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Abstract—Darknets are ranges of IP addresses advertised
without answering any traffic. Darknets help to uncover inter-
esting network events, such as misconfigurations and network
scans. Interpreting darknet traffic helps against cyber-attacks
– e.g., malware often reaches darknets when scanning the
Internet for vulnerable devices. The traffic reaching darknets is
however voluminous and noisy, which calls for efficient ways to
represent the data and highlight possibly important events. This
paper evaluates a methodology to summarize packets reaching
darknets. We represent the darknet activity as a graph, which
captures remote hosts contacting the darknet nodes ports, as
well as the frequency at which each port is reached. From
these representations, we apply community detection algorithms
in the search for patterns that could represent coordinated
activity. By highlighting such activities we are able to group
together, for example, groups of IP addresses that predominantly
engage in contacting specific targets, or, vice versa, to identify
targets which are frequently contacted together, for exploiting
the vulnerabilities of a given service. The network analyst can
recognize from the community detection results, for example,
that a group of hosts has been infected by a botnet and it is
currently scanning the network in search of vulnerable services
(e.g., SSH and Telnet among the most commonly targeted). Such
piece of information is impossible to obtain when analyzing the
behavior of single sources, or packets one by one. All in all,
our work is a first step towards a comprehensive aggregation
methodology to automate the analysis of darknet traffic, a
fundamental aspect for the recognition of coordinated and
anomalous events.

Index Terms—Security, graph analysis, community detection.

I. INTRODUCTION

Darknets, also referred to as network telescopes, Internet
sinks or Internet background radiation, are sets of regularly
advertised IP addresses that do not host any device or ser-
vice. Darknets are deployed with the purpose of collecting
unsolicited packets reaching the unused ranges of addresses.
Darknets have been proven central for the detection of events
such as the spreading of new malware, network scans and
misconfigurations [1], [2]. Even without hosting any produc-
tion server, darknets receive a significant amount of traffic. In
fact, different IPv4 darknets have been shown to constantly
receive unsolicited traffic from thousands of sources [3]. This
baseline noise is increasing throughout the years, and it is
mixed with sudden peaks of unsolicited traffic that are seen
whenever new malware activity or new large-scale scans start.
Moreover, a significant percentage of traffic reaching darknets
consists of backscattering, i.e., answers sent to the darknet by
services receiving spoofed IP packets possibly during DDoS
attacks.
Understanding the underlying phenomena behind darknet

traffic is challenging given the large amount of packets and
the heterogeneity of events generating them. The analysis
of darknet traffic requires methods to separate occasional
(and likely unimportant) events from large-scale coordinated
actions, e.g., due to botnets. Several works propose methods
to categorize darknet traffic [4], [5], [6], [7], [8]. These works
usually rely on domain knowledge to create static categories
of traffic (e.g., misconfiguration, backscattering etc). As such,
they may miss events that diverge from expected signatures.
More important, there is a lack for automatic ways to un-
cover correlations among different events, which could help
reducing the manual work when interpreting darknet traffic.
When processing darknet traffic, we are interested in grouping
packets from different sources that may suggest the presence
of coordinated activities, due for example to the propagation
of a botnet infection over different hosts. Such coordinated
actions may result in temporal or spatial correlations, e.g.,
apparently unrelated sources cooperating to scan for a par-
ticular service, and they are invisible if hosts or packets are
analyzed individually. Data should therefore be represented in
an informative way, so to ease the inspection and uncovering
of hidden patterns.
This paper investigates whether graph mining techniques
can help to uncover such macroscopic coordinated events in
darknet traffic. We represent the darknet traffic as a bipartite
graph linking traffic sources to the contacted destination
ports. We then run community detection algorithms over such
graphs, in the search for devices performing similar activity
against the darknets in the same time interval.
We evaluate the methodology using only TCP traffic, col-
lected in two distinct darknets. We tune and test the method-
ology on three weeks of data captured from a darknet in
Italy, composed by 3 /24 IPv4 networks. We then apply the
methodology to one day of traffic captured in a /19 darknet
deployed in Brazil. In both cases we found communities per-
forming very homogeneous activity. We discuss the compo-
sition of the most relevant communities, their characteristics
and peculiarities, showing some relevant behaviors that our
algorithm is able to automatically detect. In particular, we find
(i) communities composed by thousands of sources that focus
on popular services; (ii) communities that focus on horizontal
scans for vulnerable services.
Our work is a first step towards a methodology to automate



