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Abstract—Three real-time implementable energy management
system (EMS) strategies have been articulated for forward
simulation vehicle model with an electrified powertrain. Rule-
based strategy and equivalent consumption minimization strategy
(ECMS) have been profoundly used as a competent real-time
implementable EMS strategy for electrified powertrain. Rein-
forcement learning (RL) is relatively new as a real-time EMS
controller. All these three controllers have been articulated for
model-in-the-loop (MIL) simulation. A comparison among state-
of-the art RL-based controller, widely accredited ECMS, and
rule-based control strategies is very crucial in order to analyze
strengths and weaknesses of each of these strategies at the
MIL and to make them apposite for the subsequent phases of
utilitarian controller development.

Index Terms—Actor-critic, Automotive systems, Deep rein-
forcement learning, electrified powertrains, energy management
system, MIL, Q-learning, real-time.

I. INTRODUCTION

W ITH the advent of electrified powertrains, automotive
industry has been witnessing gradual improvements in

the fuel-economy and reduction in tailpipe emissions. The
success of powertrain electrification hugely depends on the
articulation of the EMS controller [1]. The EMS should satisfy
the power demand from the vehicle and should constrain
battery state of charge (SOC) within allowable limits.

Premeditated control strategies are the most convenient
candidate for being embedded onto a utilitarian EMS since
they are not laden with any mandatory real-time optimization.
However, the rules extracted from the optimal solution can
only yield optimal performance for the drive cycles whose
global optimal result were used for extraction of rules.

Local optimization-based control policy can be implemented
in real-time with a widely accredited ECMS which is an
embodiment of Pontryagin’s minimum principle (PMP) [2].
Optimality with close proximity to Dynamic programming
(DP)can be achieved through ECMS with a few approximation
and meticulous choice of equivalence factor (EF) [2]. How-
ever, the calculation of optimal equivalence factor in ECMS
requires either full knowledge of future driving situations. The
EF can be varied adaptively with an initial guess in MIL,
software-in-the-loop (SIL), or even real-time simulation in

absence of advance knowledge of the future driving situation.
While researchers are striving for a perfect mathematical

tool ensuring autonomous as well as real-time control with
near-global optimality under real-world driving situation, RL-
based control is a lucrative option to explore. Application of
RL was introduced for solving the energy management prob-
lem of a parallel hybrid electric vehicle in [3]. In a previous
article [4] by the authors and only a handful of literature
[5], [6] on application of RL have corroborated RL’s prowess
in optimal energy management of electrified powertrain. But
all the RL controllers in literature were applied in backward
simulation models which cannot represent real-time behavior
of a physical system. Backward simulation platforms cannot
emulate the prospective behavior of RL controllers in EMS of
a real electrified powertrain for real driving condition. These
motivated the authors of this article to develop an online RL-
based EMS controller to interact with the real-time forward
vehicle simulation model. Also, performance of the RL-based
controller is compared with other two real-time implementable
controller such as ECMS and rule-based controller (RBC) [7]
with the same forward vehicle simulation platform to justify
RL’s dexterity in comparison with ECMS and RBC.

Rest of the brief is organized as follows: section II de-
scribes the fundamentals of EMS with brevity and elaborates
the mathematical approach adopted for modeling the power-
train dynamics. Section III delineates articulation of a RBC
specifically for the powertrain configuration adopted here.
Section IV presents the conventional-ECMS framework and
it’s implementation. Section V posits an actor-critic based RL
framework capable of autonomously learning the near-optimal
values of EF as the control variable. Section VI presents the
simulation results and juxtaposes the performances obtained
through three real-time implementable control strategies. Con-
clusive remarks are drawn in section VII.

