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Abstract

The electric response of a capacitive deionisation cell submitted to a periodic

external electric field is investigated. The case in which the applied poten-

tial has a nonzero average value on one period (polarised cell) is considered.

The theoretical analysis of the experimental data, relevant to nearly symmetric

electrodes, is done in the framework of the Poisson-Nernst-Planck model. The

current densities on the electrodes are described by kinetic equations related

to the adsorption phenomenon in the presence of a bias potential. We pro-

pose a new form for the Langmuir isotherm in which the effective adsorption

coefficients depend on the bias potential according to the Boltzmann statistics.

This kinetic equation extends the Butler-Volmer equation for non-blocking elec-

trodes also to the blocking ones. The equation proposed here is such that for

dc external voltage the total current across the electrodes vanishes.
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1. Introduction

The rapid population growth, climate change and the intense exploitation of

water for domestic, industrial or agricultural uses are leading to a substantial

reduction in fresh water resources in many countries around the world. Since

the ocean makes up 70 % of the Earth’s surface and accounts for nearly 96 % of5

the water on the planet, desalination of salty water has become an important

alternative source of clean water [1, 2].

Among the different existing desalination technologies, capacitive deionisa-

tion is emerging as a promising candidate since it can overcome many of the

actual limitations of the most common processes (reverse osmosis, flash distil-10

lation and electrodialysis) such as the excessive energy consumption, intensive

cost, high salinity residual, and secondary chemical wastes [3].

Indeed, capacitive deionisation is an energy-efficient desalination process be-

cause it operates at a low electrode potential (about 1 V) at which no electrolysis

reactions occur and without need of chemical reagent during the operation. The15

working mechanism is quite simple and relies on the removal of ions from aque-

ous solutions by electrosorption. During the adsorption step, a potential is

applied between two highly porous carbon electrodes: cations are adsorbed into

the negatively polarised electrode while anions are adsorbed into the positively

polarised electrode resulting in two electric double layers at the solid/liquid in-20

terfaces. When the potential is removed in the desorption step the adsorbed

ions are quickly released back to the bulk electrolyte solution. In the capacitive

deionisation process ions transport and adsorption play a fundamental role in

the device performance [4].

Thus, the theoretical description of the role of these electrodes has to take25

into account the bulk behaviour of the charge carriers in the layers close to them

as well as the adsorption-desorption mechanisms occurring at their interface

with the saline solution [5, 6, 7, 8]. This is the main goal of the present paper,
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in which a new mechanism for the adsorption on the equivalent electrodes is

proposed, in connection with a generalisation of a diffusion model to describe30

the electric response of a cell to an external excitation.

The paper is organised as follows. In Sec. 2, the fabrication of the cell used

in the experiments is described, and the experimental set up used to investigate

the electric response of the cell to a periodic external excitation is presented. In

Sec. 3, a generalised version of Poisson-Nernst-Planck model for cells limited by35

different electrodes, taking into account the difference of the diffusion coefficients

of the positive from the negative ions, is proposed. A model for the adsorption

of ions, in the presence of an external electric field, is developed, assuming that

the bulk density of ions just in front of the adsorbing electrode depends on the

external electric potential according to the Boltzmann statistics. A cut-off on40

the potential is introduced to take into account that the range of the surface

forces is finite. A detailed comparison of the theoretical predictions of our model

with the experimental data is reported in Sec. 4. The conclusions are reported

in Sec. 5.

2. Experimental45

The cell is a homemade model, composed by two electrodes and an aqueous

electrolyte, hosted in a glass beaker. A sketch of the cell is reported in Fig. 1.

The electrodes are made of a metallic current collector (titanium, 0.2 mm thick-

ness, GoodFellow), coated with a carbon-based active material. Each electrode

is a rectangular slab, with a region of approximately 1.21 cm2 of active mate-50

rial. The two electrodes are placed inside the cell facing each other, at a fixed

distance of 5.5 mm. To ensure reproducibility, the weight of the active material

was always checked to be (5.0± 0.1) mg. The electrolyte employed is a solution

of NaCl 1 M in deionised water (MilliQ, 18.2 MΩ cm). This concentration of

the electrolyte is two orders of magnitude higher compared to common solu-55

tions employed in desalination experiments [9]. The purpose is to provide the

necessary amount of ions so that the fraction of adsorbed ions leaves almost
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Figure 1: Scheme of the experimental setup.

unchanged the concentration of ions in the bulk, as described in Sec. 3.

