( [37] , permission requested), (b) Sketch of the domain of integration close to one 

of the openings seen from the top. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 3 a the evolution is shown in the case in which the sliding layer is described as a Bingham fluid. The slope

gradually decreases keeping an almost conical shape to eventually achieve the stationary configuration with an angle at the

basis equal to the repose angle. In fact, as already stated, regardless of the closure assumption, all DPSMs relax an initial

configuration that is supercritical everywhere, to the solution of the same eikonal equation, which in this case is a cone. In

Fig. 3 b we plot the configurations achieved using the different closures at ˆ t = 0 . 5 

In order to put in evidence how much the solutions differ and where, in Fig. 3 c we plot the difference between the

solution obtained by the viscoplastic models considered here with respect to the one obtained using Coulomb closure as a

reference. The maximum difference is about 1.5% of the pile height. 

The biggest discrepancy among the evolutions stays in how fast the tip of the cone moves down and the basis of the

cone enlarges. In fact, as shown in Fig. 3 d that plots the temporal evolution of the height of the sand pile, when the an-

gle gets closer to the repose angle the asymptotic trend toward equilibrium differs more. In fact, the deceleration achieved

using the different models deviate from each other because of the convexity properties mentioned above (see also Fig. 2 ).

A difference evidentiated in Fig. 3 d is the location of the inflection points of the curves in the semilog graph and conse-

quently the logarithm of the durations of the phases where the curve is convex and concave. As a consequence, as shown in

Fig. 3 e the solution of the model with a Coulomb closure is the fastest and the one using a Casson fluid is the slowest

(actually, the one using a Herschel-Bulkley fluid with γ = 0 . 5 is very close to it and if γ < 0.5 the asymptotic trend would

be even slower). 

The above discussion suggests that in order to identify the best closure, it is more useful to look at the temporal evolution

of the sand pile tip or toe (e.g., Fig. 3 d) and in particular to their speed as in Fig. 3 e, rather than focusing on the spatial

evolution of the slopes because they are very similar as shown in Fig. 3 a,b. In this respect, Casson or Herschel-Bulkley

closures with γ < 1 take much longer to reach asymptotically the stationary configuration with respect to Coulomb or

Bingham closures and in this case even when the slope has an angle that is close to the repose angle, the solution still

slowly moves so that it takes a long time to reach what can be considered a stop. On this basis we can state that Coulomb,

Bingham or Herschel-Bulkley models with γ > 1 are more realistic than Casson or Herschel-Bulkley models with γ < 1. 

On the other hand, if the main interest is in using a reliable model to get to the proper quasi-static configuration in a

numerically efficient way, then Coulomb-like closure is certainly the best because it is the fastest to reach it without loosing

accuracy. 

4. Simulation in realistic set-ups 

In this section we apply the model to more realistic set-ups, containing obstacles, walls and openings, also in presence

of external sources. The first simulation regards the formation of a three-dimensional sand pile obtained constantly pouring

sand in a region q on one side of a thick vertical wall (the shaded area in Fig. 4 b). The wall presents a 0.2 m wide and

0.05 m thick central opening d leading to a region 0 having all other sides open, in the sense that when sand reaches

these boundaries it can freely flow down. From the mathematical point of view, this corresponds to Dirichlet boundary

conditions, while no-flux boundary conditions need be applied on the walls. The set-up can mimick situations like those

shown in Fig. 4 a where sand came from outside the room and entered it through the openings in the walls. 

Before starting the discussion, we observe that, as shown by Falcone and Finzi Vita [27–29] the change of boundary

conditions may be troublesome leading to numerical problems and unphysical results more related to the mathematical

model than to its numerical implementation. This is for instance the case of two-layer models. At variance with that, the
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Fig. 5. Profiles of sand poured in the space beyond the door and exiting from it at early times. The sliding is achieved using the DPSM with a Coulomb 

closure. The bottom row reports the contor plots of the 3D configurations plotted in the top row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DPSMs proposed here have no problem in dealing with changes in the boundary conditions and result very reliable in

managing complex realistic situations and geometries. 

In the simulation shown in Fig. 5 we modelled sand using a Coulomb-like closure with αcr = 35 ◦, ν = 0 . 1 m 

2 

s , and q =
10 −3 m 

s in q , but the results are very similar for all the other constitutive equations. 

