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MULTIPLICATIVE AND LINEAR DEPENDENCE IN FINITE

FIELDS AND ON ELLIPTIC CURVES MODULO PRIMES

FABRIZIO BARROERO, LAURA CAPUANO, LÁSZLÓ MÉRAI, ALINA OSTAFE,
AND MIN SHA

Abstract. For positive integers K and L, we introduce and study the notion of
K-multiplicative dependence over the algebraic closure Fp of a finite prime field
Fp, as well as L-linear dependence of points on elliptic curves in reduction mod-
ulo primes. One of our main results shows that, given non-zero rational functions
ϕ1, . . . , ϕm, ̺1, . . . , ̺n ∈ Q(X) and an elliptic curve E defined over the integers Z, for
any sufficiently large prime p, for all but finitely many α ∈ Fp, at most one of the
following two can happen: ϕ1(α), . . . , ϕm(α) are K-multiplicatively dependent or the
points (̺1(α), ·), . . . , (̺n(α), ·) are L-linearly dependent on the reduction of E modulo
p. As one of our main tools, we prove a general statement about the intersection
of an irreducible curve in the split semiabelian variety Gm

m
× En with the algebraic

subgroups of codimension at least 2.
As an application of our results, we improve a result of M. C. Chang and extend

a result of J. F. Voloch about elements of large order in finite fields in some special
cases.
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1. Introduction

We say that n non-zero complex numbers α1, . . . , αn are multiplicatively dependent

if there exists a non-zero integer vector (k1, . . . , kn) ∈ Zn such that

(1.1) αk11 · · ·αknn = 1.

Consequently, a point in the complex space Cn is called multiplicatively dependent if its
coordinates are all non-zero and are multiplicatively dependent. The same definition
of multiplicative dependence applies to rational functions as well.
Moreover, we say that non-zero rational functions f1, . . . , fn ∈ C(X) are multiplica-

tively independent modulo constants if there is no non-zero integer vector (k1, . . . , kn)
such that

fk11 · · · fknn ∈ C∗.

Multiplicative dependence of algebraic numbers and of rational functions has been
studied extensively in recent years from various aspects; see, for instance, [6, 7, 9, 16, 31,
32, 33, 39]. In particular, a result of Bombieri, Masser and Zannier [9] in the context of
unlikely intersections over tori says that given n non-zero multiplicatively independent
modulo constants rational functions f1, . . . , fn ∈ Q(X), there are at most finitely many
α ∈ Q such that f1(α), . . . , fn(α) satisfy two independent multiplicative relations. This
result has been later extended over C in [10] (and in fact over the algebraic closure
of any field of characteristic zero), and also relaxed by Maurin [27] over Q and by
Bombieri, Masser and Zannier [11] over C showing it holds for rational functions which
are multiplicatively independent only.
The analogous problem of linear dependence of points on elliptic curves was con-

sidered not long after [9], for instance in [41]. The finiteness result corresponding to
Maurin’s Theorem was proved by Viada in [42] under some conjecture that was later
showed by Galateau in [18].
In this paper, we are interested in studying the multiplicative dependence of elements

in the algebraic closure of a finite prime field and the linear dependence of points on
elliptic curves modulo primes.
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For a prime p, let Fp denote the algebraic closure of the field Fp of p elements. Note

that any element of F
∗

p has finite order, so Maurin’s finiteness result in characteristic
0 does not hold in full generality in positive characteristic. In this context, Masser
proposed some conjecture in positive characteristic putting more restrictive hypothesis
on the rational functions in order to recover Maurin’s finiteness result [27], and proved
it for n = 3 [28, Theorem 1.1]. For other results on unlikely intersections in positive
characteristic, see also [20, 36, 37].
In this paper we refine the notion of multiplicative dependence over Fp defined by

(1.1), and we introduce the following concept.

Definition 1.1 (K-multiplicative dependence). Let K be a positive integer. We say

that elements α1, . . . , αn ∈ F
∗

p areK-multiplicatively dependent if there exists a non-zero
integer vector (k1, . . . , kn) such that

αk11 · · ·αknn = 1 and max
i=1,...,n

|ki| ≤ K.

We use ordp(α) to denote the multiplicative order of α ∈ F
∗

p (that is, the size of the
multiplicative group generated by α).
Let E be an elliptic curve defined by a Weierstrass equation over the rational integers

Z:

(1.2) Y 2 = X3 + aX + b, a, b ∈ Z, 4a3 + 27b2 6= 0.

If the reduction of E modulo p, denoted by Ep, is also an elliptic curve (that is, p > 2

and 4a3 + 27b2 6≡ 0 (mod p)), then for any α ∈ Fp, we define ordE(α) to be the order
of the point (α, β) on the elliptic curve Ep for some β ∈ Fp. We always denote by O
the point at infinity of an elliptic curve.

Definition 1.2 (L-linear dependence). Let L be a positive integer. We say that the
points P1, . . . , Pn on the reduction Ep of the elliptic curve E modulo p (assuming Ep is
also an elliptic curve) are L-linearly dependent if there exists a non-zero integer vector
(k1, . . . , kn) such that

(1.3) k1P1 + · · ·+ knPn = O and max
i=1,...,n

|ki| ≤ L.

Moreover, for any α1, . . . , αn ∈ Fp, we say that the points

(1.4) (α1, ·), . . . , (αn, ·)
are L-linearly dependent if the points (α1, β1), . . . , (αn, βn) are L-linearly dependent for
some β1, . . . , βn ∈ Fp such that (α1, β1), . . . , (αn, βn) ∈ Ep.

We remark that for each αi ∈ Fp there is some βi ∈ Fp such that (αi, βi) ∈ Ep. As the
curve E is defined by the Weierstrass equation (1.2), the value βi is unique up to sign
and moreover −(αi, βi) = (αi,−βi) on Ep. Thus, by changing the sign of the coefficients
ki in (1.3) if necessary, we see that the notion of L-linearly dependence of (1.4) does
not depend on the choices of βi. Here and there we also say that (αi, ·) is a point (by
fixing the second coordinate as βi or −βi). Moreover, these notions also apply to elliptic
curves defined over an arbitrary field.
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2. Main results

In this section we present the main results of this paper, together with some conse-
quences. The proofs will be given in Section 5.
Here and in the rest of the paper, for α ∈ Fp and f ∈ Q(X), the expression f(α)

indicates the element of Fp that is obtained by substituting α in the reduction modulo
p of the rational function f , when this is possible. We implicitly exclude the primes p
such that the reductions of the rational functions we are considering are not defined.
Let E be an elliptic curve defined as in (1.2). Let K,L be two positive integers,

and let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) whose components are all non-zero
rational functions in Q(X). Informally, three of our main results can be summarised
as follows: under some natural conditions on the involved functions and the curve, for
any sufficiently large prime p, one has:

• the number of elements α ∈ Fp, for which ϕ1(α), . . . , ϕm(α) satisfy two indepen-
dent multiplicative relations with exponents bounded above by K,L in absolute
value, respectively, can be upper bounded independently of p,K, L;

• the number of elements α ∈ Fp, for which ϕ1(α), . . . , ϕm(α) areK-multiplicatively
dependent and the points

(̺1(α), ·), . . . , (̺n(α), ·)
are L-linearly dependent on Ep, can be upper bounded independently of p,K, L;

• the number of elements α ∈ Fp, for which (̺1(α), ·), . . . , (̺n(α), ·) satisfy two
independent linear relations over Z with coefficients bounded above by K,L in
absolute value, respectively, can be upper bounded independently of p,K, L.

In the sequel, we state the above three results precisely and present their conse-
quences.

2.1. Multiplicative dependence with two independent relations. Given ϕϕϕ =
(ϕ1, . . . , ϕm) ∈ Q(X)m a vector of non-zero rational functions, consider the set

S1 =
{

α ∈ Q :

m
∏

i=1

ϕi(α)
ki =

m
∏

i=1

ϕi(α)
ℓi = 1 for some linearly independent

(k1, . . . , km), (ℓ1, . . . , ℓm) ∈ Zm
}

.

As noted in the introduction, by [27], if ϕ1, . . . , ϕm are multiplicatively independent,
this set is finite and its cardinality is effectively computable, see Lemma 3.9 below.
For positive integers K,L ≥ 1 and prime p, define the set

Aϕϕϕ(p,K, L) =
{

α ∈ Fp :

m
∏

i=1

ϕi(α)
ki =

m
∏

i=1

ϕi(α)
ℓi = 1 for some linearly independent

(k1, . . . , km), (ℓ1, . . . , ℓm) ∈ Zm, max
i=1,...,m

|ki| ≤ K, max
i=1,...,m

|ℓi| ≤ L
}

.

(2.1)

Our first main result is the following:
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Theorem 2.1. Let ϕϕϕ = (ϕ1, . . . , ϕm) ∈ Q(X)m whose components are non-zero multi-

plicatively independent rational functions. Then, there exists an effectively computable

constant c1 depending only on ϕϕϕ such that for arbitrary integers K,L ≥ 1, and any

prime p > exp(c1KL), for the set (2.1) we have

#Aϕϕϕ(p,K, L) ≤ #S1,

where #S1 is effectively computable, and the elements of Aϕϕϕ(p,K, L) come from the

reduction modulo p of elements of S1.