the analysis of darknet traffic. Our results show that darknets
can be automatically characterized by using graph mining
techniques to highlight interesting patterns over space and
time. In the following, Section II summarizes related work.
Section III describes the applied graph mining methodology.
Section IV describes our datasets and provides a basic char-
acterization of the data. Section V describes the output of the
graph mining and community detection analysis. Section VI
concludes the paper.

II. RELATED WORK

Darknets are extensively used for supporting cyber-
security. They have been applied, for example, in the inves-
tigation of DDoS phenomena [9], [5], [7], for the estimation
of the IPv4 address space utilization [6] and for the analysis
of Internet censorship [8]. Some papers characterize darknets
in terms of deployment (i.e., centralized darknets vs sparse
greynets), size and geolocation [10], [11], [12]. Instead of
focusing on particular applications or darknet characteristics,
we here introduce a generic methodology to ease the analysis
of large volumes of darknet traffic.

In [13], authors suggest to represent network traffic as a
bipartite graph linking IP sources to /24 destination networks.
Other works suggest to represent generic network data by
means of first order [4], [14] or second order [15] Markov
Chains. We here follow a similar approach to represent the
darknet traffic. We however go one step further and apply
community detection to uncover coordination in patterns.

The detection of coordinated activity in network traffic
has been targeted with other techniques. Authors of [16]
propose a tool to easy the visualization of scanning activ-
ities, while [17] focus on topological analysis. Community
detection is often used to evaluate social networks, but some
works apply the algorithms to computer networks too. Au-
thors of [18] separate legitimate and unsolicited email traffic.
Authors of [19] identify patterns used by attackers contacting
honeypots. We here verify whether community detection is
suited when evaluating darknet traffic.

Authors of [20], [21] address a problem similar to ours.
They however focus on Internet scans, characterized with
an event-based graph defined as the sequences of ports
contacted by scanners. We broaden the analysis to any activity
on darknets, searching relationships on traffic reaching the
darknet.

III. METHODOLOGY

We now describe out graph definition (Sect. III-A) and the
used community detection algorithms (Sect. III-B).

A. Graph definition

We define our graph G(V,E) with V being its set of
nodes and E its set of edges. We want to represent the
activity of remote sources sending traffic to darknets. After
we take into account different aspects, we pick a definition
for G(V,E) that provides us not only good semantics, but
also a manageable graph.

G(V,E) is a weighted bipartite graph. Nodes in V repre-
sent, on the one hand, the sources sending traffic to darknets
and, on the other hand, the destination ports contacted by
the sources. We call S the set of nodes in V representing
the traffic sources and P the set of nodes representing the
contacted ports. There is a edge e between a node in S and
a node in P if the source has sent packets to the given port.
The weight we of e is the number of packets observed for
the pair of nodes in the given time interval.

We focus on port numbers as they give us an indication
of the services searched by sources. The decision on how
to represent the sources is however harder. Creating a node
for each single sender IP address may result in very large
graphs. Grouping addresses according to networks is instead
a more prominent alternative. To avoid setting a completely
arbitrary aggregation, here we map the IP addresses to their
respective Autonomous Systems (ASes).1 As such, we report
coordination among IP addresses that belong to different
ASes.

B. Detecting communities

Community detection aims at finding subgroups of nodes
that are densely connected – i.e., forming communities. In
our specific case, communities would represent sets of ASes
that contact similar sets of destination ports in a given time
interval. For instance, a group of remote sources that behave
similarly due to a botnet infection, or nodes under the control
of the same attacker in distinct source ASes, that aim at
finding vulnerabilities on similar targets.

