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Learning Graph-Convolutional Representations
for Point Cloud Denoising

Francesca Pistilli[0000−0001−9372−032X], Giulia Fracastoro[0000−0001−8495−1097],
Diego Valsesia[0000−0003−1997−2910], and Enrico Magli[0000−0002−0901−0251]

Politecnico di Torino, Italy
francesca.pistilli@polito.it

Abstract. Point clouds are an increasingly relevant data type but they
are often corrupted by noise. We propose a deep neural network based on
graph-convolutional layers that can elegantly deal with the permutation-
invariance problem encountered by learning-based point cloud processing
methods. The network is fully-convolutional and can build complex hi-
erarchies of features by dynamically constructing neighborhood graphs
from similarity among the high-dimensional feature representations of
the points. When coupled with a loss promoting proximity to the ideal
surface, the proposed approach significantly outperforms state-of-the-art
methods on a variety of metrics. In particular, it is able to improve in
terms of Chamfer measure and of quality of the surface normals that can
be estimated from the denoised data. We also show that it is especially
robust both at high noise levels and in presence of structured noise such
as the one encountered in real LiDAR scans.

Keywords: Point cloud, denoising, graph neural network

1 Introduction

A point cloud is a geometric data type consisting in an unordered collection
of 3D points representing samples of 2D surfaces of physical objects or entire
scenes. Point clouds are becoming increasingly popular due to the availability of
instruments such as LiDARs and the interest in exploiting the richness of the
geometric representation in challenging applications such as autonomous driving.
However, the acquisition process is imperfect and a significant amount of noise
typically affects the raw point clouds. Therefore, point cloud denoising methods
are of paramount importance to improve the performance of various downstream
tasks such as shape matching, surface reconstruction, object segmentation and
more.

Traditional model-based techniques [1–6] have typically focused on fitting a
surface to the noisy data. Such techniques work well in low-noise settings but they
usually suffer from oversmoothing, especially in presence of high amounts of noise
or geometries with sharp edges. Given the success of learning-based methods,
in particular those exploiting deep neural networks, in a wide variety of tasks,
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including image denoising and restoration problems [7–9], a few works have re-
cently started exploring point cloud denoising with deep neural networks. The
most challenging problems in processing point clouds are the lack of a regular do-
main, such as a grid, and the fact that a point cloud is just a set of points and any
permutation of them still represents the same data. Any learning-based method
must therefore learn a permutation-invariant function that can deal with data
defined on an irregular domain. This is a significant challenge that point cloud
processing algorithms tackled by either approximating the irregular domain with
a grid, e.g. by building voxels, or building a permutation-invariant function as a
composition of operations acting on single points (e.g., size-1 convolution) and a
globally symmetric function (e.g., a max pool) as done by PointNet [10]. Neither
of these solutions is completely satisfactory. The former introduces an undesir-
able approximation, while the latter lacks the expressiveness of convolutional
neural networks (CNN) where the convolution operation extracts features that
are localized as functions of the neighborhood of a pixel and features of features
are assembled in a hierarchical manner by means of multiple layers, progressively
expanding the receptive field. Recently, graph convolution [11] has emerged as
an elegant way to build operators that are intrinsically permutation-invariant
and defined on irregular domains, while also exploiting some of the useful prop-
erties of traditional convolution, such as localization and compositionality of the
features as well as efficient weight reuse. In particular, spatial-domain definitions
of graph convolution have been recently applied in several problems involving
point clouds such as classification [12], segmentation [13], shape completion [14]
and generation [15]. Notably, the point cloud denoising problem has yet to be
addressed with graph-convolutional neural networks.

In this paper, we propose a deep graph-convolutional neural network for
denoising of point cloud geometry. The proposed architecture has an elegant
fully-convolutional behavior that, by design, can build hierarchies of local or
non-local features to effectively regularize the denoising problem. This is in
contrast with other methods in the literature that typically work on fixed-size
patches or apply global operations [16, 17]. Moreover, dynamic computation of
the graph from similarities among the high-dimensional feature-space represen-
tations of the points allows to uncover more complex latent correlations than
defining neighborhoods in the noisy 3D space. Extensive experimental results
show a significant improvement over state-of-the-art methods, especially in the
challenging conditions of high noise levels. The proposed approach is also robust
to structured noise distributions such as the ones encountered in real LiDAR
acquisitions.