We remark that recently Kerr, Mello and Shparlinski [25, Theorem 2.2], using similar
ideas, established, for almost all primes p, a lower bound of the form p1/(2m+2)+o(1) for
the order of all but finitely many vectors (ϕ1(α), . . . , ϕm(α)), α ∈ Fp, which satisfy two
independent multiplicative relations as in the set Aϕϕϕ(p,K, L). One can compare this
with Corollary 2.5 below.
We have the following straightforward consequence. For this, we define

Dϕϕϕ,̺̺̺(p,K, L) = {α ∈ Fp : ϕ1(α), . . . , ϕm(α) are K-multiplicatively dependent

and ̺1(α), . . . , ̺n(α) are L-multiplicatively dependent}.

(2.2)

Corollary 2.2. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) whose components are

all non-zero rational functions in Q(X) such that ϕ1, . . . , ϕm, ̺1, . . . , ̺n are mulitplica-

tively independent. Then, there are two effectively computable constants c1 and c2,
depending only on ϕϕϕ and ̺̺̺ such that for arbitrary integers K,L ≥ 1, and any prime

p > exp(c1KL), for the set (2.2) we have

#Dϕϕϕ,̺̺̺(p,K, L) ≤ c2.

Taking m = n = 1 and K = L =
⌈

c3(log p)
1/2
⌉

for some effectively computable
constant c3 depending only on ϕ = ϕ1 and ̺ = ̺1 in Corollary 2.2, we directly obtain:

Corollary 2.3. Let ϕ, ̺ ∈ Q(X) be non-zero rational functions such that ϕ, ̺ are mul-

tiplicatively independent. Then, there are three effectively computable constants c1, c2, c3
depending only on ϕ, ̺ such that for any prime p > c1, for all but c2 elements α ∈ Fp
we have

max{ordp(ϕ(α)), ordp(̺(α))} ≥ c3(log p)
1/2.

Corollary 2.3, applied to the curve Y = ϕ(X), improves a result of Chang [13,
Theorem 1.1] in this special case which is of the shape

max{ordp(α), ordp(ϕ(α))} ≫
(

log p

log log p

)1/2

.

The improvement of the same shape has been pointed out in [14, Section 5]. See [43]
for an earlier work of Voloch.
One can also obtain a trade-off between the number of possible exceptional values α

and the parameters K,L. Here, vp(u) denotes the p-adic valuation of a non-zero integer
u (that is, the highest exponent v such that pv divides u), and we define vp(0) = ∞.
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Theorem 2.4. Let ϕϕϕ = (ϕ1, . . . , ϕm) ∈ Q(X)m be defined as in Theorem 2.1. Then,

there are two effectively computable constants c1, c2 depending only on ϕϕϕ such that for

arbitrary integers K,L ≥ 1, there is a positive integer T with

log T ≤ c1(KL)
m+1

such that for any prime p and for the set (2.1) we have

#Aϕϕϕ(p,K, L) ≤ vp(T ) + c2.

As a consequence, we obtain:

Corollary 2.5. Let ϕϕϕ = (ϕ1, . . . , ϕm) ∈ Q(X)m be defined as in Theorem 2.1. Then,

there are two effectively computable constants c1, c2 depending only on ϕϕϕ such that as

N → ∞, for all but c1N(logN)−2 primes p ≤ N and for all but at most c2 elements α ∈
Fp, at least m−1 elements of ϕ1(α), . . . , ϕm(α) are of order at least (N/ logN)1/(2m+2).

Similarly to Theorem 2.4, we have:

Theorem 2.6. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) be defined as in Corollary 2.2.

Then, there are two effectively computable constants c1, c2 depending only on ϕϕϕ and ̺̺̺
such that for arbitrary integers K,L ≥ 1, there is a positive integer T with

log T ≤ c1K
m+1Ln+1

such that for any prime p and for the set (2.2) we have

#Dϕϕϕ,̺̺̺(p,K, L) ≤ vp(T ) + c2.

Using Theorem 2.6, we obtain the following corollary.

Corollary 2.7. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) be defined as in Corol-

lary 2.2. Then, there are two effectively computable constants c1, c2 depending only on

ϕϕϕ and ̺̺̺ such that as N → ∞, for all but c1N(logN)−2 primes p ≤ N and for all but

at most c2 elements α ∈ Fp, at least one of the two finitely generated subgroups of F
∗

p

〈ϕ1(α), . . . , ϕm(α)〉 and 〈̺1(α), . . . , ̺n(α)〉
is of order at least Nmn/(2mn+m+n)(logN)−1/2.

With m = n = 1, ̺1 = X and Y = ϕ1(X), Corollary 2.7 recovers the result of
Chang [13, Theorem 1.2] in this special case (see [14] for a generalisation to algebraic
varieties).

2.2. Multiplicative dependence and linear dependence. We fix an elliptic curve
E defined by (1.2). Given ϕϕϕ = (ϕ1, . . . , ϕm) ∈ Q(X)m and ̺̺̺ = (̺1, . . . , ̺n) ∈ Q(X)n

two vectors of non-zero rational functions, we define

S2 =
{

α ∈ Q : ϕ1(α), . . . , ϕm(α) are multiplicatively

dependent and (̺1(α), ·), . . . , (̺n(α), ·) are linearly dependent
}

.

Under the conditions of Theorem 2.8 below on ϕϕϕ and ̺̺̺, the set S2 is finite, as proved
in Lemma 3.11.
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For positive integers K,L ≥ 1 and prime p, define the set

Bϕϕϕ,̺̺̺,E(p,K, L) =
{

α ∈ Fp : ϕ1(α), . . . , ϕm(α) are K-multiplicatively

dependent and (̺1(α), ·), . . . , (̺n(α), ·) are L-linearly dependent
}

.

(2.3)

For the cardinality #Bϕϕϕ,̺̺̺,E(p,K, L), we have:

Theorem 2.8. Let E be an elliptic curve defined by (1.2), and let ϕϕϕ = (ϕ1, . . . , ϕm) and
̺̺̺ = (̺1, . . . , ̺n) whose components are all non-zero rational functions in Q(X) such

that ϕ1, . . . , ϕm are multiplicatively independent and the points (̺1(X), ·), . . . , (̺n(X), ·)
in E(Q(X)) are linearly independent over Z. Suppose moreover that at least one of the

following conditions holds:

(1) ϕ1, . . . , ϕm are multiplicatively independent modulo constants;

(2) the points (̺1(X), ·), . . . , (̺n(X), ·) are linearly independent over the endomor-

phism ring End(E) modulo points in E(Q).

Then, there exist an effectively computable constant c1 depending only on ϕϕϕ, ̺̺̺, E such

that for any p > exp(c1KL
2), for the set (2.3) we have

#Bϕϕϕ,̺̺̺,E(p,K, L) ≤ #S2,

and the elements of Bϕϕϕ,̺̺̺,E(p,K, L) come from the reduction modulo p of elements of

S2.

Taking m = n = 1 and K = L =
⌈

c3(log p)
1/3
⌉

for some effectively computable
constant c3 depending only on E,ϕ = ϕ1 and ̺ = ̺1 in Theorem 2.8, we get:

Corollary 2.9. Let ϕ, ̺ ∈ Q(X) be non-constant rational functions. Then, there exist

two effectively computable constants c1, c3 and a constant c2 depending only on ϕ, ̺, E
such that for any prime p > c1 and for all but c2 elements α ∈ Fp we have

max{ordp(ϕ(α)), ordE(̺(α))} ≥ c3(log p)
1/3.

A result of Voloch [44, Theorem 4.1] roughly states that for a point P on a fixed
elliptic curve over a finite field, under some conditions about the order of P and the
degree of the field generated by P , the order of the y-coordinate of P is large. So,
Corollary 2.9 is somehow an extension of Voloch’s result in large characteristic.
One can also obtain a trade-off between the number of possible exceptional values α

and the parameters K,L.

Theorem 2.10. Let E,ϕϕϕ = (ϕ1, . . . , ϕm), ̺̺̺ = (̺1, . . . , ̺n) be defined as in Theorem 2.8.

Then, there exist an effectively computable constant c1 and a constant c2 both depending

only on ϕϕϕ, ̺̺̺, E such that for arbitrary integers K,L ≥ 1, there is a positive integer T
with

log T ≤ c1K
m+1Ln+2

such that for any prime p for which the reduction Ep of E is also an elliptic curve and

for the set (2.3) we have

#Bϕϕϕ,̺̺̺,E(p,K, L) ≤ vp(T ) + c2.

Moreover, when n = 1, the constant c2 is also effectively computable.
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Using Theorem 2.10, we obtain the following corollary.

Corollary 2.11. Let E,ϕϕϕ = (ϕ1, . . . , ϕm), ̺̺̺ = (̺1, . . . , ̺n) be defined as in Theo-

rem 2.8. Then, there exist an effectively computable constant c1 and a constant c2
both depending only on ϕϕϕ, ̺̺̺, E such that as N → ∞, for all but c1N(logN)−2 primes

p ≤ N and for all but at most c2 elements α ∈ Fp, either the order of the subgroup

〈ϕ1(α), . . . , ϕm(α)〉 in F
∗

p or the order of the subgroup 〈(̺1(α), ·), . . . , (̺n(α), ·)〉 in E(Fp)
is at least

Nmn/(2mn+2m+n)(logN)−1/2.