We here consider the Greedy Modularity Algorithm
(GMA) [22].2 This technique measures how strongly a graph
can be separated into modules – i.e., groups of nodes that are
strongly connected inside the group, while loosely connected
with nodes belonging to other groups. The idea behind the
algorithm is that a random graph is not expected to show
cluster structures with condensed nodes and edges, while
nodes having some sort correlation will form a modular
structure. To recognize modular structures, the GMA exploits
the concept of modularity [24], defined as:

Q =
1

2m

∑
i,j

[wij −
kikj
2m

]δ(ci, cj) (1)

where wij represents the weight of the edge between node
i and node j, ki is the sum of the weights of the edges on i, ci
is the community to which i is assigned, δ(u, v) is 1 if u = v

and 0 otherwise, and m = 1
2

∑
i,j wij . The algorithm starts

by initializing a community per node; at the first iteration it
hence yields |V | communities. The second iteration proceeds
by calculating the modularity between each nodes and its
neighbours, performing the merge between the pair of nodes
that have the highest modularity gain. At each iteration
the algorithm merges together the neighbouring communities
yielding positive gains in modularity. It stops when it is

1https://pypi.org/project/pyasn/
2We have also considered the Label Propagation Algorithm [23], which

however produces less meaningful results, e.g., putting almost all nodes in
a single community.
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Fig. 1. Per-AS breakdown in the Italian darknet. Notice the log-log scales.

unable to merge any new elements to any community. As
G(V,E) is a bipartite graph, our communities will contain
both nodes belonging to S (sources, i.e., ASes) and P (ports).
Every packet in our dataset, which originate the edges in
G(V,E), is labeled with two communities: The community
of its source AS and the community of its destination
port. When quantifying activity of communities in terms of
packets, we therefore split results into AS communities and
port communities. In other words, an AS si will belong to
a single AS community cj (also containing other ASes that
have performed activity similar to si), but its activity will be
reflected into more than one port community, implying that
not all ports contacted by the si are also part of cj . The same
concept applies when tackling the problem from the point of
view of the destination ports.

IV. DATASETS

A. Darknets

We rely on packets captured from two darknets, in Italy
and Brazil, respectively. The darknet in Italy is hosted at the
Politecnico di Torino campus network and is composed by
three /24 IPv4 networks. The darknet in Brazil is hosted by
a research network operator and is composed by a /19 IPv4
network. We use three weeks of packet traces collected in
January 2020. More details on the traffic composition can be
found in [10]. We focus on TCP traffic, which sums up to
87% of the packets in the traces. We tune and evaluate our
methodology using the Italian traces. Afterwards we use the
Brazilian traces to confirm our findings. Since both darknets
are physically located in different continents and logically
located in far away IPv4 ranges,3 we can verify whether the
main events observed in a darknet are also observable in
another network.

B. Popularity of ASes

We start by reporting some basic characteristics of the
darknet traffic. Figure 1 breaks down the data according to
source ASes. We show only results for the Italian darknet.
Figures for the Brazilian darknet are qualitatively similar,
even if it receives much more packets, since it aggregates
more addresses than the Italian one. Different lines represent

3Privacy requirements imposed by the network operators prevent us from
disclosing the IPv4 prefixes hosting the darknets.
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Fig. 2. Per-port breakdown in the Italian darknet. Notice the log-log scales.

each of the three weeks in the data, we analyse every week
independently from the others.

Figure 1(a) shows the number of packets received from
each AS. ASes are ranked in the x-axis according to the
number of packets they send. Results are almost coincident
for the three weeks. Most ASes are populated by sources
which send only few packets to the darknet in a week (notice
the log-log scale). Yet, a small group hosts some heavy hitters
which send thousands of packets. Notice how the top 1 000

ASes are origin of more than 1 000 packets each, some of
them of hundreds of thousands of packets (leftmost part of
the plot).

More interesting, Figure 1(b) shows the ranking of ASes
according to the number of destination ports their hosts
contact. We see that only a small number of ASes targets
100 ports or more (leftmost points). Hosts targeting lots of
destination ports are likely performing Internet scans. The
remaining ASes target a small number of destination ports,
suggesting either targeted activity or random behaviour –
e.g., hosts in different ASes collaborating for distributed port
scans.