2 Related work

The literature on 3D point cloud denoising is vast and it can be subdivided into
four categories: local surface fitting methods [1–6], sparsity-based methods [18–
20], graph-based methods [21–23], and learning-based methods [16, 24, 17, 25].
Among the methods belonging to the first category, the moving least squares
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(MLS) approach [1] and its robust extensions [2, 3] are the most widely used.
Other surface fitting methods have also been proposed for point cloud denoising,
such as jet fitting [6] or parameterization-free local projector operator (LOP) [4,
5]. These methods achieve remarkable performance at low levels of noise, but
they suffer from over-smoothing when the noise level is high [26].

A second class of point cloud denoising methods [18–20] is based on sparse
representations. In this case, the denoising procedure is composed of two min-
imization problems with sparsity constraints, where the first one estimates the
surface normals and then the second one uses them in order to update the point
positions. However, at high levels of noise the normal estimation can be very
poor, leading to over-smoothing or over-sharpening [19].

Another approach for point cloud denoising is derived from the theory of
graph signal processing [27]. These methods [21–23] first define a graph whose
nodes are the points of the point cloud. Then, graph total variation (GTV)-based
regularization methods are applied for denoising. These techniques have proved
to achieve very strong performance when the noise level is low. Instead, at high
noise levels, the graph construction can become unstable, negatively affecting
the denoising performance.

In the last years, learning-based methods [16, 24, 17, 25], especially the ones
based on deep learning, have been gaining attention. Extending convolutional
neural networks to point cloud data is not straightforward, due to the irregular
positioning of the points in the space. However, in the context of shape classifica-
tion and segmentation, many methods have recently been proposed specifically
to handle point cloud data. PointNet [10] is one of the most relevant works in this
field, where each point is processed independently before applying a global aggre-
gation. Recently, a few methods proposed to extend the approach of PointNet to
point cloud denoising. PointCleanNet [16] uses an approach similar to PointNet
in order to estimate correction vectors for the points in the noisy point cloud.
Instead, in [17] the authors use a neural network similar to PointNet to estimate
a reference plane for each noisy point and then they obtain the denoised point
cloud by projecting the noisy point onto the corresponding reference plane. Also
PointProNet [25] performs point cloud denoising by employing an architecture
similar to PointNet in order to estimate the local directions of the surface. How-
ever, the main drawback of these techniques based on PointNet is that they work
on individual points and then apply a global symmetric aggregation function,
but they do not exploit the local structure of the neighborhood. PointCleanNet
addresses this issue by taking as input local patches instead of the entire point
cloud. However, this solution is still limited by the fact that the network cannot
learn hierarchical feature representations, like standard CNNs.

Graph-convolutional networks have shown promising performance on tasks
such as segmentation and classification. In particular, DGCNN [13] first intro-
duced the idea of a dynamic graph update in the hidden layers of a graph-
convolutional network. However, the denoising problem is significantly different
from the classification and segmentation tasks addressed in [13], that rely more
on global features instead of localized representations. In particular, there are
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several design choices that make DGCNN unsuitable for point cloud denoising:
the spatial transformer block is not useful for denoising since it seeks a canonical
global representation, whereas denoising is mostly concerned with local represen-
tations of point neighborhoods and also significantly increases the computational
complexity for large point clouds; the graph convolution operation uses a max
operator in the aggregation, which is unstable in presence of noise; the specific
graph convolution definition is also less general than the one presented in this
paper, which allows to implement adaptive filters where the aggregation weights
are dependent on the feature vectors instead of being fixed as in [13], as well as
incorporating an edge attention term which is especially important in presence
of noise because it promotes a lowpass behavior by penalizing edges with large
feature variations.

