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Abstract. Automated electrocardiogram analysis and classification is
nowadays a fundamental tool for monitoring patient heart activity and,
consequently, his state of health. Indeed, the main interest is detecting
the arise of cardiac pathologies such as arrhythmia.
This paper presents a novel approach for automatic arrhythmia classifi-
cation based on a 1D convolutional neural network. The input is given by
the combination of several databases from Physionet and is composed of
two leads, LEAD1 and LEAD2. Data are not preprocessed, and no fea-
ture extraction has been performed, except for the medical evaluation in
order to label it. Several 1D network configurations are tested and com-
pared in order to determine the best one w.r.t. heart-beat classification.
The test accuracy of the proposed neural approach is very high (up to
95%). However, the goal of this work is also the interpretation not only
of the results, but also of the behavior of the neural network, by means
of confusion matrix analysis w.r.t. the different arrhythmia classes.

Keywords: Arrhythmia classification, 1D CNN, Convolutional neural
networks, Confusion matrix, ECG, EKG

1 Introduction

Electrocardiogram (ECG) is the electrical signal produced by heart contrac-
tion, which is recorded by physicians to monitor the heart state of health and,
consequently, the person it belongs. The standard procedure uses an electrocar-
diograph with ten electrodes placed on specific points of a human body, which
acquire up to twelve different signals, called LEADS. As explained in [1] , an
healthy ECG, shown in Fig. 1, presents six fiducial points (P, Q, R, S, T, U)
which are correlated to the four principal stages of activity of a cardiac cycle:
isovolumic relaxation, inflow, isovolumic contraction, ejection. This path should
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repeat itself constantly over the time; otherwise, a person suffers from arrhyth-
mia. Cardiac arrhythmia is one of the most common disease people are killed
by, therefore normal and abnormal ECG signal automatic classification is raising
more and more interest in the scientific community.
Several approaches have been already proposed in literature. The most famous
algorithm for automatic QRS-complex detection within an ECG signal is de-
scribed in [2], while [3] uses Support Vector Machines at the same purpose.
In [4] and [5] fuzzy and artificial neural networks are used, respectively, for
ECG analysis. Cardiac arrhythmia is studied using hidden Markov models in [6].
Wavelet transformation and artificial neural network for arrhythmia detection
is presented in [7]. [8] and [9] show two possible approaches for atrial fibrillation
recognition.

Fig. 1. Example of an healthy ECG.

Recently, a novel class of techniques based on Convolutional Neural Networks
(CNN) is gathering the attention of the scientific community thanks to its capa-
bility in automatically learning the intrinsic patterns from the data; indeed, this
approach can avoid the need of manual feature engineering and it can also infer
hidden intrinsic patterns more effectively. Inspired by the human mind visual
cortex, CNN consists of multiple layers, each of which owns a small subset of
neurons to process portions of the input data. These subsets are tiled to intro-
duce region overlap, and the process is repeated layer by layer to achieve a high
level abstraction of the original dataset as shown in Fig. 2. An application to ar-
rhythmia detection can be found in [10]. Advanced machine learning techniques
like CNNs have already been extensively used in biomedical field with various
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application -such as in the classification of EEG recordings in dementia [11,12]-
with very promising results. A particular, quite interesting, class of convolutional
neural network is the 1D-CNN, which takes as input data a single stream (i.e
signal), e.g. ECG, and slides a kernel along it in search of particular patterns,
as shown in Fig. 3. Applications to heart disease classification and biometric
identification are presented in [15] and [16], respectively. In this paper differ-
ent 1D-CNNs are applied to the MIT-BIH database [19] in order to test which
configuration yields the best performances in ECG classification of arrhythmia.
However, the goal of this work is also the interpretation not only of the results,
but also of the behavior of the neural network, by means of confusion matrix
analysis w.r.t. the different arrhythmia classes. Moreover, in this study all of the
available classes of arrhythmia are used for the classification whereas in other
similar studies - such as [13,14] - only the most common ones are present.

Fig. 2. 2D Convolution Neural Network.

