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Software maintainability is a crucial property of software projects. It can be defined as the ease with which a software system or
component can be modified to be corrected, improved, or adapted to its environment. 'e software engineering literature
proposes many models and metrics to predict the maintainability of a software project statically. However, there is no common
accordance with the most dependable metrics or metric suites to evaluate such nonfunctional property. 'e goals of the present
manuscript are as follows: (i) providing an overview of the most popular maintainability metrics according to the related lit-
erature; (ii) finding what tools are available to evaluate software maintainability; and (iii) linking the most popular metrics with the
available tools and the most common programming languages. To this end, we performed a systematic literature review, following
Kitchenham’s SLR guidelines, on the most relevant scientific digital libraries. 'e SLR outcome provided us with 174 software
metrics, among which we identified a set of 15 most commonly mentioned ones, and 19 metric computation tools available to
practitioners. We found optimal sets of at most five tools to cover all the most commonly mentioned metrics. 'e results also
highlight missing tool coverage for somemetrics on commonly used programming languages andminimal coverage of metrics for
newer or less popular programming languages. We consider these results valuable for researchers and practitioners who want to
find the best selection of tools to evaluate the maintainability of their projects or to bridge the discussed coverage gaps for newer
programming languages.

1. Introduction

Nowadays, software security and resilience have become
increasingly important, given how pervasive the software is.
Effective tools and programming languages can

(i) discover mistakes earlier
(ii) reduce the odds of their occurrence
(iii) make a large class of common errors impossible by

restricting at compile time what the programmer
can do

Several best practices are consolidated in software en-
gineering, e.g., continuous integration, testing with code
coverage measurement, and language sanitization. All these
techniques allow the application of code analysis tools au-
tomatically, which can provide a significant enhancement of

the source code quality and allow software developers to
efficiently detect vulnerabilities and faults [1]. However, the
lack of comprehensive tooling may render it challenging to
apply the same code analysis strategies to software projects
developed with different languages or for different domains.

'e literature defines software maintainability as the ease
with which a software system or component can be modified
to correct faults, improve performance or other attributes, or
adapt to a changing environment [2]. 'us, maintainability
is a highly significant factor in the economic success of
software products. Several studies have described models
and frameworks, based on software metrics, to predict or
infer the maintainability of a software project [3–5].
However, although many different metrics have been pro-
posed by the scientific literature over the course of the last 40
years, the available models are very language- and domain-
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specific, and there is still no accordance in the industry and
academia about a universal set of metrics to adopt to
evaluate software maintainability [6].

'is work aims at answering the primary need of
identifying evaluation frameworks for different program-
ming languages, either affirmed or newly emerged, e.g., the
Rust programming language, developed byMozilla Research
as a language similar in characteristics to C++, but with
better code maintainability, memory safety, and perfor-
mance [7, 8].

'us, the first goal of this paper is to find which are the
most commonly mentioned metrics in the state-of-the-art
literature. We focused on static metrics since the analysis of
dynamic metrics (i.e., metrics collected during the execution
of adequately instrumented software [9]) was out of the
scope of this work.

'e second goal of the paper is to determine which tools
are more commonly used in the literature to calculate source
code metrics. Based on the mostly used tools, we then define
an optimal selections able to compute the most popular
metrics for a set of programming languages.

To pursue both goals we

(i) applied the systematic literature review (SLR)
methodology on a set of scientific libraries

(ii) performed a thorough analysis of all the primary
studies, available in the literature, about the topic of
software metrics for maintainability

Hence, this manuscript provides the following contri-
butions to researchers and practitioners:

(i) 'e definition of the most mentioned metrics that
can be used to measure software maintainability for
software projects

(ii) Details about closed-source and open-source tools
that can be leveraged by practitioners to evaluate the
quality of their software projects

(iii) Optimal sets of open-source tools that can be lev-
eraged to

investigate the computation of software metrics for
maintainability
adopt them in evaluation frameworks
adapt them to other programming languages that
are currently not supported

'e remainder of the manuscript is structured as follows:

(i) Section 2 describes the approach we adopted to
conduct our SLR

(ii) Section 3 presents a discussion of the results ob-
tained by applying such approach

(iii) Section 4 discusses the threats to the validity of the
present study

(iv) Section 5 provides a comparison of this study with
existing related work in the literature

(v) Section 6 concludes the paper and provides direc-
tions for future research

2. Research Method

In this section, we outline the method that we utilized to
realize this study. We performed a systematic literature
review (from now on, SLR), following the guidelines pro-
vided by Barbara and Charters [10] to structure the work and
report it in an organized and replicable manner.