The electrodes are prepared as follow. Activated carbon (1666 m2/g, MTI

Corporation) is mixed with a polymeric binder (polyvinylidene fluoride, Sigma60

Aldrich) in weight ratio of 90% and 10%, respectively. Dimethyl sulfoxide

(99.5% purity, Sigma Aldrich) is used as solvent. The slurry obtained in this

way is sonicated and then stirred overnight to achieve a good homogeneity.

The active material is then coated over the current collector by a doctor blade

method. The electrodes are dried on a hot plate at 50◦C for 15 min. Before65

starting the electrochemical characterisations, the electrodes are immersed in

the electrolyte solution in open circuit condition for 1 hour. Cyclic voltamme-

try is the electrochemical method employed to study the adsorption-desorption

phenomena. This technique relies on applying a periodic potential to the cell,

while measuring the current. Further details are provided in Sec. 3.70

The electrochemical measurements have been performed with VMP3 poten-

tiostat manufactured by Bio-Logique. This instrument offers potentials range

of ±10 V, a maximum current of 400 mA, with a resolution of 5µV and 760 pA.
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Figure 2: FESEM image of the activated carbon-based electrode.

The accuracy is declared to be < 0.1 % of the full scale range. The electrometer

has input impedance greater than 1 TΩ, a capacitance of less than 20 pF and a75

bias current lower than 5 pA. Electron microscopy characterisation was carried

out with a Field-Emission Scanning Electron Microscope (FESEM Supra 40,

manufactured by Zeiss) (see Fig. 2).

3. Modelling

In this section, we shall give a theoretical description of the electric response80

of the bulk of the capacitor to an external periodic excitation, establishing

the fundamental equations to connect the electrical impedance response of the

cell with the adsorption-desorption phenomena occurring at the surfaces of the

electrodes.

A very successful model describing the response of a medium to an external85

electric field is the so-called diffusional Poisson-Nernst-Planck continuum model,

which is particularly useful when we are interested in the electric response of in-

sulators containing ionic impurities by means of the impedance (or immittance)

spectroscopy technique [10, 11, 12]. It describes the distribution of ions due to

an external electric field in terms of drift-diffusion equations for both type of ions90

coupled with the Poisson equation for the electric potential across the sample.
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The resulting partial differential equations have to be solved with the proper

boundary conditions for the electric potential and the ionic current densities on

the electrodes. This model has been investigated for systems confined between

completely blocking electrodes [13], and has been applied to a series of relevant95

problems in the last decades [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29]. Here, to keep the theoretical framework as general as possible, we solve

the fundamental equations for the general case of drift-diffusing cations and an-

ions (ambipolar diffusion) and for two different adsorbing-desorbing electrodes,

i.e. an asymmetric cell.100

3.1. Bulk response of the cell to external excitation

Let us consider a liquid, of dielectric constant ε, containing one group of

positive and one group of negative ions of elementary electric charge, q . In ther-

modynamic equilibrium, in the absence of external field, the ions are uniformly

distributed across the cell with a bulk density of positive, np, and negative ones,105

nm, such that np = nm = n0. The presence of an external field is responsible

for a non-homogeneous distribution of ions, np 6= n0 and nm 6= n0. In this

situation, the bulk density of ionic currents are due to drift and diffusion. In

the Einstein-Smoluchowski approximation, the current densities are given by

jp = −Dp

(
∇np −

qnp
KBT

E

)
, (1)

jm = −Dm

(
∇nm +

qnm
KBT

E

)
, (2)

where Dp and Dm are the diffusion coefficients of the positive and negative ions110

in the considered insulating liquid, respectively, KBT is the thermal energy, and

E is the electric field. The equations of continuity, stating the conservation of

the number of ions, in the absence of generation and recombination, are

∂np
∂t

= −∇ · jp, (3)

∂nm
∂t

= −∇ · jm. (4)
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The Poisson equation, relating the actual electric field in the sample with the

ionic charge is115

∇ ·E =
q

ε
(np − nm). (5)