2 Methodology

2.1 Dataset

The MIT-BIH database is considered the gold standard when comparing ECG
classification techniques. Indeed, it is widespread used in research [1], [17], [18]
and it covers a wide range of diseases. Each QRS complex within each record is
labeled; hence, a supervised learning approach is quite straightforward. Also, the
entire dataset is very well documented. The chosen dataset [20] contains data
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Fig. 3. 1D Convolution Neural Network.

from 48 different patients in the form of two lead ECG recording of 30 minutes.
Its approximate 109000 heart-beats are distributed in 16 different classes (showed
in Table 1) and each of them has been labeled by two professional cardiologists.

The first step to prepare the dataset used in this work was dividing the over
31 million samples in smaller segments to feed the neural network. In order to
be sure to include at least one heart-beat in each segment the size was chosen
to be between 1 and 2 seconds. Since the frequency of the whole database is
360 samples/s a segment size of 500 samples was selected. Furthermore an
overlapping factor of 10% was chosen in order to increase the final number of
segments (data augmentation).

Each segment was then normalized in a range of [-1,+1], and the appropriate
label was assigned to the segment. Finally, the dataset was randomly divided in
training dataset and validation dataset with a ratio of 90%/10%, respectively.

2.2 1D-CNN

A Convolutional Neural Network (CNN) is a class of neural network where a filter
- commonly called kernel - is passed (convoluted) along data in order to learn
particular patterns. These pattern extracted grow in complexity along with the
depth of the network. Namely, deeper networks extracts more elaborate features.

In Fig. 4 there is an example of the most commonly used 2D-CNN where a
kernel of width and height 3x3 is passed across an image, or a generic numerical
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Table 1. Heart-beat labels and their meaning.

Label Meaning Label Meaning
/ Paced beat R Right bundle branch block beat
A Atrial premature beat S Supraventricular premature beat
E Ventricular escape beat V Premature ventricular contraction
F Fusion of ventricular and normal beat ! Ventricular flutter wave
J Nodal premature beat a Aberrated atrial premature beat
L Left bundle branch block beat e Atrial escape beat
N Normal beat f Fusion of paced and normal beat
Q Unclassifiable beat j Nodal escape beat

matrix, producing an output filtered image. The convolution starts by super-
imposing the kernel with part of the image; then, the corresponding elements
are multiplied and summed with each other and the results is the new element
of the output matrix. Finally, the kernel is moved and the process is repeated
for all the elements of the input matrix. It is important to note that because
of how the convolution works, the output matrix is smaller than the input one
depending on the size of the kernel.

0 1 1 0 0
0 0 1 1 0
0 0 1 0 1
0 0 1 0 1
0 1 0 0 1

1 0 1
0 1 0
1 0 1

2 2 4
2 2 3
1 2 3

∗ =

IN

K OUT

0 1 1 0 0
0 0 1 1 0
0 0 1 0 1
0 0 1 0 1
0 1 0 0 1

1 0 1
0 1 0
1 0 1

2 2 4
2 2 3
1 2 3

∗ =

IN

K OUT

Fig. 4. Example of two passages of a 2D CNN.

In 1D-CNN the procedure is analogous. The only difference is that filters and
signals are mono-dimensional, and thus the kernel can only slide in one direction.

2.3 Google Colab

Albeit this work didn’t needed to elaborate vasts amount of data, the training of
a deep CNN can require a tremendous amount of time if performed on a low end
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machine. For this reason, all the experiments were performed on Google Colab,
where it was available a virtual server with a resourceful GPU (Nvidia Tesla
k80), which greatly helped in speeding up the training process.

3 Experiments

To assess the classification quality of a 1D-CNN on the MIT-BIH dataset, several
configurations of the network have been tested and compared. The number of
layers, the size and the number of the filters, the dropout rate, together with the
activation function have been varied to determine the best architecture. Among
the different possibilities, only the 4 most representative examples, w.r.t. the
classification performances, are reported together with their topology. Table 2
resumes the results of the selected experiments.

Table 2. Accuracy values for the four most representative network architectures

Training Accuracy Test Accuracy Total Parameters
Net 1 92 % 91 % 65,056
Net 2 96 % 94 % 257,104
Net 3 96 % 94 % 533,072
Net 4 98 % 95 % 1,266,768

To begin, a simple configuration, say Net1, with around 65K parameters has
been tested. It was made of a first convolutional layer of 16 filters with a kernel
size of 32, followed by a max pooling layer and a softmax classifier. Net1 has
reported a training and testing accuracy equal to 92% and 91%, respectively.