3 Proposed method

In this section we present the proposed Graph-convolutional Point Denoising
Network (GPDNet), i.e., a deep neural network architecture to denoise the ge-
ometry of point clouds based on graph-convolutional layers. The focus of the
paper is to investigate the potential of graph convolution as a simple and ele-
gant way of dealing with the permutation invariance problem encountered when
processing point clouds. For this reason, we focus on analyzing the network in
a discriminative learning setting where a clean reference is available and it is
perturbed with white Gaussian noise. We refer the reader to [24] for a technique
to train any point cloud denoising network in an unsupervised fashion only using
noisy data.

3.1 Architecture

x+n xDN 1x1 CONV
GCONV
GRAPH
RELU
BNORM

Legend:

Fig. 1. GPDNet: graph-convolutional point cloud denoising network.

An overview of the architecture of GPDNet is shown in Fig. 1. At a high
level, it is a residual network that estimates the noise component of the input
point cloud, which has been shown [7] to be easier than directly cleaning the
data. A first block is composed of three single-point convolutions that gradually
transform the 3D space into an F -dimensional feature space. Then a cascade
of two residual blocks is used, having an input-output skip connection to re-
duce vanishing gradient issues. Each residual block is composed of three graph-
convolutional layers. The graph is computed by selecting the k nearest neighbors



Learning Graph-Convolutional Representations for Point Cloud Denoising 5

to each point in terms of Euclidean distances in the feature space. Notice that
the graph construction is dynamic, i.e., it is updated after every residual block
but shared among the graph convolutional layers inside the block to limit compu-
tational complexity. Dynamic construction of a similarity graph has been shown
to induce more powerful feature representations [13, 15] and, in the context of a
residual denoising network, it progressively uncovers the latent correlations that
have not yet been eliminated. Intuitively, dynamic graph construction is prefer-
able over building the graph in the noisy 3D space as neighborhoods might be
strongly perturbed at high noise variances, leading to unstable or sub-optimal
neighbor assignments. All layers are interleaved with batch normalization which
stabilizes training, especially in presence of Gaussian noise. Finally, the last
graph-convolutional layer projects the features back to the 3D space.

3.2 Graph-convolutional layer

The core of the proposed architecture is the graph-convolutional layer. Graph
convolution is a generalization of convolution to data that are defined over the
nodes of a general graph rather than a grid. Multiple definitions of graph convo-
lution have been proposed to capture salient properties of classical convolution,
notably localization and weight reuse. In this paper, we use a modified version
of the Edge-Conditioned Convolution (ECC) [12] to address vanishing gradient
and over-parameterization. In particular, we use some of the approximations
introduced in [28] in the context of image denoising.

The graph-convolutional layer has two inputs: a tensor representing a feature
vector for each point, and a graph where nodes are points and edges represent

similarities between points. The output feature vector hl+1
i ∈ RF l

of point i at
layer l is computed by performing a weighted aggregation over its neighborhood
N l

i as defined by the graph:

hl+1
i = Wlhl

i +
∑
j∈N l

i

γl,j→i

∑r
t=1 ω

j→i
t φj→i

t ψj→iT

t hl
j

|N l
i |

. (1)

The weights include a self-loop matrix Wl ∈ RF l+1×F l

which is shared among

all points. The other weights in the aggregation, i.e., vectors φj→i
t ∈ RF l+1

,

ψj→i
t ∈ RF l

and scalar ωj→i
t are computed as functions of the difference between

the feature vector of point i and point j, i.e., φj→i
t ,ψj→i

t , ωj→i
t = F

(
hl
i − hl

j

)
.

This function is implemented as a multilayer perceptron (MLP) with two layers,
where the final fully-connected layer can be approximated by means of a stack of
circulant matrices since the number of free parameters would otherwise be very
large. The value r is a hyperparameter setting the maximum rank of the aggre-

gation weight matrix obtained by explicitly computing
∑r

t=1 ω
j→i
t φj→i

t ψj→iT

t ,
again to reduce the number of parameters and memory requirements of the ag-
gregation operation. The parameter γl,j→i is a scalar edge attention term which
exponentially depends on the Euclidean distance between feature vectors across
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an edge:

γl,j→i = exp
(
−‖hl

i − hl
j‖22/δ

)
, (2)

being δ a decay hyperparameter.