Moreover, when n = 1, the constant c2 is also effectively computable.

2.3. Linear dependence with two independent relations. Given ̺̺̺ = (̺1, . . . , ̺n) ∈
Q(X)n a vector of non-zero rational functions, define the set

S3 =
{

α ∈ Q :

n
∑

i=1

ki(̺i(α), ·) =
n
∑

i=1

ℓi(̺i(α), ·) = O for some linearly

independent (k1, . . . , kn), (ℓ1, . . . , ℓn) ∈ Zn
}

.

As mentioned in the introduction, under the conditions of Theorem 2.12 below on ̺̺̺,
the set S3 was proved to be finite by Viada [42] and Galateau [18], see Lemma 3.10.
For positive integers K,L ≥ 1 and prime p, define the set:

C̺̺̺,E(p,K, L) =
{

α ∈ Fp :

n
∑

i=1

ki(̺i(α), ·) =
n
∑

i=1

ℓi(̺i(α), ·) = O for some linearly

independent (k1, . . . , kn), (ℓ1, . . . , ℓn) ∈ Zn, max
i=1,...,n

|ki| ≤ K, max
i=1,...,n

|ℓi| ≤ L
}

.

(2.4)

For the cardinality #C̺̺̺,E(p,K, L), we have:

Theorem 2.12. Let ̺̺̺ = (̺1, . . . , ̺n) ∈ Q(X)n be a vector of non-zero rational functions

such that the points (̺1(X), ·), . . . , (̺n(X), ·) in E(Q(X)) are linearly independent over

End(E). Then, there exist an effectively computable constant c1 depending only on ̺̺̺, E
such that for arbitrary integers K,L ≥ 1, and any prime p > exp(c1K

2L2), for the

set (2.4) we have

#C̺̺̺,E(p,K, L) ≤ #S3,

and the elements of C̺̺̺,E(p,K, L) come from the reduction modulo p of elements of S3.

We have the following straightforward consequence about the set:

Eϕϕϕ,̺̺̺,E(p,K, L) =
{

α ∈ Fp : (ϕ1(α), ·), . . . , (ϕm(α), ·) are K-linearly

dependent and (̺1(α), ·), . . . , (̺n(α), ·) are L-linearly dependent
}(2.5)

Corollary 2.13. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) whose components are

all non-zero rational functions in Q(X) such that the points (ϕ1(X), ·), . . . , (ϕm(X), ·),
(̺1(X), ·), . . . , (̺n(X), ·) in E(Q(X)) are linearly independent over End(E). Then,

there exist an effectively computable constant c1 and a constant c2 both depending only
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on ϕϕϕ, ̺̺̺, E such that for arbitrary integers K,L ≥ 1, and any prime p > exp(c1K
2L2),

for the set (2.2) we have

#Eϕϕϕ,̺̺̺,E(p,K, L) ≤ c2.

Taking m = n = 1 and K = L =
⌈

c3(log p)
1/4
⌉

for some effectively computable
constant c3 depending only on E,ϕ = ϕ1 and ̺ = ̺1 in Corollary 2.13, we directly
have:

Corollary 2.14. Let ϕ, ̺ ∈ Q(X) be non-zero rational functions such that the two

points (ϕ(X), ·), (̺(X), ·) in E(Q(X)) are linearly independent over End(E). Then,

there exist two effectively computable constants c1, c3 and a constant c2 all depending

only on ϕ, ̺, E such that for any prime p > c1, for all but c2 elements α ∈ Fp we have

max{ordE(ϕ(α)), ordE(̺(α))} ≥ c3(log p)
1/4.

One can also obtain a trade-off between the number of possible exceptional values α
and the parameters K,L.

Theorem 2.15. Let ̺̺̺ = (̺1, . . . , ̺n) ∈ Q(X)n be defined as in Theorem 2.12. Then,

there exist an effectively computable constant c1 and a constant c2 both depending only

on ̺̺̺, E such that for arbitrary integers K,L ≥ 1, there is a positive integer T with

log T ≤ c1(KL)
n+2

such that for any prime p for which the reduction Ep of E is also an elliptic curve and

for the set (2.4) we have

#C̺̺̺,E(p,K, L) ≤ vp(T ) + c2.

As a consequence, we obtain:

Corollary 2.16. Let ̺̺̺ = (̺1, . . . , ̺n) ∈ Q(X)n be defined as in Theorem 2.12. Then,

there exist an effectively computable constant c1 and a constant c2 both depending only

on ̺̺̺, E such that as N → ∞, for all but c1N(logN)−2 primes p ≤ N and for all but at

most c2 elements α ∈ Fp, at least n − 1 points of (̺1(α), ·), . . . , (̺n(α), ·) are of order

at least (N/ logN)1/(2n+4).

Similarly to Theorem 2.15, we have:

Theorem 2.17. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) be defined as in Corol-

lary 2.13. Then, there exist an effectively computable constant c1 and a constant c2
both depending only on ϕϕϕ, ̺̺̺, E such that for arbitrary integers K,L ≥ 1, there is a

positive integer T with

log T ≤ c1K
m+2Ln+2

such that for any prime p for which the reduction Ep of E is also an elliptic curve and

for the set (2.5) we have

#Eϕϕϕ,̺̺̺,E(p,K, L) ≤ vp(T ) + c2.

Using Theorem 2.17, we obtain the following corollary.
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Corollary 2.18. Let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) be defined as in Corol-

lary 2.13. Then, there exist an effectively computable constant c1 and a constant c2
both depending only on ϕϕϕ, ̺̺̺, E such that as N → ∞, for all but c1N(logN)−2 primes

p ≤ N and for all but at most c2 elements α ∈ Fp, at least one of the two finitely

generated groups

〈(ϕ1(α), ·), . . . , (ϕm(α), ·)〉 and 〈(̺1(α), ·), . . . , (̺n(α), ·)〉
is of order at least Nmn/(2mn+2m+2n)(logN)−1/2.

3. Preliminaries

Throughout the paper, we use the Landau symbol O and the Vinogradov symbol ≪.
Recall that the assertions U = O(V ) and U ≪ V are both equivalent to the inequality
|U | ≤ cV with some absolute constant c > 0. To emphasise the dependence of the
implied constant c on some parameter (or a list of parameters) β, we write U = Oβ(V )
or U ≪β V .

3.1. Heights of polynomials and rational functions. For any non-zero polynomial
f ∈ C[X ], we define the height of f , denoted by H(f), to be the maximum of the
absolute values of its coefficients, and we also define

h(f) = max{0, logH(f)}.
If f(X) = ad

∏d
i=1(X − αi) with ad 6= 0, then the Mahler measure of f is defined to be

M(f) = |ad|
d
∏

i=1

max{|αi|, 1}.

It is well-known that (see, for instance, [45, Equation (3.12)])

(3.1) 2−dH(f) ≤ M(f) ≤
√
d+ 1H(f).

The following bound on the height of a product of several polynomials is well-known
and holds in much broader generality; see, for example, [26, Lemma 1.2 (1.b)].

Lemma 3.1. Let f1, . . . , fn ∈ C[X ] be non-zero polynomials. Then

h

(

n
∏

i=1

fi

)

≤
n
∑

i=1

(h(fi) + deg fi) .

Clearly, the notion of height naturally extends to multivariate polynomials, namely
for non-zero polynomial f ∈ C[X1, . . . , Xn] we let H(f) be the maximum of the absolute
values of its coefficients and h(f) = max{0, logH(f)}.
Moreover, for a rational function R = f/g, where f, g ∈ Z[X1, . . . , Xn] are coprime,

we define degR = max{deg f, deg g},
H(R) = max{H(f), H(g)} and h(R) = max{h(f), h(g)}.

We need the following estimate on the height of composition of rational functions,
which is a special case of [15, Lemma 3.3].
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Lemma 3.2. Let R ∈ Q[X1, . . . , Xn] and f1, . . . , fn ∈ Q(X). Set d = maxi=1,...,n deg fi
and h = maxi=1,...,n h(fi). Then

degR(f1, . . . , fn) ≤ dn degR,

h(R(f1, . . . , fn)) ≤ h(R) + h degR + (3dn+ 1) log(n+ 1) degR.

3.2. The size and divisibility of resultants. We start with the following simple
estimate on the absolute value of the resultant of two polynomials; see [19, Theorem
6.23]. Its proof relies on applying Hadamard’s inequality to the Sylvester matrix of f
and g.

Lemma 3.3. Let f, g ∈ C[X ] be non-zero polynomials. Then, their resultant Res(f, g)
satisfies

|Res(f, g)| ≤
(

√

deg f + 1H(f)
)deg g (√

deg g + 1H(g)
)deg f

.

Now, given two non-zero polynomials f, g ∈ Z[X ], it is well-known that if their
reductions modulo a prime p have a common factor, then their resultant Res(f, g) is
divisible by p. The following result of Gómez-Pérez, Gutiérrez, Ibeas and Sevilla [21]
refines this property for polynomials with several common roots modulo p.