An SLR is considered one of the key research meth-
odologies of evidence-based software engineering (EBSE)
[11]. 'e methodology has gained significant attention from
software engineering researchers in recent years [12]. SLRs
all include three fundamental phases: (i) planning the review
(which includes specifying its goals and research questions);
(ii) conducting the review (which includes querying article
repositories, selecting the studies, and performing data
extraction); and (iii) reporting the review.

All those steps have been undertaken during this re-
search and are detailed in the following sections of this
paper.

2.1. Planning. According to Barbara and Charters guide-
lines, the planning phase of an SLR involves the identifi-
cation of the need for the review (hence the definition of its
goals), the definition of the research questions that will guide
the review, and the development of the review protocol we
will use.

2.1.1. Goals. 'e need for the review, as said in the intro-
duction section, came from the need to improve the software
maintainability, in terms of clarity of its source code, while
implementing complex algorithms. Our primary objective
was to identify a dependable set of metrics widely used in the
literature and computed for software usage with available
tools.

'e objectives of our research are defined by using the
Goal-Question-Metric paradigm by van Solingen et al. [13].
Specifically, we based our research on the following goals:

(i) Goal 1: have an overview of the most used metrics in
the literature in the last few years

(ii) Goal 2: find what tools have been used in (or de-
scribed by) the literature about maintainability
metrics

(iii) Goal 3: find a mapping between the most common
metrics and the tools able to compute them

2.1.2. Research Questions. Based on the goals defined above,
our study entailed answering the research questions defined
in the following:

(i) RQ1.1: what are the metrics used to evaluate code
maintainability available in the literature?
Our aim for this research question is to determine
what metrics are present in the literature and how
popular they are in manuscripts about code
maintainability.
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(ii) RQ1.2: which of the metrics we found are the most
popular in the literature?
'is research question aims at characterizing the
different metrics obtained from answering RQ1.1
based on their popularity and adoption.

(iii) RQ2.1: what tools are available to perform code
evaluation?
'e expected result of this research question is a list
of tools, both closed source and open source, along
with the metrics they can calculate.

(iv) RQ2.2: what is the ideal selection of tools able to
apply the most popular metrics for the most sup-
ported programming languages?
'is research question entails measuring the cov-
erage provided by the set of the most popular
metrics for each language and providing the optimal
set of tools that can compute those metrics.

2.1.3. Selected Digital Libraries. 'e search strategy involves
the selection of the search resources and the identification of
the search terms. For this SLR, we used the following digital
libraries:

(i) ACM Digital Library
(ii) IEEE Xplore
(iii) Scopus
(iv) Web of Science

2.1.4. Search Strings. 'e formulation of the search strings is
crucial for the definition of the search strategy of the SLR.
According to the guidelines defined by Kitchenham et al.,
the first operation in defining the search string involved an
analysis of the main keywords used in the RQs, their syn-
onyms, and other possible spellings of such words.

In this phase, all the researchers collaboratively selected
several pilot studies. 'e selected pilot studies are presented
in Table 1 and are related to the target research domain.

'ese studies are selected to be used to verify the
goodness of the research queries: the researchers should
review the queries if the pilot studies are not present after the
refining phase.

'e starting keywords identified were software, main-
tainability, and metrics. 'e search string “software main-
tainability metric” was hence used to perform the first search
on the selected digital libraries. Our results include articles
published between 2000 and 2019.

'is first search pointed out that adding the code syn-
onym of the keyword software added a large numbers of
papers to the results.

Also, the following keywords were excluded from the
search to reduce the number of unfitting papers from the
results:

(i) Defect and fault, to avoid considering manuscripts
more related to the topic of verification and vali-
dation, error-proneness, and software reliability
prediction, than to code maintainability

(ii) Co-change, to avoid considering manuscripts more
related to the topic of code evolution

(iii) Policy-driven and design, to avoid considering
manuscripts more related to the definition and
usage of metrics used to design software, instead of
evaluating existing code

Table 2 reports the search queries before and after ex-
cluding the keywords listed above, for each of the chosen
digital libraries.