This definition of graph convolution has some advantages over alternative
definitions such as GraphSAGE [29], FeastNet [30] or DGCNN [13]. In particular,
the aggregation weights are functions of feature differences making the filtering
operation performed by the graph-convolutional layer adaptive. Moreover, since
the function is implemented as an MLP, it can be more general than a fixed
function with some learnable parameters.

The graph is constructed by searching for the k-nearest neighbors of each
point in terms of Euclidean distance between their feature vectors. To limit
complexity, a search area of predefined size, centered around the point, is defined,
e.g., as a fixed number of neighbors in the noisy 3D space (see Fig. 4 for a visual
representation of the search area and feature space neighborhoods).

We remark that GPDNet is fully-convolutional thanks to the graph convo-
lution operation. By fully-convolutional we mean that the output feature vector
of each point at a given layer is obtained as a multi-point aggregation of the
feature vectors of neighboring points in the previous layer, thus building com-
plex hierarchies of aggregations. This is in contrast with PointCleanNet [16]
which works by processing each patch independently to estimate the denoised
version of the central point. That approach does not create hierarchies of fea-
tures obtained by successive multi-point aggregations, as in a classical CNN.
The graph-convolutional structure recovers this behavior and can learn more
powerful feature spaces.

3.3 Loss functions

We consider two loss functions to train the proposed method in a supervised
setting. The first one is the mean squared error (MSE) between the denoised
point cloud x̂ and its noiseless ground truth x, i.e.:

LMSE =
1

N

N∑
i=1

‖x̂i − xi‖22 (3)

being N the number of points in the point cloud. This is the most natural choice
in presence of Gaussian noise. However, it does not exploit prior knowledge about
the distribution of points. In fact, it does not use the fact that the points may
lie on a surface and therefore the tangential component of the noise is not as
relevant as the normal component.

This property can be incorporated by regularizing the MSE loss with a term
measuring the distance of the denoised point from the ground truth surface.
Such measure can be approximated by the proximity to surface metric which
computes the distance between the denoised point and the closest ground truth
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point. The loss function (MSE-SP) then becomes:

LMSE−SP =
1

N

N∑
i=1

[
‖x̂i − xi‖22 + λmin

j
‖x̂i − xj‖22

]
(4)

for a regularization hyperparameter λ. Other works also considered proximity
to surface in the loss function. Notably, PointCleanNet [16] uses a loss that
combines the proximity to surface with a dual term measuring the distance
between a ground truth point and the closest denoised point. This is done to
ensure that the denoised points do not collapse into filament structures. We
found that using the MSE to enforce this property provides better results.

4 Experimental results

In this section an experimental evaluation against state-of-the-art approaches as
well as an analysis of the proposed technique is performed. Code is available1.

4.1 Experimental setting

The training and test set are created selecting post-processed subsets of ShapeNet
[31] repository. This database is composed by 3D models of 55 object categories,
each one described by a collection of meshes. Before utilization, the data has to
be sampled and normalized. First we sample 30720 uniformly distributed points
for each model, then we rescale the obtained point clouds normalizing their di-
ameter in order to ensure that data are at the same scale. More than 100000
patches of 1024 points each are randomly selected from the point clouds to create
the training set, taking point clouds from all the categories except 10 reserved
for the test set. Each patch is created by randomly selecting a point from a
point cloud and collecting its 1023 closest points. The test set is constituted by
100 point clouds taken from ten different categories: airplane, bench, car, chair,
lamp, pillow, rifle, sofa, speaker, table. We randomly select ten models from each
category and sample 30720 uniformly distributed points from each model.