C. Popularity of ports

Figure 2 depicts a breakdown according to destination
ports. As for the previous section, we show only results for
the Italian darknet. Figure 2(a) depicts the number of unique
ASes that contact each port. The leftmost part of the plot
shows that only a minor number of ports is contacted by a
large number of ASes. Only the most contacted ports receive
packets from 30 or more ASes.

Figure 2(b) depicts the number of packets received by each
port. Again only a small subset of ports see a significant
number of packets. We see that most of the 65 536 available
TCP ports do not receive any packets in a week, whereas most
of the targeted ports receive less than 100 packets (notice the
log scales).

The ports receiving lots of packet are the ones correspond-
ing to services often targeted by remote attacks. In Figure 3
we highlight the most contacted ports in the Italian darknet,
along with the percentage of packets received by each of
them. We see that ports hosting terminal services (e.g., port
23, 22 and 3389), web servers (e.g., ports 80 and 8080) and
databases (e.g., port 1433) dominate the list, attracting large
percentage of traffic.
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All in all, we see heavy-tails in the popularity of both ASes
and ports. For building the graphs in the coming sections,
we filter out traffic going to unpopular ports. This step is
relevant, since some graph mining algorithms do not scale
well for large graphs. We set the threshold at 100 packets
based on Figure 2(b). We argue that most packets going
to those ports are due to misconfigurations and backscatter-
ing [10]. The latter, in particular, are packets sent by victims
of spoofed IP attacks, which therefore are less likely to show
interesting coordination. This threshold allows us to filter out
(on average) 93% of the ports, while still retaining 98.7% of
the observed packets in the traces. Given that our objective
is to identify the spread of wider phenomena and possible
coordinated actions among ASes, we choose instead not to
set a threshold to filter out the sources.

V. DARKNET COMMUNITIES

In this section we summarize the communities found in
both darknets. The resulting graphs are composed by an
average of around 16 000 nodes and 67 000 edges per week
(Italy), and around 32 000 nodes and 142 000 edges (Brazil).

A. Community popularity

Figure 4 provides a high-level view of the communities
found for the first analyzed week (day in the BR case). The
community detection algorithm has found 18 (20) commu-
nities of variable sizes for Italy (Brazil). The figure shows
the percentage of packets per community. Recall that each
packet may be associated with 2 communities, one for its AS
and one for its destination port. The total number of packets
per community is however very similar regardless on whether
ports or ASes are considered for this association.

The top three communities are involved in more than half
of the total weekly traffic in both darknets. Intuitively, these
communities may include sources searching for common
Internet services, e.g., scans for the popular ports seen in
Figure 3. We will investigate this hypothesis later. Observe
that only the top 12 (13) communities in Italy (Brazil) have a
significant number of packets. Communities with negligible
number of packets are mostly formed by a few ASes that
target a single port. We ignore these negligible communities
in the analysis that follows. Tables I and II report a more
detailed breakdown of each community. The communities are
sorted as in Figure 3, according to the number of packets they
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Fig. 4. Distribution of packets per community.

include. As we can see, most of the communities target all
the available addresses in the darknets. Some of the largest
communities prove to collect either more sources (as in IT1
or BR0), or more destinations (as in IT3 and BR3). Only
by having a look at these data we are able to identify more
specific and less evident events as possible net scans on a
single port (e.g., as in IT10, IT17 and BR17), or neglect what
really may seem isolated phenomena, as the ones in BR13.

B. Community structure

Figure 5 summarizes the structure of popular communities.
It depicts a scatter plot that compares the number of ports and
ASes in the communities. Every dot represents a community,
and the dot sizes represent the average number of IP addresses
per AS belonging to it. It helps us to understand how
pervasive the activities are in the ASes, e.g., whether only



TABLE I
BASIC STATISTICS PER COMMUNITY - IT

# Ports # ASes # server IPs # client IPs
IT4 895 2739 760 92122
IT0 222 1316 760 88864
IT2 1426 410 760 8449
IT3 2717 19 760 1072
IT1 439 6581 760 118269
IT7 1519 28 760 3073
IT8 401 19 760 6490
IT6 149 176 760 2921
IT9 105 6 760 359
IT5 89 139 760 2353
IT12 121 6 760 366
IT13 109 2 760 11
IT16 30 2 760 92
IT10 1 1 384 1
IT15 17 1 760 100
IT14 6 1 760 32
IT11 6 1 6 3
IT17 1 1 102 1