2.1.5. Inclusion and Exclusion Criteria. 'e final phase of the
study selection uses the studies obtained by applying the
final search queries detailed below.

'e following are the inclusion criteria used for the study
selection:

IC1: studies written in a language comprehensible by
the authors
IC2: studies presenting a new metric accurately
IC3: studies that present, analyze, or compare known
metrics or tools
IC4: detailed primary studies

On the other hand, in the following are defined the
exclusion criteria:

EC1: studies written in a language not directly com-
prehensible by the authors, i.e., not written in English,
Italian, Spanish, or Portuguese
EC2: studies that present a novel metric, but not do not
describe it accurately
EC3: studies that do not describe or use metrics or tools
EC4: secondary studies (e.g., systematic literature re-
views, surveys, and mappings)

2.2. Conducting. After defining the review protocol in the
planning phase, the conducting phase involves its actual
application, the selection of papers by application of the
search strategy, and the extraction of relevant data from the
selected primary studies.

2.2.1. Study Search. 'is phase consisted of gathering all the
studies by applying the search strings formulated and dis-
cussed in Section 2.1.4 to the selected digital libraries. To this
end, we leveraged the Publish or Perish (PoP) tool [17]. To aid
the replicability of the study, we report that we performed
the last search iterations at the end of October 2019. After the
application of the queries and the removal of the duplicate
papers on the four considered digital libraries, 801 unique
papers were gathered (see Table 3). 'e result of this phase is
a list of possible papers that must be subject to the appli-
cation of exclusion and inclusion criteria. 'is action allows
having a final verdict for their selection as primary studies
for our SLR. We exported the mined papers in a CSV file
with basic information about each extracted manuscript.

Scientific Programming 3



2.2.2. Study Selection. 'e authors of this SLR carried the
paper selection process independently. To analyze the pa-
pers, we used a 5-point Likert scale, instead of dividing them
between the fitting and unfitting. We performed the fol-
lowing assignation:

(i) One point to the papers that matched exclusion
criteria and did not match any inclusion criteria

(ii) Two points to papers that matched some exclusion
criteria and some inclusion criteria

(iii) 'ree points to papers that did not match any
criteria (neither exclusion or inclusion)

(iv) Four points to papers that matched some, but not
all, inclusion criteria

(v) Five points to papers that matched all inclusion
criteria

We analyzed the studies in two different steps: first, the
title and abstract for finding immediate compliance of the
paper to the inclusion and exclusion criteria. For papers that
received 3 points after reading the title and abstract, the full
text was read, with particular attention to possible usage or
definition or metrics throughout the body of the article. At
the end of the second read, none of the uncertain studies
were evaluated as fitting with our research needs, and hence,
no other primary study was added to our final pool.

During this phase, we also applied the process of
snowballing. Snowballing refers to using the reference list of
the included papers to identify additional papers [18]. 'e
application of snowballing, for this specific SLR, did not lead
to any additional paper to take into consideration.

2.2.3. Data Extraction. In this phase, we read each identified
primary studies again, to mine relevant data for addressing
the formulated RQs. We have created a spreadsheet form to
be compiled for each of the considered papers, and that
contained the data of interest subdivided by the RQ they
concurred to answer. 'e data extraction phase, again, was
performed by all the authors of the papers in an independent
manner.

For each paper, we collected some basic context
information:

(i) Year of publication
(ii) Number of times the paper was viewed fully and

number of citations
(iii) Authors and location of the authors

To answer RQ1.1, we needed to inspect the set of primary
studies to understand which metrics they defined or men-
tioned. Hence, for each paper, we extracted the following
data:

Table 2: Search strings for the selected digital libraries.

Library Before refinement After refinement
ACM
Digital
Library

+(“software”
“code”)+(metrics)+(maintainability)

+(“software” “code”)+(metrics)+(maintainability)-(defect)-
(fault)-(co-change)-(policy-driven)

IEEE Xplore (((code OR software) AND metrics) AND
maintainability)

((((((((code OR software) ANDmetrics) ANDmaintainability) NOTdefect)
NOT fault) NOT co-change) NOT policy-driven) NOT design)

Scopus (code OR software) AND metrics AND
maintainability

code OR software ANDmetrics ANDmaintainability ANDNOTfault AND
NOT defect AND NOT co-change AND NOT policy-driven AND NOT

design
Web of
Science

(code OR software) AND metrics AND
maintainability

code OR software ANDmetrics ANDmaintainability NOTfault NOTdefect
NOT co-change NOT policy-driven NOT design

Table 3: Number of manuscripts collected from the selected digital libraries.