GPDNet is trained for a fixed noise variance for approximately 700000 itera-
tions, each one characterized by a batch size of 16. The number of features used
for all the layers is 99, except for the first three single-point convolutional layers
where the number of features is gradually increased from 33 to 66 and finally
to 99. The Adam optimizer has been employed with a fixed learning rate equal
to 10−4. Concerning the graph-convolutional implementation, the rank r for the
low-rank approximation is set to 11, 3 circulant rows are considered for the con-
struction of the circulant matrix, and δ = 10. During testing, GPDNet takes as
input the whole point cloud and a search area is associated to each point of the
point cloud, wherein the neighbors are searched and identified. Unless otherwise
stated, 16 nearest neighbors in terms of Euclidean distances are used for graph
construction.
1 https://github.com/diegovalsesia/GPDNet
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4.2 Comparisons with state-of-the-art

In this section the proposed method is compared with state-of-the-art methods
for point cloud denoising. As described in Section 2, different categories of point
cloud denoising methods are present in the literature. In the experiments, we take
into account at least one algorithm from each category. APSS [3] and RIMLS [2]
are well-known MLS-based surface fitting methods and they were tested using
the MeshLab software [32]. AWLOP [5] is another surface fitting method and it
was implemented using the software released by the authors. MRPCA [20] is a
sparsity-based method and it was implemented using the code provided by the
authors. GLR [21] is one of the most promising works belonging to the graph-
based category and it was implemented using the code provided by the authors.
PointCleanNet (PCN) [16] is one of the most recent learning-based methods and
its code is publicly available. In order to ensure a fair comparison, PointCleanNet
was retrained with additive Gaussian noise at a specific standard deviation,
instead of using the blind model released by the authors. We also include a
modified version of DGCNN [13] as an additional baseline. This modified version
replaces the segmentation head with a single-point convolution to regress the
point displacement.

As metric to evaluate the performance of the proposed method, we compute
the Chamfer measure, also called Cloud-to-Cloud (C2C) distance. This metric is
widely utilized in point cloud denoising, because it computes an average distance
of the denoised points from the original surface. First, the mean distance between
each denoised point and its closest ground truth point is computed, then the one
between each ground truth point and its closest denoised point. The Chamfer
measure is then their average:

C2C =
1

2N

[
N∑
i=1

min
j
‖x̂i − xj‖22 +

N∑
j=1

min
i
‖x̂i − xj‖22

]
. (5)

The results of the experiments at different noise levels are reported in Table 1.
As described in Sec. 3.3, in the proposed network we consider two different loss
functions obtaining two versions of the proposed method, namely GPDNet MSE
and GPDNet MSE-SP. It is clearly visible that both versions of the proposed
method significantly outperform state-of-the-art methods, especially at medium
and high levels of noise, as shown in Table 1 with σ = 0.015 and σ = 0.02.
Instead, at low noise level the other algorithms become more competitive and
the performance gap decreases, but the proposed method still obtains the best
results in the majority of the categories. This can be explained by the fact that
most of the other methods involves surface reconstruction or normal estimation,
operations that cannot be computed with sufficient accuracy at high levels of
noise. Instead, the proposed method directly estimates the denoised point cloud.
In addition, it can be observed from Table 1 that the GPDNet MSE-SP version
is particularly effective at high levels of noise, outperforming GPDNet MSE in
almost all the categories. This behavior can be explained by the regularizing
effect of the surface distance component of the loss, which is especially useful at
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Table 1. Chamfer measure (×10−6), 16-NN, N=Noisy.

Class N DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPD GPD
[13] [3] [2] [5] [20] [21] [16] MSE MSE-SP