To carry on the calculations, we consider a sample in the shape of a slab, of

thickness d, limited by two flat electrodes, just in order to treat the problem as

one-dimensional. All the structures of the electrodes resulting from their poros-

ity are taken into account in the effective adsorption parameters of the kinetic

equations used as boundary conditions for the bulk equations. It follows that in120

this framework all physical quantities entering the description of the system are

actually averaged values of the real ones performed in the plane perpendicular

the equivalent electrodes. Furthermore, the frequency of the external field is

assumed so low that E = −∇V . The Cartesian reference frame used for the

mathematical description has the z−axis normal to the electrodes, one of them125

placed at z = −d/2 (electrode A) and another one at z = d/2 (electrode B).

The external applied difference of potential is kept small enough to assure that,

in the bulk, (np − n0)/n0 � 1 as well as (nm − n0)/n0 � 1. In this framework

of a linear bulk behaviour, the continuity Eqs. (3) and (4) can be rewritten as

∂np
∂t

= Dp

(
∂2np
∂z2

+
n0q

KBT

∂2V

∂z2

)
, (6)

∂nm
∂t

= Dm

(
∂2nm
∂z2

− n0q

KBT

∂2V

∂z2

)
, (7)

and the Poisson equation as130

∂2V

∂z2
= −q

ε
(np − nm). (8)

For further consideration it is useful to introduce the reduced quantities

up =
np − n0
n0

, um =
nm − n0
n0

, and uv =
V

vt
. (9)

where vt = KBT/q is the thermal voltage, of the order of 0.025V, for univalent

ions. In terms of these quantities, Eqs. (6) and (7) become, respectively,
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∂up
∂t

= Dp

(
∂2up
∂z2

+
∂2uv
∂z2

)
, (10)

∂um
∂t

= Dm

(
∂2um
∂z2

− ∂2uv
∂z2

)
, (11)

and

∂2uv
∂z2

= − 1

Λ2
(up − um), (12)

where Λ =
√
εvt/(n0q) is proportional to the Debye length. In the Appendix,135

we present the solutions of this set of fundamental equations in the presence of a

harmonic external voltage. It is then possible to obtain analytically the electrical

impedance Z(ω), given by Eq. (61), for the case of a sample characterised by

asymmetric surfaces.

3.2. Adsorption in the presence of bias140

According to the Langmuir adsorption isotherm, the kinetic equation de-

scribing adsorption process is

dσ

dt
= kn− 1

τ
σ, (13)

where n is the bulk density of adsorbable particles just in front of the adsorbing

surface and σ is the surface density of adsorbed particles. The parameters k

and τ are known as adsorbing coefficient and desorption time, respectively. We145

are interested in the case in which the adsorbed particles are ions dissolved in

an insulating liquid. In this case a kinetic equation of type (13) is valid for the

positive, p, and negative, m, ions. We assume that in the absence of an external

bias the medium is locally and globally neutral, and that the bulk densities of

ions is n0, with an electric charge q. In the presence of an external bias, the150

local equilibrium close to the electrode is perturbed because the bulk densities

of positive and negative ions just in front of the electrode are changed. In this

case Eq. (13) for the positive ions, just in front of the electrode at z = d/2, at

the potential V (d/2, t) imposed by the external bias, is
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dδσp
dt

= kpδnp −
1

τp
δσp, (14)

indicating by δσp and δnp the variations of the surface density of adsorbed and155

bulk density of positive ions due to the presence of the bias. The variation of

the bulk density of positive ions, just in front of the adsorbing electrodes, is

given by

δnp(d/2, t) = np(d/2, t)− n0 = n0

{
e−u(d/2,t) − 1

}
, (15)

where u(d/2, t) is related to the external bias by

u(d/2, t) = b
V (d/2, t)

2vt
. (16)

The value of b is connected with the average thickness, L, of the material de-160

posited on the electrode, whose dielectric constant is εs. Thus, a rough estima-

tion of its value, when L� d, is

b ≈ 2
ε

εs

L

d
, (17)

and it is expected to be smaller than 1. For the negative ions an analysis of the

same kind gives

δnm(d/2, t) = nm(d/2, t)− n0 = n0

{
eu(d/2,t) − 1

}
. (18)

Similar considerations hold for the electrode at z = −d/2, at the electric poten-165

tial V (−d/2, t).