Library Before refinement After refinement Without duplicates
ACM Digital Library 497 152 —
IEEE Xplore 443 215 —
Scopus 848 381 —
Web of Science 599 300 —
Total 2387 1048 801

Table 1: Pilot studies.

ID Authors Title Year
[14] Ostberg and Wagner On automatically collectable metrics for software maintainability evaluation 2014
[15] Ludwig et al. Compiling static software metrics for reliability and maintainability from GitHub repositories 2017
[5] Kaur et al. Software maintainability prediction by data mining of software code metrics 2014
[6] Sarwar et al. A comparative study of MI tools: defining the roadmap to MI tool standardization 2008
[16] Liu et al. Evaluate how cyclomatic complexity changes in the context of software evolution 2018

4 Scientific Programming



(i) 'e list of metrics and metric suites utilized in each
paper

(ii) 'e programming languages and the family of
programming language (e.g., C-like and object ori-
ented) for which the used or proposedmetrics can be
computed

To answer RQ1.2, we wanted to give an additional
classification of the metrics, other than the number of
mentions. We took in consideration the opinion of the
authors on each of the metrics studied in their papers. 'is
allowed us to evaluate if a metric is considered useful or not
in most papers. 'is analysis allowed us to take into con-
sideration the popularity of the metrics by counting the
difference between positive and negative citations by
authors.

To answer RQ2.1, we needed to inspect the primary
studies to understand which tools they presented or used to
compute the metrics that were adopted. For each paper that
mentioned tools, we hence gathered the following
information:

(i) 'e list of tools described, used, or cited by each
paper

(ii) When possible, the list of metrics that can be cal-
culated by each tool

(iii) 'e list of programming languages on which the
tool can operate

(iv) 'e type of the tool, i.e., the fact that the tool is open
source or not

Finally, to answer RQ2.2, we had to correlate the in-
formation gathered for the previous research questions. We
achieved this by finding the tool or tools covering themetrics
that proved to be the most popular among selected primary
studies.

2.2.4. Data Synthesis and Reporting. In this phase, we
elaborated the data extracted and synthesized previously to
obtain a response for each of the research questions we had.
Having all the data we needed, in the shape of a form per
paper analyzed, we proceeded with the data synthesis.

We gathered all the metric suites and the metrics we
found in tables, keeping track of the papers mentioning
them. We computed aggregate measures on the popularity
value assigned to each metric.

3. Results

'is section describes the results obtained to answer the
research questions described in Section 2.1.2. 'e appen-
dices of this paper report the complete tables with the
extracted data to improve the readability of this manuscript.

At the end of this phase, we collected a final set of 43
primary studies for the subsequent phase of our SLR. Fig-
ure 1 reports the distribution over the considered time frame
of the selected papers, and Figure 2 indicates the distribution
of authors of related studies over the world. We report the
selected papers in Table 4. 'e statistic seems to suggest that

the interest in software maintainability metrics had grown
since 2008 and has increased in the latest years since 2016
(see barplot in Figure 1).

3.1. RQ1.1:AvailableMetrics. 'e papers selected as primary
studies for our SLR cited a total of 174 different metrics. We
report all the metrics in Table 5 in the appendix. 'e table
reports

(i) the metric suite (empty if the metric is not part of
any specific suite)

(ii) the metric name (acronym, if existing, and a full
explanation, if available)

(iii) the list of papers that mention the metric. 'e last
two columns, respectively, report

(iv) the total number of papers mentioning the metric
(i.e., the number of studies in the third column)

(v) the score we gave to each metric

We computed the score in the following way:

(i) +1 if the study used (or defined) the metric or the
authors of the study expressed a positive opinion
about it

(ii) −1 if the paper criticized the metric

By examining the last two columns of the metrics table, it
can be seen that the last two columns are most of the times
identical. 'is is because the majority of the papers we found
just utilize the metrics without commenting them, neither
positively or negatively.