σ = 0.01

airp. 50 44.82 28.22 39.73 31.27 28.19 19.56 26.36 17.22 17.58

bench 49 38.70 26.97 32.76 34.08 32.93 20.43 27.64 19.33 19.80

car 64 60.47 47.73 55.56 54.21 44.33 42.22 75.34 38.09 38.14

chair 61 59.69 37.31 45.65 47.91 38.41 34.98 55.10 29.50 29.69

lamp 60 52.54 24.57 34.02 35.23 31.51 19.67 20.58 16.17 17.15

pill. 70 64.28 15.64 21.23 46.36 23.95 17.59 21.07 17.11 19.04

rifle 39 26.99 36.01 49.37 27.79 23.49 15.84 15.09 14.45 14.00

sofa 70 65.05 22.27 28.04 53.08 32.14 30.88 43.36 25.87 27.21

speak. 74 68.72 26.50 30.19 58.92 47.57 40.78 76.09 34.87 35.81

table 56 50.17 27.45 32.63 41.26 34.78 27.12 43.02 24.27 24.64

σ = 0.015

airp. 98 84.40 86.42 106.33 73.32 67.39 36.76 35.27 28.47 27.62

bench 95 64.76 75.51 91.93 82.04 70.05 32.19 30.10 28.72 26.96

car 102 93.43 72.56 103.52 93.38 69.88 55.92 92.23 52.92 51.77

chair 105 94.4 5 81.47 104.38 92.47 73.45 48.62 69.18 46.28 43.73

lamp 121 112.06 65.79 82.40 88.78 77.09 39.93 30.59 27.37 28.60

pill. 133 113.32 22.74 42.54 112.54 73.67 31.38 29.02 23.32 27.25

rifle 80 61.04 92.14 110.51 69.35 55.65 31.81 21.45 28.43 22.48

sofa 121 99.63 42.80 69.92 107.58 72.62 51.12 61.15 40.10 42.04

speak. 123 114.12 46.45 58.28 110.29 77.95 53.75 87.68 49.20 49.57

table 104 84.95 62.64 78.21 89.33 70.87 37.94 43.88 36.06 33.89

σ = 0.02

airp. 162 127.44 175.68 186.24 145.94 123.71 90.55 74.17 45.96 42.30

bench 162 99.36 166.85 182.42 157.29 127.51 83.99 90.34 41.24 36.77

car 149 113.94 141.69 167.78 145.51 109.49 77.56 160.08 72.06 67.43

chair 163 132.91 160.01 155.38 158.12 122.70 79.85 145.56 67.91 60.16

lamp 204 153.02 178.08 198.22 187.31 146.41 109.24 85.31 45.21 44.60

pill. 216 190.32 164.83 196.53 206.14 150.65 85.86 92.84 34.47 38.58

rifle 144 131.91 195.68 176.07 144.22 105.87 89.19 71.57 43.07 29.55

sofa 184 155.51 166.34 190.91 178.93 133.98 89.31 144.72 62.58 65.06

speak. 186 136.72 138.80 162.34 180.45 126.17 84.37 160.26 66.57 63.40

table 168 115.00 171.25 179.81 162.36 125.72 78.06 102.17 50.47 44.80
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Table 2. Unoriented normal angle error (degrees), 16-NN.

σ DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPDNet GPDNet
[13] [3] [2] [5] [20] [21] [16] MSE MSE-SP

0.01 30.83 22.60 24.52 29.79 31.40 21.90 26.85 20.11 22.33

0.015 32.52 31.83 37.35 32.17 39.97 25.99 27.54 21.16 24.46

0.02 32.31 42.42 45.86 33.41 42.45 31.30 28.65 22.78 27.06

high noise variance due to the fact that it can incorporate more prior knowledge
about the data. The performance difference between the two variants decreases
at low noise levels. It is worth noting that DGCNN shows poor performance for
the reasons explained in Sec. 2, being originally designed for classification or seg-
mentation. This is in line with the results presented in the PointCleanNet paper
[16] where the authors also show the poor denoising performance of DGCNN,
and highlights the importance of the design in this paper, which is tailored to
the denosing task.

We also consider another metric for a quantitative assessment of the denoised
point clouds. In particular, we assess whether an off-the-shelf algorithm for sur-
face normal estimation can produce more accurate normals when provided with
point clouds denoised by the proposed method. Since surface normals are widely
used in many applications, we believe that measuring their quality when ex-
tracted from the denoised data is a relevant metric for the characterization of
a denoiser. In this experiment we consider a different test set, composed of 5
well-known point clouds: Armadillo, Bunny, Column, Galera and Tortuga. The
change of dataset is motivated by the availability of ground truth normals for
these point clouds. For every denoising method considered in the comparison, we
compute the unoriented normal vector of each point in the denoised point cloud.
The standard algorithm employed for the normal estimation is the built-in MAT-
LAB function, which is based on principal component analysis. We compute the
unoriented normal angle error (UNAE) as