In the following we consider the case relevant from the experimental point

of view in which the bias

V (t) = V (d/2, t)− V (−d/2, t) (19)

is a periodic function of t with period T and amplitude V0, of the type

V (t) =

 2(V0/T )t for 0 ≤ t ≤ T/2

2V0 − 2(V0/T )t for T/2 ≤ t ≤ T ,
(20)
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whose average value on one period is not zero, i.e., the cell is polarised. It can170

be expanded in Fourier series as

V (t) =
V0
2

+

∞∑
n=−∞

Vne
inω0t, (21)

with the Fourier coefficients

Vn = −1− (−1)n

(nπ)2
V0, (22)

where ω0 = 2π/T . Since V (t) = V (t + T ), as well as u(t) = u(t + T ), the

function

ψp[u(t)] = e−u(t) − 1 (23)

entering in δnp is also periodic with the same period T , and it can be decomposed175

in Fourier series as follows:

ψp(t) =

∞∑
n=−∞

Hpn e
inω0t, (24)

where

Hpn =
1

T

∫ T

0

(
e−u(t) − 1

)
e−inω0t dt. (25)

A simple calculation gives

Hpn = b
1− (−1)n e−bu0

(nπ)2 + (bu0)2
u0. (26)

Considerations similar to those done for the positive ions are valid also for the

negative ions. In this case180

δnm = nm − n0 = n0 (eu − 1) = n0ψm(u). (27)

Operating as for the positive ions we get for the Fourier coefficients of ψm(t)

the expression

Hmn = −b 1− (−1)n ebu0

(nπ)2 + (bu0)2
u0. (28)

10



Decomposing δσp in Fourier series

δσp =

∞∑
n=−∞

δσpn e
inω0t, (29)

and using Eq. (14) we get for δσpn for a non-alternating excitation

δσpn = n0kpτp
Hpn

1 + inω0τp
. (30)

In dynamical regime, the sources of adsorbable particles are the current densities185

of particles coming from the bulk, giving rise to the balance equations

jp =
dδσp
dt

and jm =
dδσm
dt

, (31)

at the limiting surfaces. In the Fourier space, taking into account (30), Eq. (31)

can be rewritten, for the non-alternating case under consideration, as

jpn = n0kp
inω0τp

1 + inω0τp
Hpn. (32)

Repeating step by step the same calculations for the negative ions we get

jmn = n0km
inω0τm

1 + inω0τm
Hmn. (33)

Equations (32) and (33) play the role of boundary conditions in the Poisson-190

Nernst-Planck model. In this case, the boundary conditions by means of which

the integration constants Cp1, Cp2, Cp3, Cp4, Cv and Cv1 can be evaluated are

φ′pn + φ′vn = Rpn, (34)

φ′mn − φ′vn = Rmn, (35)

φvn = ±(1− b)Vn (36)

for z = ±d/2, where

Rpn = − kp
Dp

inω0τp
1 + inω0τp

Hpn, (37)

Rmn = − km
Dm

inω0τm
1 + inω0τm

Hmn. (38)

The adsorption parameters kp, τp, km, and τm can be different for the two

surfaces. From now on the calculations are standard and are reported in the195

Appendix.
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4. Fitting of the experimental data

To test our model, based on the generalisation of the Langmuir model, we

compare our theoretical predictions with the experimental data obtained on

cells limited by electrodes treated as discussed in Sec. 2, submitted to a non-200

alternating external excitation. To fit the experimental data, we decompose the

excitation (20) in Fourier series, as in (21), where Vn are given by (22). In the

linear approximation the current is given by

I =
∞∑

n=−∞
Ine

inω0t, (39)

where In = Vn/Zn, with Zn = Z(ωn), given by (61), and ωn = nω0. The

physical parameters entering the Poisson-Nernst-Planck model are Dp = 1.61×205

10−9 m2/s, Dm = 1.05 × 10−9 m2/s, ε = 80ε0, where ε0 is the permittivity of

the empty space [30], n0 = 6.06 × 1026 m−3, and the geometrical parameters

of the cell are d = 5.5 × 10−3 m and S = 1.21 × 10−4 m2. The fits have been

done for different values of the period of the external excitation, T , namely 20 s,