The second experiment deals with a more complex network (257K parame-
ters), called Net2. It consisted of a first convolutional layer of 64 filters with a
kernel size of 8, followed by a max pooling layer and a softmax classifier. Overall
training and testing accuracy were equal to 96% and 94%, respectively, thus
improving the previous classification performances.

Third experiment was conducted using a deeper architecture (Net3) made
of three convolutional layers with growing number of filters - 64, 128, 256 - and
decreasing kernel size - 32, 16, 8 - each followed by a pooling layer. The convo-
lutional layers feed a 128 neurons fully-connected layer which finally flows into
the softmax classifier. Despite the number of parameters doubled (533K) w.r.t.
the previous experiment, the performances remained roughly the same.

In order to improve the classification, in the last experiment a much more
complex configuration (1200K parameters) was implemented, Net4. Fig. 5 shows
the architecture detail: it is a 5-layer CNN with 2 fully connected layers and 1
fully connected softmax classifier. The latter experiment yields the best results
w.r.t. classification performances; indeed, it reached 98% and 95%, training and
testing accuracy, respectively.
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Fig. 5. Net4 architecture.

3.1 Results Analysis

Net4 is the best architecture resulting from the experiments. Despite several
attempts to increase the classification rate both in training and test sets, the
network did not improved its performances. Therefore, the confusion matrix of
the latter experiment has been analysed in order to deepen the response of Net4
to the different classes of the input dataset.

Analyzing the confusion matrix in Fig. 6 there are a few observation to be
made. First, class F , which is the fusion of ventricular and normal beat, is some-
times mistaken with class N (Normal beat) or class V (Premature ventricular
contraction); F is, by definition, the fusion of the other two classes, therefore
if the analyzed window is not perfectly aligned with the whole series of heart-
beat, these classes are virtually unrecognizable. A possible solution could be the
window expanding; unfortunately, this approach is not feasible because it would
prevent the recognition of the other classes.

It can also be observed that class e (Atrial escape beat) is spread across
multiple classes, but not class e itself. The main reason for this behaviour is that
class e is the least represented class in the whole dataset, then Net4 could not be
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able to train properly on its recognition. However, since class e is very similar to
class A (Atrial premature beat), the net was able to partially classify it as that.

Class S (Supraventricular premature beat) is completely misinterpreted as
class V (Premature ventricular contraction) and requires further investigation
since they are two very different patterns.

The last remark is about the class Q (Unclassifiable beat). This class is
a special case because, by definition, it does not have a specific pattern. In
fact, it represent an heart-beat that the cardiologists discarded or were not
able to classify due to noise, uncertainties, alteration, etc. It is interesting to
note how the network classified most (49%) of those heart-beats as class N
(Normal heartbeat). Albeit the net clearly classified this class as a wrong heart-
beat, we cannot exclude, in advance, the fact that it was responding to some
specific pattern of the correctly trained classes. Therefore a further investigation
is required for each of class Q heart-beats, to assert if the classification was right.

Finally, the most influential flaw of the network was the class unbalance in
the dataset. Almost 40% of the whole dataset examples were of class N , while
other classes were only represented by a very small amount of examples (e.g. class
e only counted less than 2% of the dataset). Of course, this dis-homogeneity of
class representations had a decisive impact on the results of the training.

Fig. 6. Confusion matrix obtained with Net4.
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4 Conclusions

Automated ECG classification represents a promising technique to improve physi-
cians diagnostic performances on cardiac diseases. Several techniques have been
already proposed in literature at this purpose. This paper presents a novel ap-
proach based on 1D-CNN. Different network architectures have been tested and
compared; among these, Net4 has reached the highest accuracy both in training
(98%) and test (95%) phases. The analysis of its confusion matrix has shown
some misclassifications due to both data nature and class unbalancing.

Future works will tackle data dis-homogeneity either using selective class
augmentation to balance the dataset or tuning learning rates depending on class
rarity. Another approach worth of investigation is the hierarchical clustering
to better represent the less represented classes and, consequently, improve the
overall classification. Finally, a separate work will deal with the study of Net4
convolutional layers to analyse their features.
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