UNAE =
1

N

N∑
i=1

arcos

[
1− 1

2
min

(
‖n̂i∗ − ni‖22, ‖n̂i∗ + ni‖22

)]
, (6)

where ni is the groud-truth normal vector at xi and n̂i∗ is the estimated normal
vector at the denoised point closest to xi. Table 2 reports the average error across
the five test point clouds. A minimum error of 6.44 degrees is measured since the
MATLAB algorithm introduces a non-zero estimation error in the computation
of the normals, as can be seen from the first column of Table 2. The error on
the noisy data is 31.13, 32.77 and 33.77 degrees respectively. It can be observed
that the proposed denoising method, in particular the version with only MSE
as loss function, increases the accuracy of the normal estimation, outperforming
the state-of-the-art at each noise level considered. It is also interesting to notice
that learning-based methods are more stable to noise than model-based methods
as their performance degrades more gracefully for increasing noise variance.
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Fig. 2. Denosing results for σ = 0.015. Color represents distance to surface (red is high,
blue is low). Top left to bottom right: clean point cloud, DGCNN (RMSD = 0.0091),
APSS (0.0123), RIMLS (0.0127), AWLOP (0.0106), MRPCA (0.0096), GLR (0.0070),
PointCleanNet (0.0065), GPDNet MSE (0.0060), GPDNet MSE-SP (0.0062).

Fig. 2 shows qualitative results at a medium noise level by presenting the
denoised point cloud for each method. The surface distance of each point is
visualized in the figure to understand the position of the denoised points with
respect to the ground truth. The root mean square value of the surface distance
(RMSD) can be computed as:

RMSD =

√√√√ 1

N

N∑
i=1

min
j
‖x̂i − xj‖22. (7)

It can be seen that on average both versions of our method provide lower points-
surface distance and that the shape of the reconstructed point cloud is more
similar to the original one. Fig. 3 shows another qualitative comparison, display-
ing the unoriented normal estimation error for each denoised point. It can be
seen that GPDNet, especially the MSE variant, provides lower normal estimation
errors, highlighting the higher quality of the denoised point cloud.

4.3 Ablation studies

Table 3. Fixed vs. Dynamic graph, σ = 0.015, 8-NN.

GPDNet MSE GPDNet MSE-SP
Dynamic Fixed Dynamic Fixed

C2C (×10−6) 35.68 37.00 36.99 38.45

UNAE (degrees) 23.56 23.75 26.29 26.65

We study the behavior of GPDNet in terms of a few design choices. In partic-
ular, we first investigate the impact of dynamic graph computation, i.e., updating
the graph from the hidden feature space as in Fig. 1, as opposed to a fixed graph
construction where neighbors are identified in the noisy 3D space and used for all
graph-convolutional layers. Table 3 shows that dynamic graph update provides
improved performance thanks to refined neighbor selection.
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Fig. 3. Denosing results for σ = 0.015. Color is per-point UNAE (red is high, blue is
low). Top left to bottom right: clean point cloud (UNAE = 3.75◦), DGCNN (29.73◦),
APSS (26.29◦), RIMLS (33.63◦), AWLOP (29.18◦), MRPCA (37.50◦), GLR (22.08◦),
PointCleanNet (23.63◦), GPDNet MSE (16.62◦), GPDNet MSE-SP (23.11◦).

We also study the impact of neighborhood size on the overall performance.
Selecting a larger number of neighbors for graph convolution increases the size
of the receptive field and can help denoise smooth areas in the point cloud by
capturing more context, at the price of losing some localization and increased
computational complexity. This is related to results on image denoising [33],
where it is known that the optimal size of the receptive field depends on the noise
variance. Table 4 shows that increasing the number of neighbors is beneficial, up
to a saturation point. We also see that the impact of a larger receptive field is
more significant for the GPDNet MSE-SP variant.

Table 4. Number of neighbors.