Lemma 3.4. Let f, g ∈ Z[X ] be two non-zero polynomials whose reductions modulo p
do not vanish identically and have m common roots in Fp, counted with multiplicities.

Then,

m ≤ vp (Res(f, g)) .

3.3. Division polynomials and their heights. Let E be an elliptic curve defined
as in (1.2). For any integer n ≥ 1, let ψn be the n-th division polynomial of E; see [40,
Exercise 3.7] or [46, Section 3.2] for their definition and properties. That is,

ψ0 = 0, ψ1 = 1, ψ2 = 2Y,

ψ3 = 3X4 + 6aX2 + 12bX − a2,

ψ4 = 4Y (X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − 8b2 − a3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2m = (2Y )−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) for m ≥ 3.

We remark, that the polynomials ψn are reduced by the curve equation (1.2), in par-
ticular ψn ∈ Z[X ] if n is odd, ψn ∈ Y Z[X ] if n is even, and ψ2

n ∈ Z[X ] for any n ≥ 0.
Moreover (see, for instance, [46, Lemma 3.3] and the proof of [46, Lemma 3.5]), we have

ψn = nX(n2−1)/2 + (lower degree terms) ∈ Z[X ] for odd n,

ψn/Y = nX(n2−4)/2 + (lower degree terms) ∈ Z[X ] for even n.
(3.2)

For any integer n ≥ 1, let Ψn ∈ Z[X ] be defined by

(3.3) Ψn =

{

ψn if n is odd,
ψn/Y if n is even.

By convention, put Ψ0 = 0.
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We also define

φn = Xψ2
n − ψn+1ψn−1 n ≥ 1,

where as before, φn is reduced by the curve equation (1.2), in particular, φn ∈ Z[X ].
By convention, put φ0 = 0.
We note that an affine point P = (x, y) on E is n-torsion if Ψn(x) = 0 for n ≥ 3

and 2-torsion if y = 0. On the other hand, if P = (x, y) is not an n-torsion point, then
by [46, Theorem 3.6], the first coordinate of the point nP is

(3.4)
φn(x)

ψ2
n(x)

.

The following lemma follows directly from [30, Corollary 1] (note that the polynomials
Ψn here are exactly the division polynomials fn defined in [30]).

Lemma 3.5. There exists an effectively computable constant c depending only on E
such that for any integer n ≥ 1 we have

h(Ψn) ≤ cn2.

We conclude this section by giving a bound on the height of the polynomials φn.

Lemma 3.6. There exists an effectively computable constant c depending only on E
such that for any integer n ≥ 1 we have

h(φn) ≤ cn2.

Proof. If n is odd, then we have

φn = XΨ2
n − (X3 + aX + b)Ψn+1Ψn−1,

and so, using Lemma 3.1 and noticing H(Ψn) ≥ n by (3.2) we obtain

h(φn) ≤ h(Ψ2
n) + h((X3 + aX + b)Ψn+1Ψn−1)

≤ 2(h(Ψn) + degΨn) + h(Ψn+1) + h(Ψn−1)

+ h(X3 + aX + b) + degΨn+1 + deg Ψn−1 + 3.

In addition, if n is even, then since

φn = X(X3 + aX + b)Ψ2
n −Ψn+1Ψn−1,

as the above we obtain

h(φn) ≤ h((X3 + aX + b)Ψ2
n) + h(Ψn+1Ψn−1)

≤ 2(h(Ψn) + degΨn) + h(X3 + aX + b) + 3

+ h(Ψn+1) + h(Ψn−1) + degΨn+1 + degΨn−1.

Now, the desired result follows from (3.2) and Lemma 3.5. �
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3.4. Summation polynomials. In this section we recall summation polynomials of
elliptic curves introduced by Semaev [38], and bound the height of such polynomials.

Lemma 3.7. Let E be an elliptic curve of the form (1.2) defined over a field K of

characteristic different from 2 and 3. For any integer n ≥ 2, there exists a polyno-

mial σn ∈ Z[X1, . . . , Xn, a, b] (called the n-th summation polynomial) with the following

property: for any x1, . . . , xn ∈ K, we have σn(x1, . . . , xn) = 0 if and only if there are

y1, . . . , yn ∈ K such that (xi, yi) ∈ E, 1 ≤ i ≤ n, and (x1, y1) + · · ·+ (xn, yn) = O on the

curve. Moreover, the polynomials σn can be defined by

σ2(X1, X2) = X1 −X2,

σ3(X1, X2, X3) = (X1 −X2)
2X2

3 − 2 ((X1 +X2)(X1X2 + a) + 2b)X3

+ (X1X2 − a)2 − 4b(X1 +X2),

σn(X1, . . . , Xn) = ResX (σn−k(X1, . . . , Xn−k−1, X), σk+2(Xn−k, . . . , Xn, X))

(3.5)

for any n ≥ 4 and 1 ≤ k ≤ n− 3, where ResX denotes the resultant with respect to the

variable X.

For any n ≥ 3, σn is an irreducible symmetric polynomial which has degree 2n−2 in

each variable.

We now bound the height of summation polynomials.

Lemma 3.8. Let E and σn ∈ Z[X1, . . . , Xn, a, b], n ≥ 2, be defined as in Lemma 3.7,

K = C and σn of the form (3.5). Then

h(σn) = exp
(

O(n)
)

,

where the implied constant is effectively computable depending only on the curve E.

Proof. We proceed by induction. Assume that n ≥ 4 and

(3.6) h(σj) ≤ exp(cj), 2 ≤ j < n,

for some constant c. Write σn in the form (3.5) with k = ⌊(n− 1)/2⌋.
Put

d = degX σn−k(X1, . . . , Xn−k−1, X),

m = degX σk+2(Xn−k, . . . , Xn, X).

By definition, σn is the determinant of the Sylvester matrix of the polynomials σn−k(X1,
. . . , Xn−k−1, X) and σk+2(Xn−k, . . . , Xn, X) with respect to X . By expanding this de-
terminant, we know that σn is the sum of at most (because by Lemma 3.7, d = 2n−k−2

and m = 2k)

(3.7) (d+ 1)m(m+ 1)d = exp(exp(O(n)))

summands of the form

(3.8) f1 . . . fmg1 . . . gd,
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where fi ∈ Z[X1, ..., Xn−k−1] and gj ∈ Z[Xn−k, ..., Xn] are coefficients of σn−k and σk+2

respectively considered as polynomials with respect to the variable X . Clearly, for each
i and each j,

(3.9) h(fi) ≤ h(σn−k) and h(gj) ≤ h(σk+2).

In addition, by Lemma 3.7 the degree of fi and gj in each variable is at most 2n−k−2 and
2k, respectively, thus fi and gj have at most (2n−k−2+1)n−k−1 and (2k +1)k+1 nonzero
terms. Then, expanding all the products in (3.8), the maximal number of common
monomials is at most

(3.10) (2n−k−2 + 1)m(n−k−1) · (2k + 1)d(k+1) = exp(exp(O(n))).

Hence, it follows from (3.6), (3.7), (3.8), (3.9) and (3.10) that

h(σn) ≤ exp(O(n)) + exp(O(n)) +m · h(σn−k) + d · h(σk+2)

≤ exp(O(n)) + 2(n−1)/2 exp(c(n− k)) + 2(n−1)/2 exp(c(k + 2))

≤ exp(O(n)) + 2(n+1)/2 exp(c(n/2 + 3/2)),

and the desired result follows by choosing the constant c large enough. Moreover, since
the implied constants in both (3.7) and (3.10) are effectively computable, the constant
c is also effectively computable. �

3.5. Unlikely Intersections results. In this section, we list a series of results about
multiplicative dependence of rational functions in Q(X) and linear dependence on el-
liptic curves for points defined over Q. Namely, in order to prove Theorems 2.1, 2.8 and
2.12, one needs first to consider the analogous problems in Q (rather than Fp), and to
show finiteness results. These problems fit in the more general framework of problems
of unlikely intersections, which have been deeply studied in the last decades (see, for
instance, [47]).
More specifically, the following lemma is an effective version of a result of Maurin

[27, Théorème 1.2] concerning multiplicative dependence of values of rational functions
in Q(X), which in fact was initially proved by Bombieri, Masser and Zannier [9] under
a more restrictive condition of multiplicative independence of the involved functions
modulo constants.

Lemma 3.9. Let K be a number field and let f1, . . . , fm ∈ K(X) be non-zero mul-

tiplicatively independent rational functions defined over K. Then, the cardinality of

the set of α ∈ Q for which there exist linearly independent vectors (k1, . . . , km) and

(ℓ1, . . . , ℓm) ∈ Zm such that

f1(α)
k1 · · · fm(α)km = f1(α)

ℓ1 · · · fm(α)ℓm = 1

is bounded by an effectively computable constant C depending only on K and f1, . . . , fm.

Proof. The ineffective version of this result is proved by Maurin in [27, Théorème 1.2].
In [8], Bombieri, Habegger, Masser and Zannier give a different argument to prove [27,
Théorème 1.2], showing that effectivity would follow from an effective version of Habeg-
ger’s theorem [22]. This has finally been proved by Habegger himself in [23]. �
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The following lemma is a special case of [18, Théorème H]. The latter was a condi-
tional result due to Viada [42] and made unconditional by Galateau [18].