40 s, 53 s, and 80 s, and for the amplitude of the bias potential from 0.2 V to210

1.2 V, with 0.2 V steps. The parameter b related to the screening effect on the

potential has, for all fitted data, the same value, 0.02. Assuming εs ≈ 10ε0 [31],

and L ≈ 5× 10−6 m (see Fig. 2), from Eq. (17) we get b ≈ 0.016 whose order of

magnitude well compare with the best fit value. For each pair of T and V0 we

chose the values of k’s and τ ’s that gave the best approximation to the data.215

The complete set of fitting parameters are presented in the Table reported in

the Appendix.

In Fig. 3, the electric current of the cell is shown for different amplitudes of

the bias potential. For illustrative purposes, only the experimental results for

the period T = 53 s are exhibited. The agreement between the predictions of220

the model with the experimental data is very good for all the amplitudes of the

bias potential applied to the cell during the measurements.

In Fig. 4, the I(V ) curves obtained for the same bias amplitudes as the

ones in Fig. 3, when T = 53 s, are report. The agreement between the theo-
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0.8V

1.0V

0.6V

0.4V

1.2V

I (
A)

t (s)

0.2V

Figure 3: Time dependence of the electric current of the cell under different amplitudes of

the applied bias potential. The period of the external excitation is T = 53 s. Dashed curves

are the best fit of the experimental data (empty circles) obtained with Eq. (39), where Zn is

reported in Eq. (61).
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
-1.0x10 -2

-5.0x10 -3

0.0

5.0x10 -3

1.0x10 -2

I (
A)

V0 (V)

Figure 4: Parametric curve I = I(V ) for the cell submitted to a periodic external excitation

with T = 53 s, for different values of the applied potential. Dashed curves are the best fit of

the experimental data (empty circles) obtained with Eq. (39), where Znis reported in Eq. (61).
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0.2 0.4 0.6 0.8 1.0 1.2
2.0x10 -6

3.0x10 -6

4.0x10 -6

5.0x10 -6

6.0x10 -6

7.0x10 -6

8.0x10 -6

 kp
(B)

 km
(B)

 kp
(A)

 km
(A)

k 
(m

/s
)

V0 (V)

Figure 5: Adsorption coefficients obtained from the best fit procedure, for T = 53 s. k
(A)
p ,

k
(A)
m , k

(B)
p and k

(B)
m are the adsorption coefficients on the electrode (A), electrode (B), for the

positive, (p), and negative, (m), charges, respectively.

retical model and the experimental results is again very good for the smallest225

amplitudes, and continues to be rather good even in the case of the largest one

(V0 = 1.2V ). It is worth mentioning that the good agreement has been obtained

in correspondence to a very stable set of values of the other fitting parameters,

as shown in Figs. 5 and 6. Indeed, the values of the parameters obtained from

the best fits show a remarkable stability for each pair T and V0. They are prac-230

tically the same as could be seen in these figures and also inspecting the Table

in the Appendix.

In Fig. 5, k
(B)
p and k

(A)
m are, respectively, the adsorption coefficients for

positive ions at the electrode (B) and for negative ions at the electrode (A).

Their values are practically constant for all amplitudes and are very close in235

magnitude (k ≈ 7 × 10−6 m/s), and are of the same order of magnitude as the

one reported in Ref. [4]. A corresponding behaviour is found for k
(A)
p and k

(B)
m ,

but in this case the values are essentially the same (k ≈ 3.5 × 10−6 m/s) even

15



0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 p
(B)

 m
(B)

 p
(A)

 m
(A)

V0 (V)

 (s
)

Figure 6: Desorption times obtained from the best fit procedure, for T = 53 s. τ
(A)
p , τ

(A)
m ,

τ
(B)
p and τ

(B)
m are the desorption times on the electrode (A), electrode (B), for the positive,

p, and negative, m, charges, respectively.

if smaller than the ones of the previous pair. From the experimental data, it is

possible to conclude that the electrode (A) presents a higher effective selectivity240

for adsorbing the negative charges, while the electrode (B) presents a higher

selectivity for adsorbing the positive ones. These results are consistent because

in the model the adsorbing rates depend on the screened bias potential on each

electrode. They depend also on the physical characteristics of each one of the

electrodes, which are adsorbing interfaces even in the absence of any applied245

potential.