C2C (×10−6)

4-NN 8-NN 16-NN 24-NN

σ = 0.01
GPDNet MSE 28.27 24.43 23.69 23.84
GPDNet MSE-SP 30.38 25.54 24.31 24.44

σ = 0.015
GPDNet MSE 40.46 35.68 36.09 36.67
GPDNet MSE-SP 46.05 36.99 35.39 35.80

σ = 0.02
GPDNet MSE 58.88 50.34 52.96 55.45
GPDNet MSE-SP 64.63 51.82 49.26 50.43

UNAE (degrees)

σ = 0.01
GPDNet MSE 27.22 22.51 20.11 20.89
GPDNet MSE-SP 29.04 24.10 22.33 22.16

σ = 0.015
GPDNet MSE 28.03 23.56 21.16 21.18
GPDNet MSE-SP 31.31 26.29 24.46 23.80

σ = 0.02
GPDNet MSE 31.09 25.67 22.78 22.98
GPDNet MSE-SP 32.00 28.81 27.06 26.92
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4.4 Feature analysis

Fig. 4. Receptive field (green) and search area (black) of a point (red) for the output
of the three graph-convolutional layers of the second residual block of the network
with respect to the input of the first graph-convolutional layer in the block. Effective
receptive field size: 16, 65, 189 points.

We analyze the characteristics of the receptive field, i.e., the set of points
whose feature vectors influence the features of a specific point, induced by the
graph convolutional layers. In Fig. 4 we show an example of the receptive field
of a single point for the output of the graph convolutional layers of a residual
block with respect to the input of the residual block. The visualization is on the
denoised point cloud. We observe that the receptive field is quite localized in the
3D space and its size increases as the number of layers increases. It is interesting
to note that, since the graph is dynamically constructed in the feature space, the
points of the receptive field are not just the spatially closest ones but they are
also among the ones with similar shape characteristics. For example, in Fig. 4
the considered point is on the lower side of the chair stretcher and all the points
of the receptive field belong to the same part of the surface.

In order to better analyze this non-local property of the receptive field we
measure its radius in the 3D space and compare it to a fixed graph construction
where the neighbors are determined by proximity in the noisy 3D space. Fig. 5
shows the radius of the receptive field of each point at the output of a residual
block with respect to the input of the residual block. The radius is evaluated as
the 90 percentile Euclidean distance in the 3D space on the clean point cloud
(90 percentile is used since the maximum might be an unstable metric). It can
be noticed that when using the dynamic graph construction the radius is only
slightly larger in the first residual block but can be significantly larger in the
second one. This can be interpreted as the feature space building and exploiting
more and more non-local features with patterns similar to those in Fig. 4.

4.5 Structured noise

In order to check if the proposed architecture can generalize beyond white Gaus-
sian noise, we train it on a simulated LiDAR dataset. We simulate scanning the
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Fig. 5. Radius of receptive field of points at the output of residual block with respect to
its input. Left: first residual block. Right: second residual block. Neighbor selection in
the noisy 3D space for fixed graph and in the feature space for dynamic graph. Radius
is measured as the 90 percentile Euclidean distance to the points in the receptive field
on the clean 3D point cloud.

Table 5. Velodyne scan structured noise, RMSD, 8-NN.

Noisy PointCleanNet GPDNet MSE GPDNet MSE-SP

0.1447 0.0966 0.0664 0.0602

Shapenet objects with a Velodyne HDL-64E scanner using the Blensor software
[34]. Two sources of noise are considered for the acquisition process: a laser dis-
tance bias with Gaussian distribution and a per-ray Gaussian noise. We set both
distributions to be zero-mean and with a standard deviation equal to 1% of the
longest side of the object bounding box. We also retrained PointCleanNet on
the simulated data for comparison with a state-of-the-art model. Table 5 shows
that the results follow those on white Gaussian noise, with the proposed method
improving over PointCleanNet. RMSD is used as metric instead of the Chamfer
measure since it is better suited to when points are not uniformly distributed.

5 Conclusions

In this paper, we have presented a new graph-convolutional neural network tar-
geted for point cloud denoising. Thanks to the graph-convolutional layers, the
proposed architecture is fully convolutional and can learn hierarchies of features,
showing a behaviour similar to standard CNNs. The experimental results show
that the proposed method provides a significant improvement over state-of-the-
art techniques. In particular, the proposed method is robust to high level of noise
and structured noise distributions, such as those observed in real LiDAR scans.
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