It is immediately evident that some suites andmetrics are
taken into considerationmuchmore often than others. More
than 75% of the metrics are mentioned by just a single paper.
'e boxplots in Figure 3 show, in red, the distribution of the
total number of mentions and the score for all the considered
metrics. It is evident, from the boxplots, that the difference
between the two distribution is rather limited, confirming
the vast majority of neutral or positive opinions when the
metrics are referenced in a research paper. Since only 24.7%
of the metrics are used by more than one of our selected
studies, the median values of both the measured indicators,
“TOT” and “Score”, are equal to 1 if the whole set of metrics
is considered.

In general, however, it is worth underlining that a low
score does not necessarily mean that the metric is of lesser
quality but instead that it is less known in the related lit-
erature. Another interesting thing to point out is that we did
not find a particular metric that received many negative
scores.

3.2. RQ1.2: Most Mentioned Metrics. Since our analysis was
aimed at finding the most popular metrics, to extract a set of
them to be declined to different languages, we were inter-
ested in finding metrics mentioned by multiple papers. In
Table 6 we report metrics that were used by at least two
papers among the selected primary studies. 'is operation
allowed us to reduce the noise caused by metrics that were
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mentioned only once (possibly in the papers where they were
originally defined). After applying this filter, only 43 metrics
(the 24.7% of the original set of 174) remained. 'e boxplots
in Figure 3 show, in green, the distributions of the total
number of mentions and the measured score for this set of
metrics. On these distributions, the rounded median value
for the total number of mention is 3, and for the score is 3.

Since our final aim in answering RQ1.2 was to find a set
of most popular metrics for the maintainability of source
code, we resorted on selecting, on the complete set of 43
metrics mentioned in at least two papers, those whose score
was above the median.

With this additional filtering, we obtained a set of 13
metrics and 2 metric suites, which are reported in Table 7.
Two suites were included in their completeness (namely, the
Chidamber and Kemerer suite and the Halstead suite) be-
cause all of their metrics had a number of total mentions and
score higher or equal to the median. For them, the table
reports the lower number of mentions and score among
those of the contained metrics. Instead, for the Li and Henry
suite, only the MPC (message passing coupling) metric
obtained a number of mention and score above the median
and hence was included in our set of selected most popular

metrics. A brief description of the selected most popular
metrics is reported in the following. 'e metrics are listed in
alphabetical order:

(i) CC (McCabe’s Cyclomatic Complexity). It is de-
veloped by McCabe in 1976 [56] and is a metric
meant to calculate the complexity of code by ex-
amining the control flow graph of the program, i.e.,
counting its independent execution paths based on
the flow graph [14]. 'e assumption is that the
complexity of the code is correlated to the number
of execution paths of its flow graph. It is also
proved that there exists a linear correlation be-
tween the CC and the LOCmetrics, as found by Jay
and Hale. Such relationship is independent from
the used programming language and code para-
digms [57].
Each node in the flow graph corresponds to a block
of code in the program where the flow is se-
quential; the arcs correspond to branches that can
be taken by the control flow during the execution
of the program. Based on those building blocks, the
CC of a source code is defined as M� e n+ 2p
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where n is the number of nodes of the graph, e is
the number of edges of the graph, and p is the
number of connected components, i.e., the num-
ber of exits from the program logic [6].

(ii) CE (Efferent Coupling). It is a metric that measures
how many data types the analyzed class utilizes,
apart from itself. 'e metric takes into consider-
ation the known type inheritance, the interfaces
implemented by the class, the types of the

parameters of its methods, the types of the declared
attributes, and the types of the used exceptions.

(iii) CHANGE (Number of Lines Changed in the Class).
It is a change metric, which measures how many
lines of code are changed between two versions of
the same class of code. 'is metric is hence not
defined on a single version of the software project,
but it is tailored to analyze the evolution of the
source code. 'e assumption between the usage of

Table 4: Selected studies.