II. FUNDAMENTALS OF UTILITARIAN EMS AND
POWERTRAIN MODELING

A. Fundamentals of Utilitarian EMS

Working as a system level supervisory controller, EMS
dictates operating points of the cardinal components of the
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Fig. 1: Simple schematic diagrams showing power flow in different modes in the chosen e-CVT.

electrified powertrain within permissible limits of the respec-
tive components. The objectives of an utilitarian EMS can be
chronologically divided in three stages, i.e., cardinal, adjunct,
and utilitarian objectives. EMS should distribute the driver’s
requested power optimally among all the energy sources and
minimize fuel consumption with a given condition that state-
of-charge (SOC) of the electric energy storage system (EESS)
remains within the permissible limits. Minimization of tailpipe
emissions and drivability improvement can be considered as
adjunct objectives. The simulation-based controller needs to
abide by several constraints before being called apposite for
real-time simulation. The EMS controller should be robust and
computationally efficient for being apposite in an electronic
control unit (ECU). Three real-time implementable control
strategies, i.e., RBC, ECMS, and Deep reinforcement learning
(DRL)-based agent will be employed in the EMS of an hybrid
electrified powertrain (HEPT) and their performances will be
juxtaposed based on all the aforementioned objectives.

B. Mathematical Modeling of Powertrain

A midsize 2500 kg representative passenger vehicle with
multi-mode electronic continuously variable transmission (e-
CVT) transaxle [8], whose schematic is shown in fig.1, is
selected for this study. The transaxle is comprised of an
internal combustion engine (ICE), two electric motor/generator
(EMG)s, and a high-voltage battery pack.

Based on the chosen architecture, the powertrain can operate
in three different transmission modes as shown in fig.1. The
electric mode#1 does not offer any degree of freedom. The
hybrid mode has two degrees of freedom. The ICE-locked
electric mode#2 has one degree of freedom. The ICE is
turned-off in this mode and it act as a rigid support with
engagement of the one-way clutch.

1) ICE modeling: A medium-fidelity 3.3 Lt spark-ignition
(SI) ICE is modeled through two most essential engine char-
acteristic look-up tables, i.e., wide open throttle (WOT) torque
and mass flow rate (MFR) of fuel.

2) EMG modeling: Low-fidelity models of both EMG1 and
EMG2 are developed with a simple look-up table approach.
Maximum torque (τMGmax. ) curves and efficiency (ηMG) table

of both EMGs can be represented as following relations:

τMGmax. = f(ωMG, V oltageMG)

ηMG = f(ωMG, τMG, V oltageMG) (1)

3) High-Voltage Battery modeling: A low-fidelity high-
voltage battery is simply modeled with an equivalent circuit
approach and the model is comprised of an open circuit voltage
(OCV) in series with internal resistance (IR) of the battery.

4) Transmission dynamics modeling: The system dynamics
of the multi-mode e-CVT can be mathematically modeled
using Eq.(2) and Eq.(3), with given methodology in [9]. τout
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III. RULE-BASED CONTROL FOR REAL-TIME EMS

The RBC under consideration is described in this section.
RBC currently represents the real-time control approach typi-
cally implemented in on-board control units of commercially
available e-CVT hybrid electric vehicle (HEV)s [10], [11].
Two levels of decisions need to be accomplished for this
controller respectively regarding the status of the ICE (i.e.
on/off) and the torque-split between power components. These
are achieved in a sequential order in the vehicle controller
module as illustrated in fig.(2). In general, at each time instant
the vehicle states such as speeds, torques and battery SOC as
example are evaluated in the vehicle plant. The proportional-
integral (PI) controller modeling the driver then computes
the overall vehicle power demand. This information, together
with the vehicle states assessed in the vehicle plant model,
represents the inputs to step 1 of the implemented RBC logic.

A. ICE status determination

The first step of the implemented RBC aims at determining
whether the ICE should be operating or not. This is governed
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Fig. 2: Flowchart of the implemented RBC.