This general conclusion is reinforced by the behaviour of the desorbing times

shown in Fig. 6 for the same values of V0 of Fig. 5. We notice that the desorption

process is very rapid for the positive charges adsorbed by the electrode (A) and

for the negative charges adsorbed by (B) (τ ≈ 0.3 s) i.e., in correspondence to250

a higher adsorption selectivity of these electrodes respectively for negative and

positive charges. The desorption process is instead slower for negative charges at

16



the electrode (A) and for the positive ones from electrode (B) (τ ≈ 2.3 s), i.e.,

consistently with a correspondingly weaker adsorption rate for these charges.

This significant difference in the order of magnitude of the desorption times255

is due to the fact that the periodic bias potential has a non-vanishing average

value. This means that even if the bias is periodic, the electric field always

points in the same direction, thus favouring a more rapid desorption at those

interfaces where the adsorption process is less intense.

5. Conclusions260

We have proposed a model for the ionic adsorption in a capacitive deionisa-

tion cell, in the presence of an external electric field. Our approach extends the

diffusional Poisson-Nernst-Planck model to non-symmetric cells. It considers

a linear bulk behaviour in order to define an electrical impedance in the fre-

quency domain since in the presence of the external field a rapid redistribution265

of the charges through the cell happens, and a small ac signal approximation is

expected to work well. This linear bulk system is in contact with a nonlinear

system formed by the interface, i.e., the electrodes. At the interface liquid-

electrodes, the adsorption-desorption process takes place and is governed by a

generalisation of the Langmuir adsorption model. In this framework, the sur-270

face is characterised by a nonlinear behaviour in which the adsorption-desorption

rates depends on the screened potential applied to the cell. To test our model we

have compared our theoretical predictions with the experimental data relevant

to capacitive deionisation cells submitted to a periodic external excitation whose

average value is non-vanishing. The best fitting procedure yields a very stable275

set of adsorption coefficients and desorption times for different amplitudes and

periods of the applied potential. The remarkable agreement between the model

and the experimental data clearly indicates that the theoretical considerations

are quite consistent with the physicochemical phenomena within the cells.
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Appendix280

Solutions of the Poisson-Nernst-Planck equations

To search for the solutions of the linear Eqs. (10), (11), and (12), in the

presence of an harmonic excitation, we may assume they have the form [11]:

(up, um, uv)(z, t) = (φp, φm, φv)(z) exp(iωt). (40)

In this framework Eqs. (10), (23), and (24) can be rewritten as

iωφp = Dp(φ′′ + φ′′v), (41)

iωφm = Dm(φ′′mφ′′v), (42)

and285

φ′′v = − 1

Λ2
(φp − φm), (43)

where f ′ = df/dz. Substituting Eq. (43) into (41) and (42), we get

φ′′p − β2
p φp +

1

Λ2
φm = 0, (44)

φ′′m − β2
m φm +

1

Λ2
φp = 0, (45)

where

β2
p =

1

Λ2

(
1 + iω

Λ2

Dp

)
, (46)

β2
m =

1

Λ2

(
1 + iω

Λ2

Dm

)
. (47)

Solutions of the ordinary differential equations (44) and (45) are of the type

φp = Cpa sinh(µz) + Cpb cosh(µz), (48)

φm = Cma sinh(µz) + Cmb cosh(µz), (49)

where Cpa, Cpb, Cma and Cmb are integration constants to be determined by

the boundary conditions, and the wave-vectors µ are given by the bi-quadratic290

equation

µ4 − (β2
p + β2

m)µ2 + β2
p β

2
m −

1

Λ4
= 0. (50)
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A simple calculation gives

µ1,2 =
1

L

√√√√ (β2
p + β2

m)L2 ±
√

4 + (β2
p + β2

m)Λ4

2
. (51)

It follows that

φp = Cp1 sinh(µ1z) + Cp2 sinh(µ2z) +

+ Cp3 cosh(µ1z) + Cp4 cosh(µ2z), (52)