Lemma 3.10. Let E be an elliptic curve defined over a number field K by a Weierstrass

equation, and let n ≥ 1 be an integer. Let C be an irreducible curve in En, also defined

over K, with coordinates (X1, Y1, . . . , Xn, Yn) such that the points (Xj, Yj) are linearly

independent over End(E). Then, there are at most finitely many points c ∈ C(C) such
that (Xj(c), Yj(c)), j = 1, . . . , n, satisfy two independent linear relations over End(E).

The following result is a special case of Corollary 4.5 in Section 4. It will be used in
the proof of Theorem 2.8.

Lemma 3.11. Let E be an elliptic curve defined over Q by a Weierstrass equation,

and let ϕϕϕ = (ϕ1, . . . , ϕm) and ̺̺̺ = (̺1, . . . , ̺n) be vectors of non-zero rational func-

tions in Q(X) such that ϕ1, . . . , ϕm are multiplicatively independent and the points

(̺1(X), ·), . . . , (̺n(X), ·) in E(Q(X)) are linearly independent over Z. Suppose more-

over that at least one of the following conditions holds:

(1) ϕ1, . . . , ϕm are multiplicatively independent modulo constants;

(2) the points (̺1(X), ·), . . . , (̺n(X), ·) are linearly independent over End(E) modulo

points in E(Q).

Then, there are at most finitely many α ∈ Q such that ϕ1(α), . . . , ϕm(α) are multiplica-

tively dependent and the points (̺1(α), ·), . . . , (̺n(α), ·) in E(Q) are linearly dependent

over Z.

In full generality, the proof of this result is in principle not effective, and this makes
the constant c2 in the statement of Theorem 2.8 ineffective. If n = 1, the condition of
linear dependence of the point (̺1(α), ·) means that it is a torsion point, and in this
case, it is possible to give an effective version of Lemma 3.11, which is the content of
the following lemma.

Lemma 3.12. In Lemma 3.11 when n = 1, the order of the torsion point (̺1(α), ·)
can be effectively upper bounded uniformly, and in particular, the cardinality of the set

of α ∈ Q such that ϕ1(α), . . . , ϕm(α) are multiplicatively dependent and (̺1(α), ·) has

finite order can be effectively bounded.

Proof. By [6, Theorem 1.4], there exists an effectively computable bound B for the
order of (̺1(α), ·) depending on E,ϕϕϕ, ρ1 and a lower bound ǫ for the height of elements
of Q(Etor)

∗ \ µ∞. Such an effective lower bound is provided by Frey [17, Theorem 1.2]
and, in case E has complex multiplication, by Amoroso and Zannier [1]. �

4. Unlikely intersections in Gm
m ×En

To prove Theorem 2.8, we will need a finiteness result for multiplicative relations for
rational functions in Q(X) and linear dependence on elliptic curves. This will follow
from a general statement about the intersection of an irreducible curve in the split
semiabelian variety Gm

m × En with the algebraic subgroups of codimension at least 2,
which we prove in this section. This result fits in the more general framework of unlikely
intersections, and it is a particular case of the well known Zilber-Pink conjecture (for
an account on these problems, see [47]).
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Theorem 4.1. Let E be an elliptic curve defined over a number field K by a Weierstrass

equation, and let m,n ≥ 1 be integers. Let C be an irreducible curve in Gm
m × En, also

defined over K, with coordinates (Z1, . . . , Zm, X1, Y1, . . . , Xn, Yn) such that Z1, . . . , Zm
are multiplicatively independent and the points (Xi, Yi) are linearly independent over

End(E). Suppose moreover that at least one of the following conditions holds:

(1) Z1, . . . , Zm are multiplicatively independent modulo constants;

(2) the points (Xi, Yi) are linearly independent over End(E) modulo points in E(Q).

Then, there are at most finitely many points c ∈ C(C) such that Zi(c), i = 1, . . . , m,

are multiplicatively dependent and (Xj(c), Yj(c)), j = 1, . . . , n, are linearly dependent

over End(E).

The proof of Theorem 4.1 can be obtained by adapting the proof of [5, Theorem 1.2]
to this setting. In particular, one follows the general strategy introduced by Pila and
Zannier in [35] using the theory of o-minimal structures to give an alternative proof
of the Manin-Mumford conjecture for abelian varieties. The strategy is based on the
combination of various results coming from o-minimality, Diophantine geometry and
transcendence results.
An important ingredient of the proof is the well-known Pila-Wilkie Theorem [34]

which provides an estimate for the number of rational points on a “sufficiently tran-
scendental” real subanalytic variety. Using abelian logarithms, these rational points
correspond to torsion points. For more details about the general strategy and how it
has been applied to other problems we refer to [47].
On the other hand, if one wants to deal with points lying in proper algebraic sub-

groups like in Theorem 4.1, a more refined result is needed. For instance, first in [4] and
then in [5], the authors adapted ideas introduced in [12] to deal with linear relations
rather than just with torsion points.

Let h denote the absolute logarithmic Weil heights on Gm(Q) and on E(Q), and let

us define a height h̃ on C(Q) by

h̃(c) := h(Z1(c)) + · · ·+ h(Zm(c)) + h(X1(c), Y1(c)) + · · ·+ h(Xn(c), Yn(c)).

We call C0 the set of such points of C(C) that we want to prove to be finite in
Theorem 4.1. First, we note that the points in C0 must be algebraic. Moreover, as at
least one of the conditions (1) and (2) in Theorem 4.1 holds, C0 is a set of bounded
height respectively by

(1) [9, Theorem 1];
(2) [41, Theorem 1].

We then just have to exhibit a bound on their degree over the number field K.

Lemma 4.2. There exists a compact (in the complex topology) subset C∗ of C, such that

for all c ∈ C0 of degree large enough, at least half of the Galois conjugates of c over K
lie in C∗

Proof. See [29, Lemma 8.2]. �

Note that, if c ∈ C0, then all its Galois conjugates over K satisfy again some depen-
dence relations, hence they must also lie in C0.
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We now cover the set C∗ appearing in Lemma 4.2 with finitely many discsD1, . . . , Dγ1 .
Let D be one of these discs. We set R = End(E) and Pj = (Xj, Yj). For a =

(a1, . . . , am) ∈ Zm \ {0} and b = (b1, . . . , bn) ∈ Rn \ {0} we set

D(a,b) :=

{

c ∈ D :

m
∏

i=1

Zi(c)
ai = 1 and

n
∑

j=1

bjPj(c) = O

}

.

For the rest of the section the implied constants will depend on C and D. Any further
dependence will be expressed by an index.

Lemma 4.3. If c ∈ D ∩ C0, there are a ∈ Zm \ {0} and b ∈ Rn \ {0} such that

c ∈ D(a,b) and

(4.1) max{|a|, |b|} ≪ [K(c) : K]γ2 ,

for some constant γ2 > 0 depending on the curve C and the disc D, where |a| =
max{|a1|, . . . , |am|} and |b| = max{|b1|, . . . , |bn|}.
Proof. See [5, Lemmas 5.1 and 5.2] and (if E has CM) [3, Lemma 6.1]. �

We denote by u1, . . . , um the principal determinations of the standard logarithms
of Z1, . . . , Zm and by w1, . . . , wn the elliptic logarithms of P1, . . . , Pn seen as analytic
functions on (an open neighbourhood of) D. These functions satisfy the equations

ui = pi + 2π
√
−1qi, wj = rj + sjτ, for i = 1, . . . , m and j = 1, . . . , n,

where (1, τ) is a basis of the period lattice of E and pi, qi, rj, sj are real-valued functions
defined on D. If we view the compact disc D as subset of R2, we can define

θ : D ⊂ R2 → R2m+2n

c 7→ (p1(c), q1(c), . . . , pm(c), qm(c), r1(c), s1(c), . . . , rn(c), sn(c)).

The image θ(D) is a subanalytic surface of R2m+2n which we denote by S. Note that
θ is injective. Moreover, as D is compact, we have that the functions qi, rj and sj
take bounded values. The p1, q1, . . . , pm, qm, r1, s1, . . . , rn, sn are sometimes called Betti-
coordinates and θ the Betti-map.

For any b ∈ R and any point P ∈ E(Q), given ρ + στ an elliptic logarithm of P , a
logarithm of bP is given by ρ′ + σ′τ , where

(

ρ′

σ′

)

= A(b)

(

ρ
σ

)

,

for some A(b) ∈M2(Z), where M2(Z) is the ring of 2× 2 matrices over Z.
For l ∈ Z, clearly

A(l) =

(

l 0
0 l

)

.