TABLE I: Decision table for ICE status
Controlled ICE status

Current ICE status ON OFF

ON

Vveh >= VvehlimitON
Pload >= PloadlimitON
SOC <= SOClimitON

Vveh < VvehlimitON
Pload < PloadlimitON
SOC > SOClimitON

OFF

Vveh >= VvehlimitOFF
Pload >= PloadlimitOFF
SOC <= SOClimitOFF

Vveh < VvehlimitON
Pload < PloadlimitON
SOC > SOClimitON

by a set of rules that considers the current ICE status, the
required output power and current values of vehicle speed
vveh and battery SOC as decision factors. Particularly, the
ICE is set to operate in case at least one of the following
conditions are satisfied including (1) the vveh is above a
certain threshold vvehlimit

, (2) the required output power Pload
exceeds a predefined value Ploadlimit

and (3) the battery
SOC value is below a specific value SOClimit. Table I
summarizes the described decision process. In order to avoid
frequent stop − start of the ICE, different threshold values
are considered depending on the current ICE status. These
have been particularly selected to satisfy the following re-
lationships: vvehlimit−ON

> vvehlimit−OFF
, Ploadlimit−ON

>
Ploadlimit−OFF

and SOClimitON
< SOClimitOFF

.

B. Torque-split determination

Once the ICE status has been determined, the next step aims
at evaluating the optimal torque-split. In case the ICE is set not
to operate (i.e. pure electric), the torque-split between EMG1
and EMG2 can be determined by solving the optimization
problem reported in Eq.(4).

Find τMG1 and τMG2

PMG1 + PMG1 = Pload && Pbatt = min(Pbatt) (4)

A sweep of values for the EMG2 torque τMG2 is particularly
performed, and the corresponding value of EMG1 torque
τMG1 is selected in order to have the algebraic sum of
powers (P ) of the EMGs satisfying the power demand Pload.
The optimal set of EMG torques corresponds to the one
minimizing the overall value of the battery power Pbatt. In
this way, the overall efficiency of the electrical path of the
powertrain including EMGs, power electronics and battery can
be enhanced. In order to reduce the required computational
power, the optimization problem illustrated in Eq.(4) could be
solved off-line for all the possible values of Pload and then
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Fig. 3: Lookup table for selecting the ICE power.

loaded in the on-board control unit in the form of lookup
tables.

On the other hand, in case hybrid operation has been
selected at the previous step of the logic, the controlled ICE
mechanical power PICEcontrol

is selected by interpolating in a
1D lookup table with battery SOC as independent variable as
illustrated in fig.3. This table has particularly been calibrated
in order to avoid excessively depleting the battery while
simultaneously improve the fuel economy capability of the
HEPT. After the value of PICEcontrol

has been selected, ICE
speed ωICE and torque τICE can be determined by solving
the optimization problem associated to the well-known ICE
optimal operating line (OOL) as reported in Eq.(5) [2].

Find τICE and ωICE

τICE ∗ ωICE = PICEcontrol
&& ṁfuel = min(ṁfuel) (5)

ωICE and τICE should particularly be able to deliver the
mechanical power requested by the ICE, while simultaneously
minimizing the instantaneous fuel consumption rate. The ef-
ficiency of the ICE operation can be enhanced in this way.
Also in this case, the optimization problem illustrated in Eq.(5)
could be solved off-line for different values of PICEcontrol

and
then stored in the on-board control unit as computationally
lightweight lookup tables. For the hybrid operation, the EMG2
torque τMG2 can be finally determined in order to comply with
the requested Pload. On the other hand, the reaction torque
for the EMG1 τMG1 can be obtained in the plant model by
following the standard torque relationships for planetary gears.

IV. EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGY FOR REAL-TIME EMS

ECMS is based on the concept of converting electrical
energy consumption into equivalent fuel consumption and then
minimizing their sum [12]. It is an instantaneous optimiza-
tion technique which yields sub-optimal solution. It develops
the cost function which represents the total equivalent fuel
consumption. ECMS was originally developed from heuristic
idea that the energy utilized in the form of electrical energy
is ultimately coming from chemical energy and has to be
compensated in the future [2]. Although studies performed
afterwards proved that an analytical derivation of the ECMS
can be derived from the Pontryagin’s Minimum Principle [2]
[13] [14].