TABLE II
BASIC STATISTICS PER COMMUNITY - BR

# Ports # ASes # server IPs # client IPs
BR1 4283 156 8192 3123
BR0 2632 10940 8192 267880
BR2 13637 68 8192 2035
BR8 12513 40 8192 5841
BR3 18053 65 8192 2549
BR4 4628 36 8192 1873
BR6 417 170 8192 2424
BR9 796 75 8192 5240
BR10 450 7 8192 150
BR7 341 5 8192 21
BR15 454 6 8192 1051
BR12 1721 6 8192 633
BR11 488 9 8192 196
BR5 21 1 2638 176
BR16 4 2 8192 13
BR18 12 1 8192 4
BR19 4 1 6168 4
BR17 1 1 8190 1
BR14 2 1 1876 2
BR13 1 1 1 1

some few clients per AS participate in suspicious activities,
or whether lots of hosts in the ASes join them.

Focusing on the top figure (Italy), see how the communities
that group more ASes (i.e., IT1, IT4 and IT0) have a low
number of hosts. Moreover, these ASes send packets to a
small number of destination ports. These communities are
also among the largest ones uncovered by the modularity
algorithm. In a nutshell, the results suggest the existence of
sparse sources, distributed in a large number of ASes, tar-
geting some specific (popular) ports. This signature matches
scans towards specific services, carried on by very distributed
sources (e.g., botnets).
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Fig. 5. Structure of communities in the Week 1.

Focus now on communities IT3 and IT7 in the same figure.
Those communities are formed by a low number of ASes.
However, these ASes present a large number of IP addresses.
More interesting, the communities target a large number of
destination ports. In other words, we see a small number of
ASes in which a large number of IP addresses contribute to
scan thousands of destination ports. These characteristics are
typical of horizontal scans, such as those performed by tools
like zmap or nmap, likely run on servers hosted in specifc
ASes.

The remaining communities match patterns where a small
number of ASes targets specific ports. Those cases include
port numbers usually not used by very popular services and
ports not exploited in common attacks. This signature hints
to sources performing sporadic scans, misconfigurations and
other rare anomalies.

Interesting, the bottom plot in Figure 5 confirms results
with data from the Brazilian darknet. In this case, how-
ever, the number of communities in some sectors of the
plot is reduced. Manual inspection shows that some of the
communities seen in the Italian darknet may be merged by
the modularity algorithm when applied to the (larger and
noisier) Brazilian dataset. Other communities are completely
diverse. Some source ASes are observed only in one of the
datasets and target completely different sets of destination
ports. These results confirm previous works [10], [3] that
show dissimilarities in traffic reaching darknets deployed at
diverse IP ranges.



AS 1

2323

23

1433

AS 2 445

Fig. 6. Example output of the community detection algorithm.

C. Ports per community

We next dig into the ports each community targets as a way
to understand the services these communities are probing.
First, we visually explore the communities in search for
patterns. One of such visualizations is provided in Figure 6,
which reports a sample of the communities for the Italian
darknet. Node sizes are proportional to their degrees. The
figure shows several behaviors. The community in lilac is
an example of targeted action from distributed ASes. It gets
represented as a strong concentration around two destination
ports, namely ports 23 and 2323. Hundreds of ASes are
connected to those nodes. These are ports usually hosting
terminal services such as Telnet, pointing to the interest of
some sources by those services. A similar consideration holds
for the community in green, for which ports 1 433 and 445

are the most common targets. The community in blue, on the
other hand, may indicated an horizontal action carried over
by groups of ASes, likely scanning hundreds of ports.

The heatmaps in Figure 7 extend the analysis. They show
with colors how the traffic for the top-50 ports (x− axis) is
distributed according to the several communities (y − axis).
The rightmost column of the plot quantifies, for each commu-
nity, the percentage of traffic that is not related to the top-50
ports. Communities and ports are sorted according to their
popularity.