Coming to the description of the evolution, at the very beginning the profile is flat between the walls in q , while close

to the door sand flows down so that the sand profile takes a slope equal to the critical angle (see Fig. 5 a). The contour line

where the surface is no longer constant is parallel to the wall in correspondence of the door and forms two circular arcs in

correspondence of its jambs (see Fig. 5 d). After the sand slope with this triagular section has reached the other end of the

wall, i.e. the boundary between d and 0 , the sand tends to spread also laterally to the right and to the left of the door.

Closer to the jambs the shape is still conical (see Fig. 5 b,e). The foot of the sand pile advances faster on the right and on

the left because more sand arrives there turning around the jambs. In the section corresponding to the middle of the door

the slope is flat and the sand pile takes the shape of an inclined plane (see Fig. 5 c,f). Hence, the shape is prism-like closer

to the center of the door and conic-like to its side. The steepest angle is always very close to the repose angle. Also within

q the region in which the slope is non constant enlarges. Initially (see Fig. 5 c,f) it has more or less a prism-like shape

corresponding to the door and a conic-like one to its side. Then at about t = 400 s the slope change in correspondence of

the door hits the top boundary of q opposite to the door (see Fig. 6 a,d). After that, in q the sand profile takes a more

funnel-like shape (see Fig. 6 b,c), while in 0 the conic shape enlarges till just before t = 650 s the basis of the conic-like

shape reaches the open end boundary. At this point also along the wall the conical shape becomes flat with an inclination

close to the repose angle. Eventually, the stationary configuration is reached because the mass influx in q balances the

mass outflux through ∂0 . 

We remark that the entire simulation is very realistic (see Supplementary Video 1) and can be obtained with low com-

putational cost, so that the update of the sand free surface does not represents a bottleneck for the entire multiphase fluid

dynamics simulation that need be performed to describe sand transport in environmental problems. 
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Fig. 6. Profiles of sand poured in the space beyond the door and exiting from it at later times. The profile shown in (f) is almost stationary. All the sand 

poured between the walls falls off the open boundaries to the right and to the left. The sliding is achieved using the DPSM with a Coulomb closure. The 

bottom row reports the contor plots of the 3D configurations plotted in the top row. 

Fig. 7. (a) Domain of integration and numerical grid. The sand is poured in the shaded region in the grid. (b) Contour plot of the solution of the DPSM 

with Coulomb closure at t = 840 s . Corners in the contour plots correspond to slope discontinuities of the sand profile. 



R. Nuca, A.L. Giudice and L. Preziosi / Applied Mathematical Modelling 89 (2021) 1627–1639 1637 

Fig. 8. Configurations of the sand pile poured in the region highlighted in Fig. 7 a at different times t = 150 , 250 , 450 , 840 s , respectively (a), (b), (c) and 

(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We notice, again, that the same final configuration is achieved with the viscoplastic closures and with Coulomb friction

closure. Negligible differences in the evolution are present according to the constitutive closure used. Actually, as the flow

is quasi-stationary, practically the configurations are a series of solutions of the eikonal equation. Differences increase with

the increase of the flow rate q . However, we advise that the model might loose its validity for extremely high flow rates

that may generate slopes that are much higher than the repose angle being closer to vertical slopes. In fact, in this case the

hypothesis of small thickness of the sliding layer no longer holds. In spite of this, we mention that in [30] the model with

a Coulomb-like closure was used to simulate experiments focusing on the collapse of initially cylindrical piles of sand, that

of course start with a vertical wall, showing a satisfactory agreement. 

As evident in Figs. 5–8 , due to the degeneracy present in the model, a characteristic of the proposed DPSMs is the

compact support of the solution starting from no sand and source term in a well defined area (and, of course, in other

cases) and by the presence of slope discontinuities in the solutions. A basic example is the angle formed by the flat plane

and the pile of sand or the angle between the horizontal profile in q and the sliding slope of the sand pile in Figs. 5 and

6 . This is a characteristic of the solution of the eikonal equation as well. 

A similar thing occurs when two sand piles encounter. In order to show how the model can easily reproduce such effects

and handle complicate geometries, in Fig. 7 –8 we focus on the interaction of sand with several columns and corridors placed

in the room with three open ends and a wall at x = 0 . Sand is continuously poured close to the wall for x ≤ 0.15 m and

| y | ≤ 0.2 m at a rate of 2 mm/s, that is, the shaded area in Fig. 7 a. 