φm = −k1Cp1 sinh(µ1z)− k2Cp2 sinh(µ2z) +

− k1Cp3 cosh(µ1z)− k2Cp4 cosh(µ2z), (53)

and

φv = −1 + k1
Λ2µ2

1

[Cp1 sinh(µ1z) + Cp3 cosh(µ1z)]

− 1 + k2
Λ2µ2

2

[Cp2 sinh(µ2z) + Cp4 cosh(µ2z)]

+ Cvz + Cv1 (54)

where295

k1 = Λ2(µ2
1 − β2

p), and k2 = Λ2(µ2
2 − β2

p). (55)

The integration constants Cp1, Cp2, Cp3, Cp4, Cv and Cv1 are determined by

means of the boundary conditions of the problem imposed on the current den-

sities of positive and negative ions and on the electric potential at z = ±d/2.

In our framework current densities of positive and negative ions are given by

jp = −n0Dp(φ′p + φ′v) exp(iωt), (56)

jm = −n0Dm(φ′m − φ′v) exp(iωt), (57)

whereas the displacement current jD = ε∂E/∂t is300

jD = −iωvtφ′v exp(iωt). (58)

The total electric current density across the sample is then

j = q(jp − jm) + jD, (59)
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that using the result reported above can be written as

j = −n0qCv(Dp +Dm + iΛ2ω) exp(iωt). (60)

It depends just on the integration constant Cv, related to the linear dependence

of φv on z-coordinate.

In the linear case under investigation, when the external electric excitation305

is a period function of time of the type V (t) = V0 exp(iωt), the impedance of

the cell is defined as Z = V (t)/jS such that

Z(ω) = − u0
n0qCv(Dp +Dm + iΛ2ω)S

(61)

where S is the surface area of the electrodes and u0 = V0/vt. The constant CV

together with the other integration constants are determined using the boundary

conditions Eqs. (34), (35), and (36).310

Fitting parameters

The best fitting parameters are shown in the Table below for different values

of the period T . They validate the model proposed by us, demonstrating its

robustness in the whole range of experimental measurements.

20



315

T V0 k
(B)
p k

(A)
p k

(B)
m k

(A)
m τ

(B)
p τ

(A)
p τ

(B)
m τ

(A)
m

s V 10−6 m/s 10−6 m/s 10−6 m/s 10−6 m/s s s s s

20 0.2 7.1 3.0 3.0 7.2 2.1 0.35 0.35 2.1

20 0.4 7.1 3.0 3.0 7.1 2.1 0.34 0.34 2.1

20 0.6 7.0 3.0 3.0 7.1 1.95 0.3 0.3 2.15

20 0.8 7.3 3.0 3.0 6.8 2.1 0.3 0.3 2.5

20 1.0 7.2 3.5 3.5 6.8 2.2 0.3 0.3 2.2

20 1.2 7.1 3.5 3.5 6.8 2.2 0.3 0.3 2.2

40 0.2 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

40 0.4 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

40 0.6 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

40 0.8 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

40 1.0 7.3 3.5 3.5 6.8 2.25 0.3 0.3 2.3

40 1.2 7.3 3.5 3.5 6.75 2.25 0.3 0.3 2.3

53 0.2 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

53 0.4 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

53 0.6 7.2 3.5 3.5 6.8 2.3 0.3 0.3 2.3

53 0.8 7.2 3.5 3.5 6.8 2.33 0.3 0.3 2.3

53 1.0 7.2 3.5 3.5 6.8 2.33 0.3 0.3 2.3

53 1.2 7.2 3.5 3.5 6.8 2.33 0.3 0.3 2.3

80 0.2 7.25 3.5 3.5 6.9 2.35 0.3 0.3 2.2

80 0.4 7.25 3.5 3.5 6.9 2.35 0.3 0.3 2.2

80 0.6 7.25 3.5 3.5 6.9 2.33 0.3 0.3 2.3

80 0.8 7.25 3.5 3.5 6.9 2.33 0.3 0.3 2.3

80 1.0 7.25 3.5 3.5 6.9 2.33 0.3 0.3 2.3

80 1.2 7.2 3.5 3.5 6.9 2.33 0.3 0.3 2.3
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