If R = Z[α] for some imaginary quadratic α, we have that

A(l1 + αl2) =

(

l1 0
0 l1

)

+ A(α)

(

l2 0
0 l2

)

.
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Note that, as the entries of A(α) are fixed and depend only on E, if |A| is the
maximum of the absolute values of the entries of a matrix A ∈ M2(Z), then we have
|A(b)| ≪ |b| for all b ∈ R.
Using the function θ defined before, the points of C0 that satisfy two relations will

correspond to points of S lying on linear varieties defined by equations of some special
form with integer coefficients. In particular, if c ∈ D(a,b), there are integers e, f, g
such that

{

∑m
i=1 aiui = 2π

√
−1e,

∑n
j=1 bjwj = f + gτ,

which translates to










∑m
i=1 aipi = 0,

∑m
i=1 aiqi = e,

∑n
j=1A(bj)(rj, sj)

t = (f, g)t,

holding for θ(c) (here ·t denotes the transposition).
We define

W =

{

(α1, . . . , αm, B1, . . . , Bn, σ1, σ2, σ3, p1, q1, . . . , pm, qm, r1, s1, . . . , rn, sn) ∈

Rm ×M2(R)
n × R3 × S :

m
∑

i=1

αipi = 0,

m
∑

i=1

αiqi = σ1,

n
∑

j=1

Bj(rj , sj)
t = (σ2, σ3)

t

}

,

and, for α = (α1, . . . , αm) ∈ Rm and B = (B1, . . . , Bn) ∈M2(R)
n, the fiber

Wα,B = {(σ1, σ2, σ3, p1, q1, . . . , pm, qm, r1, s1, . . . , rn, sn) ∈ R3 × S :

(α1, . . . , αm, B1, . . . , Bn, σ1, σ2, σ3, p1, . . . , sn) ∈ W}.
We let π1 be the projection from R3 × S ⊆ R3 × R2m+2n to R3, while π2 indicates the
projection to S. We also define, for T ≥ 0,

W∼
α,B(Q, T ) = {(σ1, σ2, σ3, p1, q1, . . . , pm, qm, r1, s1, . . . , rn, sn) ∈ Wα,B :

(σ1, σ2, σ3) ∈ Q3 and H(σ1, σ2, σ3) ≤ T},
where H(σ1, σ2, σ3) is the maximum of the absolute values of the numerators and de-
nominators of the σj when they are written in lowest terms.
Fix now a ∈ Zm and b ∈ Rn. Note that, if c ∈ D(a,b), then by the above

discussion there are integers e, f, g such that (e, f, g, θ(c)) ∈ Wa,A(b), where A(b) =
(A(b1), . . . , A(bn)). Since q1, . . . , qm, r1, s1, . . . , rn, sn take bounded values as D is a
compact disc, we can suppose that

max{|e|, |f |, |g|, |a|, |A(b)|} ≤ T0,

for some T0 with T0 ≪ max{|a|, |A(b)|} ≪ max{|a|, |b|}. Therefore, if we let

Σa,b := π−1
2 (θ(D(a,b))) ∩Wa,A(b),

then we have Σa,b ⊆W∼
a,A(b)(Q, T0). Note that θ(D(a,b)) ⊆ π2(Wa,A(b)).
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We claim that, for every ǫ > 0, we have an upper bound for the cardinality of D(a,b)
of the form

(4.2) |D(a,b)| ≪ǫ (max{|a|, |A(b)|})ǫ.
If not, by the previous considerations the following lemma would be contradicted.

Lemma 4.4. For every ǫ > 0 we have |π2(Σa,b)| ≪ǫ T
ǫ
0 .

Proof. Suppose there is a positive constant γ3 = γ3(W, ǫ) such that |π2(Σa,b)| ≥ γ3T
ǫ
0 .

Then, by [24, Corollary 7.2], there exists a definable function δ : [0, 1] → Wa,A(b) such
that

(1) the map δ1 := π1 ◦ δ : [0, 1] → R3 is semi-algebraic and its restriction to (0, 1) is
real analytic;

(2) the composition δ2 := π2 ◦ δ : [0, 1] → S is non-constant;
(3) we have π2(δ(0)) ∈ π2(Σa,b).

By rescaling and restricting the domain we can suppose that the path δ1 is contained
in a real algebraic curve. Moreover, by (3) above, there exists c0 ∈ D(a,b) with
θ(c0) = δ2(0).
We now consider the map

φ : Gm
m × En → Gm ×E

(Z1, . . . , Zm, P1, . . . , Pn) 7→ (
∏m

i=1 Z
ai
i ,
∏n

j=1 bjPj)

and its differential

dφ : Cm × Cn → C× C
(u1, . . . , um, w1, . . . , wn) 7→ (

∑m
i=1 aiui,

∑n
j=1 bjwj) =: (u′, w′).

Note that φ(C) cannot be constant, otherwise both conditions (1) and (2) in the hy-
potheses of Theorem 4.1 would be false. Therefore φ(C) is a curve.
We can see σ1, σ2, σ3, p1, q1, . . . , pm, qm, r1, s1, . . . , rn, sn, and consequently u1, . . . , um,

w1, . . . , wn, u
′, w′, as coordinate functions on [0, 1]. We have that the transcendence

degree trdegC C(σ1, σ2, σ3) ≤ 1 and recall that, by the definition ofW , the two relations
u′ = 2π

√
−1σ1 and w′ = σ2 + σ3τ must hold. We deduce that

trdegC C(σ1, σ2, σ3, u
′, w′) ≤ 1.

This gives a map

δ′ := (u′, w′) : [0, 1] → C× C

that is real semi-algebraic, continuous and with δ′|(0,1) real analytic. By Ax’s Theorem
[2] (see [24, Theorem 5.4]), the Zariski closure in Gm×E of the image of exp ◦δ′, which
is contained in φ(C), is a coset, that must actually be a torsion coset, because φ(c0) is
the neutral element of Gm × E. If this torsion coset is a curve, then it coincides with
φ(C) and this contradicts the hypotheses of Theorem 4.1. If the coset is a point, then
u′ =

∑m
i=1 aiui and w′ =

∑n
j=1 bjwj are both constant and equal to dφ(c0) on [0, 1].

This again contradicts the hypotheses of Theorem 4.1. �

Now we are ready to prove Theorem 4.1.



20 BARROERO, CAPUANO, MÉRAI, OSTAFE, AND SHA

Proof of Theorem 4.1. Fix a c0 ∈ C0 of large degree over K. By Lemma 4.2 we have
that one of the discs D1, . . . , Dγ1 , say D1, contains at least [K(c0) : K]/(2γ1) conjugates
of c0. Moreover, if c0 ∈ D1(a,b) for some a ∈ Zm and b ∈ Rn, all of these conjugates
belong to D1(a,b). Therefore, combining this with (4.1) and (4.2), we get

[K(c0) : K] ≪ |D1(a,b)| ≪ǫ (max{|a|, |b|})ǫ ≪ǫ [K(c0) : K]γ2ǫ,

which, after choosing ǫ < 1/(2γ2), leads to a contradiction if [K(c0) : K] is too large.
This completes the proof of Theorem 4.1. �

We now formulate and prove a corollary of Theorem 4.1. Notice that Lemma 3.11 is
a special case of it.
The point of the corollary is that, if one only needs to consider relations over Z among

the Pj(c), one can relax the hypotheses and assume that the Pj are linearly independent
over Z and not over End(E). Note that the analogous fact does not hold in the setting
of Lemma 3.10. Indeed, two points that are generically dependent over End(E) but not
over Z can specialize infinitely many times to two torsion points.

Corollary 4.5. Let E be an elliptic curve defined over a number field K by a Weier-

strass equation, and let m,n ≥ 1 be integers. Let C be an irreducible curve in Gm
m ×

En, also defined over K, with coordinates (Z1, . . . , Zm, X1, Y1, . . . , Xn, Yn) such that

Z1, . . . , Zm are multiplicatively independent and the points Pj := (Xj, Yj) are linearly

independent over Z. Suppose moreover that at least one of the following conditions

holds:

(1) Z1, . . . , Zm are multiplicatively independent modulo constants;

(2) the points Pj are linearly independent over End(E) modulo points in E(Q).

Then, there are at most finitely many points c ∈ C(C) such that the Zi(c) are multi-

plicatively dependent and the Pj(c) are linearly dependent over Z.

Proof. It is clear that our claim follows directly from Theorem 4.1 in case the points
P1, . . . , Pn are linearly independent over End(E). We only need to consider the case in
which R := End(E) 6= Z and the points P1, . . . , Pn satisfy a linear dependence relation
over End(E), but none over Z.
Set

Λ =

{

(ρ1, . . . , ρn) ∈ Rn :

n
∑

j=1

ρjPj = O

}

.

Our hypothesis on the Pj implies that Λ ∩ Zn = {0}. This is a finitely generated
R-submodule of Rn of some rank n′, 1 ≤ n′ < n. It is a well known fact (see, e.g.,
Lemma 2.3 of [5]) that the set

L(Λ) =
{

(Q1, . . . , Qn) ∈ En :
n
∑

j=1

ρjQj = O for all (ρ1, . . . , ρn) ∈ Λ

}

defines an algebraic subgroup of En of dimension n−n′. Moreover, there is a surjective
and finite homomorphism of algebraic groups

φ : L(Λ) → En−n′

.
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Then, our hypotheses imply that φ(P1, . . . , Pn) gives an irreducible curve that does not
lie in a proper algebraic subgroup of En−n′

.
Suppose there are infinitely many points c ∈ C(C) such that Z1(c), . . . , Zm(c) are

multiplicatively dependent and P1(c), . . . , Pn(c) are linearly dependent over Z. Then,
every (P1(c), . . . , Pn(c)) lies in a proper algebraic subgroup of L(Λ) and its image via φ
in a proper algebraic subgroup of En−n′

. A contradiction arises by applying Theorem
4.1 to the curve in Gm

m × En−n′

given by (Z1, . . . , Zm, φ(P1, . . . , Pn)), concluding the
proof. �

5. Proofs of main results

5.1. Proof of Theorem 2.1. For any non-zero integer vector kkk = (k1, . . . , km) ∈ Zm,
we define the rational function

Ωkkk(X) = ϕ1(X)k1 · · ·ϕm(X)km.