Starting from an empty configuration, the sand continuously supplied starts accumulating in the pentagonal area sliding

on its sides passing from a sort of truncated pyramidal shape (notice the flat rectangle on the top of the sand pile in Fig. 8 )

to a full pyramidal-like shape with ridges, for instance, perpendicular to the sides of the columns denoted as a and b in

Fig. 7 a. In fact, the sand slides along the walls a and b from their centers in opposite directions turning around the corners
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with a dynamics similar to the one in Fig. 5 b,e. The ridge is also put in evidence in Fig. 7 b by the presence of corners in

the contour plots. 

The sliding fronts then moves on the sides of the columns and then re-encounter on the other side of it forming a slope

discontinuity. In fact, continuing to turn around the column, Fig. 8 presents the configuration after the sand piles coming

from the left and the right of the same corridor c (and symmetrically d ) encounter forming an angle π − 2 αcr . After that the

distribution of sand in the corridor preserves the angles close to the repose value αcr but the level rises up because of the

continuously incoming mass flux (see also Supplementary Video 2). A similar dynamics occurs in the crossing identified by

g in Fig. 7 a when the sand coming from the corridors e and f meets (see Fig. 8 ). Again such slope discontinuities correspond

to corners in the contour plots in Fig. 7 b. 

As stressed several times along the paper, the evolution is very similar for all the closures considered above. For this

reason, in Fig. 7 –8 only the result for Coulomb closure is shown. 

5. Conclusions and perspectives 

In this work we have presented different closures of degenerate parabolic sliding models (DPSMs) to describe the mor-

phology and evolution of sand piles studying similarities and differences. It is shown that DPSMs are reliable for many

realistic situations characterized by negligible inertial effects and without massive motions of the granular material. The

choice of the closure model is not crucial for the final configuration but affects the temporal evolution and the numerical

convergence speed. 

So, if the main interest is to describe in a precise way the evolution of the quasi-static shape of sand piles, it is not

important which constitutive equation is chosen. In this respect, on the basis of our results, we can state that among them

Coulomb-like closure is the most convenient one from the computational point of view, because it is the fastest to reach

the stationary or quasi-stationary configuration without loosing accuracy. 

If, instead the interest is in pointing out the difference among the different constitutive equations, these can be high-

lighted, for instance, focusing on the velocity and deceleration trends before reaching the stationary configuration and on

the evolution of the compact support, if initial conditions and possibly source terms are giving rise to such solutions. 

This gives rise to some interesting inverse problem questions related to how to identify in an efficient way the sliding

term from experiments. To our knowledge inverse problems for nonlinear parabolic equations characterized by degeneracies

driven by the gradient of the state variable have not been studied. Most works focus on the identification of the source

term in the linear [38] and semilinear case [39–43] with the diffusion term only depending on space. Still working in this

framework, Fragnelli et al. [44] instead focused on the identification of the space-dependent diffusion term. Much less is

done when the diffusion term depends on the state variable. In some respect, the classical sedimentation model studied in

[45] presents some similarities with DPSMs, because the diffusion term vanishes below a threshold value, but of the state

variable, representing the volume ratio at which sedimenting particles start packing, rather then its gradient. In this case

the numerical identification is obtained minimizing the L 2 norm of the volume ratio. The minimization of a suitable cost

function is used in [46] where the diffusion coefficient depends on the gradient of the state variable as in DPSMs, but the

parabolic equation is not degenerate. According to the discussion above, our impression that for DPSMs cost functionals

based on the evolution of the boundary of the compact support and probably its velocity could be promising to better

identify the form of the sliding term through the evaluation of its power law behavior for values of the slope close to the

repose angle. 

We recall that the applicability of the model becomes questionable when slopes are too strong and might trigger massive

motion of sand, so that the smallness hypothesis on the thickness of the sliding layer and on the inertial effects that are

fundamental to deduce the model can not be assured. In such cases more complicated models need be applied at the

expenses of computational costs. However, an hypothesis that can be dropped is the constancy of the sliding layer, allowing

it to be space dependent, though still small compared to the size of the sand pile. 
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