Following the description in [15], the generic formulation
of the conventional ECMS objective function can be written
as:



{P (opt)
(ice) (t), P

(opt)
(em) (t)} = arg min

P(ice)(t),P(em))(t)

Jt (6)

where P (opt)
(ice) (t) is the optimum value of the power supplied

by the ICE and P (opt)
(em))(t) is the optimum value of the power

supplied by the EM. Jt is the objective function defined as.

Jt = ṁice(Pice(t)) + f(EF,Pem) (7)

here, ṁice(Pice(t)) is the fuel consumed by the ICE and
f(EF,Pem) is the equivalent fuel consumed by the electrical
energy which is a function of EF and Pem. As already
mentioned, the ECMS is highly sensitive to the value of EF
and requires full information of drive cycle to optimally choose
its value. In case of an HEV, the online implementaion of
ECMS without prior information, only guarantees the charge
sustainability criteria if the EF chosen is optimally constant
value. Hence a lot of methods have been developed in literature
to adapt the EF in real-time [16].

V. DEEP NEURAL NETWORK-BASED REINFORCEMENT
LEARNING CONTROL FOR REAL-TIME EMS

Tailored with deep neural network (DNN), advanced RL-
agents have corroborated their prowess in obtaining near-
optimal control through autonomous learning without prior
information of the Markov decision model for different sectors
such as robotic control, intelligent transport system.

A. Brief Fundamental of Reinforcement Learning

RL imitates the complex decision making capability ex-
hibited predominantly by humans. RL encompasses a hand-
ful of learning algorithms which mathematically model an
intricate characteristic of a sophisticated human capability,
i.e., progressive learning to make sharper decisions with an
objective of maximizing the long-term return [17]. The RL
agent interacts with a Markov decision problem (MDP) which
is mathematically modeled through the states (St) ∈ S,
actions(At) ∈ A, and reward function(rt) ∈ R. The dynamics
of MDP is defined by the probability of moving to state
S′ at time t + 1 if action (At) is applied on St at time t
(PAt

StS′
= Pr(S′|St, At)) [18]. The RL agent is comprised

of three cardinal elements, i.e., it’s policy function(π(S)),
state value functions (V (St)), and action value functions
(Q(St, At)).

Policy function, which governs the selection of an action
at a certain state, is a mapping from state-space to action-
space. The task of the RL agent is to find the optimal policy
through iterative process with a sole objective of maximizing
the long-term return which is denoted as follows:

Rt =

T∑
k=1

γkrt+k = rt + Rt+1 = rt + γrt+1 + Rt+2 (8)

The RL agent uses either V (St) or Q(St, At) as the main
wield while iteratively searching for the optimal policy. If
PAt

StS′
, which is also known as the model of MDP, is available
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Fig. 4: Training algorithm used in A3C agent.

to the RL agent for the entire MDP, DP-based algorithms
can be employed to find the global optimal policy for the
MDP. However, in real-world situation, where the prior in-
formation of entire MDP model is not available to the RL
agent, temporal difference (TD) learning algorithms are most
apposite for finding near-optimal policy [17]. Q − learning
and SARSA are the most abundantly used TD algorithms.
When the environment has less number of discrete state
and action variables, tabular approach is quite convenient for
finding numerical values of near-optimal V (St) and Q(St, At)
for all states and state-action combinations. But, if either
state-space or action-space has copious number of discrete
variables, tabular approach become highly inconvenient due
to ”curse of dimensionality” [19]. The most promising
wield for tackling ”curse of dimensionality” is the use
of functional approximation for both value functions (V (St)
and Q(St, At)) and policy function (π(S)) [19]. Authors
in [20] have corroborated guaranteed convergence of TD
learning with linear function approximation of value functions.
Although there was an ambiguity in the past decades over the
guarantee of convergence and stability of TD learning with
nonlinear approximator such multi-layer perceptron, authors
in [21] first confirmed the convergence of TD learning with
artificial neural network (ANN)-based approximator by using
”Experience Replay”. The linear and nonlinear approxi-
mation can be expressed as follows with Eq.(9) and (10)
respectively:

Q̃(s, a;ψ) = {ψ1, · · · , ψΛ}T
[
φ1(s, a), · · · , φΛ(s, a)

]
(9)

Q̃(s, a;ψ) = g(ψ(λ)Φd(s, a)) (10)

ψ ∈ RΛ and Φ ∈ RΛ are parameter and feature-function
vectors respectively. g(.) is a nonlinear function represent-
ing architecture of the nonlinear approximator. Assisted with
functional approximation, the optimal policy can be ob-
tained in three different ways, i.e., actor-only, critic-only, and
actor-critic methods [22]. Actor-only and critic-only meth-
ods focus on optimizing policy function and value func-
tions respectively. Both actor-only and critic-only methods



have their individual pros and cons. Whereas, actor-critic
methods leverage advantages of both actor and critic meth-
ods and hence can achieve convergence faster than the
former two when assisted by nonlinear approximator. For
this brief, an advanced version of actor-critic method, i.e.,
”Asynchronous Advantage Actor − Critic”(A3C) [23]
has been appointed as the RL agent for finding the near-
optimal energy management policy for a multi-mode e-CVT
powertrain. Fig.4 depicts the training algorithm employed in
A3C agent.

VI. SIMULATION AND RESULT

All these three aforementioned EMS controllers are im-
plemented in Simulink® environment. Both plant model and
controllers are developed in Simulink®. Performance of the
three controllers is juxtaposed on the basis of reduced fuel
consumption, ability of charge sustenance, and computational
time. Two standard drive cycles are chosen for this compar-
ison study. The vehicle speed profile of WLTP and highway
cycles along with powertrain mode profiles for three different
controllers are shown in fig.5 and fig.8 respectively. A Markov
chain model (MCM) is employed to generate copious number
of random drive cycle from the characteristics of a combined
drive cycle comprised of WLTP, highway, UDDS cycles. The
randomly generated drive cycles are used to train the RL
agent before the agent is confronted with WLTP and highway
cycles for performance validation. The numerical values of EF
guaranteeing charge sustenance for both the cycles are found
through trial-and-error method and hence they give perfect
charge sustaining performance for both the cycles as shown in
fig.6 and fig.10. The comparison of fuel consumption, drivabil-
ity, and computational time among the controllers is furnished
in Tab.II. These three metrics represent cardinal, adjunct, and
utilitarian objectives of EMS respectively. Albeit rule-based
controller seems to be ahead of others two controller based
on adjunct and utilitarian objectives, it failed to satisfy the
charge sustenance in highway cycle with a big difference.

TABLE II: Comparison of performance metrics
ECMS RL-agent Rule-based

Drive cycle WLTP HW WLTP HW WLTP HW
Fuel cons. (g) 1153 1007 1136 878 1432.4 1256
Drivability (no. of mode shift) Worst Worst Better Good Best Best
Computational time(s) 265 107 462 188 19 11
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VII. CONCLUSION

A brisk comparison between an emerging EMS controller
and two already existing popular controller is conducted in
this brief. Within it’s short course, the article has indicated
pros and cons of each of the controllers in controlling the
energy management problem for a multi-mode e-CVT. The
results predominantly corroborate a few areas, enumerated as
follows:
• Any EMS controller should not only be evaluated based

on it’s competency of satisfying the primary objectives
but the adjunct and utilitarian objectives should also be
included in the performance evaluation criteria.

• Premeditated controllers such as rule-based control poli-
cies are far ahead of evaluative controllers [24] in terms
of appropriateness in real-time implementation.

• Advanced RL agent-based controllers can be deployed
as a judicious trade-off among cardinal, adjunct, and
utilitarian objectives if more rigorous and comprehensive
comparisons can be performed.

The RL agent has been trained ”on-the-fly” with autonomously
learning which indicates it’s prospective capability as a strong
contender of for real-time controller. More number of primary
and adjunct objectives will be used as performance metric for
the future study.
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