We write ϕi = fi/gi with relatively prime polynomials fi, gi ∈ Z[X ], i = 1, . . . , m, and
thus we have Ωkkk(X) = Fkkk(X)/Gkkk(X) with polynomials Fkkk(X), Gkkk(X) ∈ Z[X ] that are
defined by

Fkkk(X) =
∏

1≤i≤m
ki>0

fi(X)ki
∏

1≤i≤m
ki<0

gi(X)−ki,

Gkkk(X) =
∏

1≤i≤m
ki<0

fi(X)−ki
∏

1≤i≤m
ki>0

gi(X)ki.
(5.1)

Recall that S1 ⊂ C is the set of all the elements α ∈ C which are solutions to the
system of equations

(5.2) Ωkkk(X)− 1 = Ωℓℓℓ(X)− 1 = 0

for some linearly independent vectors kkk, ℓℓℓ ∈ Zm. Clearly, if α ∈ S1, then every Galois
conjugate of α over Q is also in S1.
By Lemma 3.9 the set S1 is finite and we have

(5.3) #S1 ≪ϕϕϕ 1,

where the implied constant is effectively computable.
Let WS1

∈ Z[X ] be the product of all the irreducible polynomials (without multiplic-
ity) having some α ∈ S1 as a root. Clearly, we have

degWS1
= #S1.

Define

Pℓℓℓ =
Fℓℓℓ −Gℓℓℓ

gcd(Fℓℓℓ −Gℓℓℓ, (Fℓℓℓ −Gℓℓℓ)′)
and P̃ℓℓℓ =

Pℓℓℓ
gcd(Pℓℓℓ,WS1

)
∈ Z[X ].

Note that since the polynomial Pℓℓℓ has only simple roots, we have gcd(P̃ℓℓℓ,WS1
) = 1.

Then, the system of equations

(5.4) Fkkk(X)−Gkkk(X) = P̃ℓℓℓ(X) = 0
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has no solution over C. We denote

Rkkk,ℓℓℓ = Res(Fkkk(X)−Gkkk(X), P̃ℓℓℓ(X)),

which is non-zero.
Thus, if p > |Rkkk,ℓℓℓ|, then p ∤ Rkkk,ℓℓℓ, and therefore the system of equations (5.4) has no

solution over Fp. It is easy to see that the desired result follows when

(5.5) p > max
kkk∈{0,±1,...,±K}m\{0}

max
ℓℓℓ∈{0,±1,...,±L}m\{0}

|Rkkk,ℓℓℓ|.

Hence, it remains to estimate Rkkk,ℓℓℓ, for the parameters kkk and ℓℓℓ in the same ranges as on
the right hand side of (5.5).
We note that considering Fkkk and Gkkk, defined by (5.1), as products of at most |k1|+

. . .+ |km| polynomials, we have

deg(Fkkk −Gkkk) ≪ϕϕϕ K,

and by Lemma 3.1 we obtain

h (Fkkk) , h (Gkkk) ≤
m
∑

i=1

(|ki|max{h(fi) + deg fi, h(gi) + deg gi})

≪ϕϕϕ K,

which implies
h (Fkkk −Gkkk) ≪ϕϕϕ K.

For the polynomial P̃ℓℓℓ, we clearly have

deg(P̃ℓℓℓ) ≤ deg(Fℓℓℓ −Gℓℓℓ) ≪ϕϕϕ L,

and it follows from (3.1) that

H(P̃ℓℓℓ) ≤ 2deg P̃ℓℓℓM(P̃ℓℓℓ) ≤ 2deg(Fℓℓℓ−Gℓℓℓ)M(Fℓℓℓ −Gℓℓℓ)

≤ 2deg(Fℓℓℓ−Gℓℓℓ)
√

deg(Fℓℓℓ −Gℓℓℓ) + 1H(Fℓℓℓ −Gℓℓℓ).

Thus, we conclude that
h(P̃ℓℓℓ) ≪ϕϕϕ L.

Therefore, for the parameters kkk and ℓℓℓ in the same ranges as on the right hand side
of (5.5), by Lemma 3.3 we obtain

(5.6) log |Rkkk,ℓℓℓ| ≪ϕϕϕ KL,

which together with (5.5) gives the desired lower bound exp(c1KL) for p. Since all the
implied constants in the above estimates are effectively computable, the constant c1 is
also effectively computable.
Finally, by the above discussions, when p > exp(c1KL), the system of equations (5.4)

has no solution over Fp for any linearly independent vectors kkk, ℓℓℓ in the same ranges as
on the right hand side of (5.5). In addition, if α is a solution of (5.2) but not a solution
of (5.4) over Fp, then α must be a root of WS1

over Fp. Hence, for the set Aϕϕϕ(p,K, L)
we have

#Aϕϕϕ(p,K, L) ≤ degWS1
= #S1.

This completes the proof by noticing (5.3).
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5.2. Proof of Corollary 2.2. This follows directly from Theorem 2.1 applied to the
rational functions ϕ1, . . . , ϕm, ̺1, . . . , ̺n instead of ϕ1, . . . , ϕm.

5.3. Proof of Theorem 2.4. We proceed as in the proof of Theorem 2.1. However,
now invoking Lemma 3.4 to estimate the number s(kkk, ℓℓℓ) of solutions to the system of
equations (5.4) over Fp for the parameters kkk and ℓℓℓ in the same ranges as on the right
hand side of (5.5), we obtain

∑

kkk∈{0,±1,...,±K}m\{0}
ℓℓℓ∈{0,±1,...,±L}m\{0}

s(kkk, ℓℓℓ) ≤ vp(T ),

where

T =
∏

kkk∈{0,±1,...,±K}m\{0}

∏

ℓℓℓ∈{0,±1,...,±L}m\{0}

|Rkkk,ℓℓℓ|.

Using the bound (5.6), we get the desired upper bound for log T . Hence, we have

#Aϕϕϕ(p,K, L) ≤ vp(T ) + degWS1
= vp(T ) + #S1,

which completes the proof by noticing (5.3).

5.4. Proof of Corollary 2.5. Assuming that N is large enough, we take

K = L =
⌈

(N/ logN)1/(2m+2)
⌉

in Theorem 2.4. Since T has at most c log T/ log log T distinct prime divisors for some
absolute constant c, using the bound in Theorem 2.4, we derive that vp(T ) = 0 for all
but

c log T/ log log T ≪ϕϕϕ (KL)m+1/ log((KL)m+1) ≪ N(logN)−2

primes p (even without the restriction p ≤ N) when N is large enough.
If vp(T ) = 0, then by Theorem 2.4 we have that the cardinality #Aϕϕϕ(p,K, L) is at

most c2 which is a constant depending on ϕϕϕ. Note that if α 6∈ Aϕϕϕ(p,K, L), then the
elements ϕ1(α), . . . , ϕm(α) do not satisfy two independent multiplicative relations with
exponents bounded above by K in absolute value. Hence, at least m − 1 elements of
ϕ1(α), . . . , ϕm(α) are of order at least K. This completes the proof.

5.5. Proof of Theorem 2.6. It suffices to follow the same arguments as in the
proof of Theorem 2.4 by noticing that in this case we need to consider vectors kkk ∈
{0,±1, . . . ,±K}m \ {0} and ℓℓℓ ∈ {0,±1, . . . ,±L}n \ {0}, and thus the contribution of
those ℓℓℓ is Ln+1 in the bound of log T instead of Lm+1. This completes the proof.

5.6. Proof of Corollary 2.7. For N large enough, we take

K =
⌈

Nn/(2mn+m+n)/(logN)1/(2m)
⌉

and L =
⌈

Nm/(2mn+m+n)/(logN)1/(2n)
⌉

in Theorem 2.6. Since T has at most c log T/ log log T distinct prime divisors for some
absolute constant c, using the bound in Theorem 2.6, we obtain that vp(T ) = 0 for all
but

c log T/ log log T ≪ϕϕϕ,̺̺̺ K
m+1Ln+1/ log(Km+1Ln+1) ≪ N(logN)−2

primes p when N is large enough.
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Note that any K-multiplicatively independent elements α1, . . . , αm ∈ F
∗

p generate a

subgroup of F
∗

p of order at least K
m ≥ Nmn/(2mn+m+n)(logN)−1/2. In addition, we have

Ln ≥ Nmn/(2mn+m+n)(logN)−1/2. The desired result now follows.