Focusing on the most popular community (IT4) at the top
plot (Italy), observe how 92% is targeting several ports in
the top-50. The community in particular contacts five ports
that often host services vulnerable to remote attacks, such as
MSSQL (port tcp/1433) and Microsoft Active Directory (port
tcp/445). The second most popular community (IT0) is also
strongly concentrated on the top-50 ports, differently from
IT4, (e.g., port tcp/22), with only 3.9% of its traffic goes to
the remaining ports.

The community IT2 is the clearest example of sources
performing large-scale horizontal scans for popular services.

It dominates many of the top-50 ports, including services such
as Telnet, HTTP, HTTPs, among others. Yet, notice how half
of the traffic from this AS community is directed to ports
not in the top-50 set. Finally, notice community IT9, which
focuses mostly on port 8 291, related to a vulnerability on
MikroTik RouterOS Winbox. This targeted behaviour is also
visible in other communities that do not dominate any port
in top-50 (e.g., IT3, IT5 and IT12).

The bottom plot (Brazil) confirms the general division
of communities in (i) vertical scans for popular services –
e.g., BR0; (ii) horizontal scans on multiple ports – e.g.,
BR2 and BR6; and (iii) targeted activity – e.g., BR11.
Yet, here we clearly see major differences in formation of
communities when compared to the Italian dataset. Notice,
for example, how the port tcp/23 (telnet) is dominated by a
single community (BR11), whereas it is dominated by sources
performing horizontal scans in the Italian case.

D. Temporal behaviour

Finally, we investigate how sources in different commu-
nities behave over time. Figure 8 reports timeseries of the
number of packets per hour for different ports in a commu-
nity. We take four arbitrary communities and report activity
for their five most active ports. Figure 8(a) and Figure 8(b)
show results for IT4 e IT5 covering 1 week. Figure 8(c) and
Figure 8(d) show results for BR0 and BR16 covering 1 day
to improve visualization.

Recall from previous sections that IT4 is the most active
community and vertically focuses on popular services. Fig-
ure 8(a) confirms, among the top-5 most targeted ports, the
prevalence of ports 1 433 and 445, with a lower amount of
traffic to ports 22, 23 and 8 291. We see that sources in this
community produce a constant amount of noise. A similar
level of traffic on each port reaches the darknet without any
apparent daily or weekly patterns.

Figure 8(b), on the other hand, shows a targeted commu-
nity. Here the traffic volume is much less prominent, with
only few dozens of packets reaching the darknet in each
hour. The ports in the [1 540 − 1 545] range are often used
by a cluster management framework (RDS services). Notice
how the few sources participating in this community have an
orchestrated behaviour, alternating the contacted ports after
some days of activity, which may suggest the presence of a
coordinated, low-rate action. Similar results hold for the other
two analyzed weeks, not shown for brevity.

Figures in the Brazilian darknet follows very close patterns.
In Figure 8(c) we observe the hourly pattern for the 5 most
contacted port in BR0 – an example of community engaged in
vertical scans. Figure 8(d) shows instead BR16, an example
of targeted community. Similar patterns as for the Italian case
emerge in both cases. Notice however that sources in BR16
alternate ports with much higher frequency as before.

VI. CONCLUSIONS

In this paper we presented a community detection-based
methodology aimed at easing the analysis of large amounts
of darknet traffic. Thanks to it, we were able to detect
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Fig. 7. Percentage of packets per Port to ASN communities.

coordinated events, such as network scans due to botnets.
Our methodology has automatically identified and isolated
sources engaging in three major categories of events: vertical,
horizontal and targeted scans.

Our work is a preliminary study of the application of
community detection algorithms to darknet traffic analysis.
Many promising directions emerge. We plan to deepen the
investigation on sources behaving similarly. In the same line,
we plan to characterize the ASes hosting sources sending
packets to darknets. Finally, we observe that some activities
in darknet are rather constant, thus becoming less relevant.
We plan to apply advanced complex network approaches to
filter out the expected noisy traffic, so to highlight events that
are rare and potentially more interesting for cyber-security
applications.
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