5.7. Proof of Theorem 2.8. For any m-tuple kkk = (k1, . . . , km) ∈ Zm \ {0} define

Ωkkk = ϕk11 . . . ϕkmm ∈ Q(X),

and for any n-tuple ℓℓℓ = (ℓ1, . . . , ℓn) ∈ Zn \ {0} let Θℓℓℓ ∈ Q(X) be defined by

Θℓℓℓ =

{

Ψℓ1 ◦ ̺1 if n = 1,

σn

(

φℓ1
ψ2

ℓ1

◦ ̺1, . . . , φℓnψ2

ℓn

◦ ̺n
)

if n ≥ 2,

where ψℓ1 ,Ψℓ1, φℓ1 have been defined in Section 3.3 and σn is the n-th summation
polynomial associated to the curve E defined in Lemma 3.7.
We remark that for any α ∈ Bϕϕϕ,̺̺̺,E(p,K, L), if (̺i(α), ·) is a torsion point for some

1 ≤ i ≤ n, then this situation is essentially reduced to the case when n = 1.
So, from now on, when n ≥ 2, we do not consider those α ∈ Bϕϕϕ,̺̺̺,E(p,K, L) such that

(̺i(α), ·) is a torsion point for some 1 ≤ i ≤ n.
The proof follows similar lines as in the proof of Theorem 2.1. Indeed, recall that

S2 ⊂ C is the set of all the elements α ∈ C which are solutions to the system of
equations

Ωkkk(X)− 1 = Θℓℓℓ(X) = 0 for some kkk ∈ Zm \ {0} and ℓℓℓ ∈ Zn \ {0}.
By Lemma 3.11 (for n = 1 it suffices to apply Lemma 3.12) and noticing (3.4) and the
definition of summation polynomials, the set S2 is finite and we have

#S2 ≪ϕϕϕ,̺̺̺,E 1,

where the implied constant is effectively computable when n = 1 by Lemma 3.12.
Write

Ωkkk =
Fkkk
Gkkk

, gcd(Fkkk, Gkkk) = 1, and Θℓℓℓ =
Uℓℓℓ
Vℓℓℓ
, gcd(Uℓℓℓ, Vℓℓℓ) = 1,

with polynomials Fkkk, Gkkk, Uℓℓℓ, Vℓℓℓ ∈ Z[X ].
Let WS2

∈ Z[X ] be the product of all the irreducible polynomials (without multiplic-
ity) having some α ∈ S2 as a root. Define

Uℓℓℓ =
Uℓℓℓ

gcd(Uℓℓℓ, U ′
ℓℓℓ)

and Ũℓℓℓ =
Uℓℓℓ

gcd(Uℓℓℓ,WS2
)
∈ Z[X ].

Note that since the polynomial Uℓℓℓ has only simple roots, we have gcd(Ũℓℓℓ,WS2
) = 1.

Then, the system of equations

(5.7) Fkkk(X)−Gkkk(X) = Ũℓℓℓ(X) = 0

has no solution over C. We denote

Rkkk,ℓℓℓ = Res(Fkkk(X)−Gkkk(X), Ũℓℓℓ(X)),

which is non-zero.
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Thus, if p > |Rkkk,ℓℓℓ|, then p ∤ Rkkk,ℓℓℓ, and therefore the system of equations (5.7) has no
solution over Fp. It is easy to see that the desired result follows when

(5.8) p > max
kkk∈{0,±1,...,±K}m\{0}

max
ℓℓℓ∈{0,±1,...,±L}n\{0}

|Rkkk,ℓℓℓ|.

Hence, it remains to estimate Rkkk,ℓℓℓ, for the parameters kkk and ℓℓℓ in the same ranges as on
the right hand side of (5.8).
From the proof of Theorem 2.1, for any kkk ∈ {0,±1, . . . ,±K}m \ {0} we have

(5.9) deg(Fkkk −Gkkk) ≪ϕϕϕ K, h(Fkkk −Gkkk) ≪ϕϕϕ K.

If n = 1 (that is, ℓℓℓ = ℓ1), then directly by Lemmas 3.2 and 3.5 and by (3.2), for
ℓ1 ≤ L, we have

(5.10) degΘℓ1 ≪̺1 L
2 and h (Θℓ1) ≪̺1,E L

2.

Now, we assume that n ≥ 2. In this case, it follows from (3.1) that

H(Ũℓℓℓ) ≤ 2deg ŨℓℓℓM(Ũℓℓℓ) ≤ 2degUℓℓℓM(Uℓℓℓ)

≤ 2degUℓℓℓ

√

degUℓℓℓ + 1H(Uℓℓℓ).
(5.11)

By Lemmas 3.2, 3.5 and 3.6 we have

deg(φℓi ◦ ̺i) ≪̺i ℓ
2
i and deg(ψ2

ℓi
◦ ̺i) ≪̺i ℓ

2
i ,

h(φℓi ◦ ̺i) ≪̺i,E ℓ
2
i and h(ψ2

ℓi
◦ ̺i) ≪̺i,E ℓ

2
i .

(5.12)

Applying again Lemma 3.2 (with R = σn and fi =
φℓi
ψ2

ℓi

◦ ̺i, i = 1, . . . , n), Lemmas 3.7

and 3.8 and the estimates (5.12), for ℓℓℓ ∈ {0,±1, . . . ,±L}n \ {0} we obtain

degΘℓℓℓ ≪̺̺̺ L
2, h (Θℓℓℓ) ≪̺̺̺,E L

2.(5.13)

Now, since by definitions of degree and height of a rational function we have

deg Ũℓℓℓ ≤ degUℓℓℓ ≤ deg Θℓℓℓ, h(Uℓℓℓ) ≤ h(Θℓℓℓ),

from (5.10), (5.11) and (5.13) for both cases we conclude that

(5.14) deg Ũℓℓℓ ≪̺̺̺ L
2, h(Ũℓℓℓ) ≪̺̺̺,E L

2.

Therefore, for the parameters kkk and ℓℓℓ in the same ranges as on the right hand side
of (5.8), by Lemma 3.3 and using (5.9) and (5.14), we obtain

(5.15) log |Rkkk,ℓℓℓ| ≪ϕϕϕ,̺̺̺,E KL
2,

which together with (5.8) gives the desired lower bound exp(c1KL
2) for p. Since the

implied constants in (5.9), (5.10), (5.12), (5.13) and (5.14) are all effectively computable,
the constant c1 is also effectively computable.
Finally, by the above discussions, when p > exp(c1KL

2), the system of equations (5.7)
has no solution over Fp for any kkk, ℓℓℓ in the same ranges as on the right hand side of (5.8).
Hence, as before, we obtain

#Bϕϕϕ,̺̺̺,E(p,K, L) ≤ #S2.

This completes the proof.
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5.8. Proof of Theorem 2.10. We proceed as in the proof of Theorem 2.8 and follow
the approach in proving Theorem 2.4. However, this time we use the bound (5.15)
instead of (5.6). So, the cardinality #Bϕϕϕ,̺̺̺,E(p,K, L) is at most vp(T ) + #S2. The
desired result then follows.

5.9. Proof of Corollary 2.11. We follow the approach in proving Corollary 2.7. As-
suming that N is large enough and taking

K =
⌈

Nn/(2mn+2m+n)/(logN)1/(2m)
⌉

and L =
⌈

Nm/(2mn+2m+n)/(logN)1/(2n)
⌉

in Theorem 2.10, we obtain the desired result.

5.10. Proof of Theorem 2.12. For any n-tuples kkk = (k1, . . . , kn) ∈ Zn\{0}, as before
we define

Θkkk =

{

Ψk1 ◦ ̺1 if n = 1,

σn

(

φk1
ψ2

k1

◦ ̺1, . . . , φknψ2

kn

◦ ̺n
)

if n ≥ 2.

Recall that S3 ⊂ C is the set of all the elements α ∈ C which are solutions to the
system of equations

Θkkk(X) = Θℓℓℓ(X) = 0

for some linearly independent vectors kkk, ℓℓℓ ∈ Zn. Note that kkk, ℓℓℓ are also linearly inde-
pendent over End(E). Then, by Lemma 3.10 the set S3 is finite and we have

#S3 ≪̺̺̺,E 1.

Now, applying similar lines as in the proof of Theorem 2.8, (5.15) becomes

log |Rkkk,ℓℓℓ| ≪̺̺̺,E K
2L2,

where kkk, ℓℓℓ are two linearly independent vectors in Zn satisfying

kkk ∈ {0,±1, . . . ,±K}m, ℓℓℓ ∈ {0,±1, . . . ,±L}n.
Then, we obtain that there exist an effectively computable constant c1 and a constant
c2 both depending only on ̺̺̺, E such that for any prime p > exp(c1K

2L2), for the set
(2.4) we have

#C̺̺̺,E(p,K, L) ≤ #S3.

Here we omit the details.

5.11. Proof of Theorems 2.15 and 2.17. Both results can be proved by proceed-
ing as in the proof of Theorem 2.12 and following the same approach as in proving
Theorem 2.4.

5.12. Proof of Corollary 2.16. One can prove the desired result by following the
approach used in proving Corollary 2.5 with

K = L =
⌈

(N/ logN)1/(2n+4)
⌉

in Theorem 2.15.
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5.13. Proof of Corollary 2.18. We obtain the desired result by following the ap-
proach in proving Corollary 2.7 with

K =
⌈

Nn/(2mn+2m+2n)/(logN)1/(2m)
⌉

and L =
⌈

Nm/(2mn+2m+2n)/(logN)1/(2n)
⌉

in Theorem 2.17.
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