ID Authors Title Year Score
[19] K´ad´ar et al. A code refactoring dataset and its assessment regarding software maintainability 2016 4
[6] Sarwar et al. A comparative study of MI tools: defining the roadmap to MI tools standardization 2008 4
[9] Tahir and Ahmad An AOP-based approach for collecting software maintainability dynamic metrics 2010 4
[20] Gil et al. An empirical investigation of changes in some software properties over time 2012 4

[21] Jain et al. An empirical investigation of evolutionary algorithm for software maintainability
prediction 2016 4

[22] Curtis et al. An evaluation of the internal quality of business applications: does size matter? 2011 4
[23] Chhillar and Gahlot An evolution of software metrics: a review 2017 4
[24] Tian et al. AODE for source code metrics for improved software maintainability 2008 5
[25] Kaur et al. A proposed new model for maintainability index of open-source software 2014 4
[26] Barbosa and Hirama Assessment of software maintainability evolution using C&K metrics 2013 5
[27] Misra et al. A suite of object-oriented cognitive complexity metrics 2018 5

[28] Rongviriyapanish et al. Changeability prediction model for Java class based on multiple layer perceptron neural
network 2016 4

[29] Arshad and Tjortjis Clustering software metric values extracted from C# code for maintainability assessment 2016 4
[30] Pizka Code normal forms 2005 4

[15] Ludwig et al. Compiling static software metrics for reliability and maintainability from GitHub
repositories 2017 5

[31] Mamun et al. Correlations of software code metrics: an empirical study 2017 5
[32] Alves et al. Deriving metric thresholds from benchmark data 2010 4
[33] Matsushita and Sasano Detecting code clones with gaps by function applications 2017 4
[34] Silva et al. Detecting modularity flaws of evolving code: what the history can reveal? 2010 4
[16] Liu et al. Evaluate how cyclomatic complexity changes in the context of software evolution 2018 5
[35] Ch´avez et al. How does refactoring affect internal quality attributes? a multiproject study 2017 4

[36] Ma et al. How multiple-dependency structure of classes affects their functions: a statistical
perspective 2010 4

[37] Wahler et al. Improving code maintainability: A case study on the impact of refactoring 2016 4
[38] Kaur and Singh Improving the quality of software by refactoring 2017 4
[39] Yan et al. Learning to aggregate: an automated aggregation method for software quality model 2017 4
[40] Chatzidimitriou et al. npm-miner: an infrastructure for measuring the quality of the npm registry 2018 4
[41] Bohnet and ollner Monitoring code quality and development activity by software maps 2011 4
[14] Ostberg and Wagner On automatically collectable metrics for software maintainability evaluation 2014 4
[42] Narayanan Prasanth et al. Prediction of maintainability using software complexity analysis: an extended FRT 2008 4
[43] Wang et al. Predicting object-oriented software maintainability using projection pursuit regression 2009 4
[44] Sjøberg et al. Questioning software maintenance metrics: a comparative case study 2012 5
[45] Hindle et al. Reading beside the lines: indentation as a proxy for complexity metric 2008 4
[46] Lee and Chang Reusability and maintainability metrics for object-oriented software 2000 4
[47] Sinha et al. Software complexity measurement using multiple criteria 2013 4
[5] Kaur et al. Software maintainability prediction by data mining of software code metrics 2014 5
[48] Vytovtov and Markov Source code quality classification based on software metrics 2017 4
[49] Gold et al. Spatial complexity metrics: an investigation of utility 2005 4
[50] Ludwig et al. Static software metrics for reliability and maintainability 2018 5
[51] Saboe 'e use of software quality metrics in the materiel release process experience report 2001 4
[52] Yamashita et al. Using concept mapping for maintainability assessments 2009 5

[53] 'rem et al. Using normalized compression distance to measure the evolutionary stability of software
systems 2015 4

[54] Gon¸calves et al. Using TDD for developing object-oriented software—A Case study 2015 4
[55] Jermakovics et al. Visualizing software evolution with Lagrein 2008 4
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Table 5: Metric studies (complete).

Metric suite Metric Papers using it TOT Score
— Aggregate stability [53] 1 1
— AODE, aggregating one dependence estimators [24] 1 1
Aspect-based
metrics DCP, degree of crosscutting per pointcut [23] 1 1

Aspect-based
metrics NAA, number of advices per aspect [23] 1 1

Aspect-based
metrics Number of aspects [23] 1 1

Aspect-based
metrics NPA, number of pointcuts per aspect [23] 1 1

Aspect-based
metrics RAD, response for advice [23] 1 1

— Avg CC, average cyclomatic complexity [5, 54] 2 2
— Avg. LOC per method [54] 1 1
— Bandwidth [24] 1 1
— Base classes (IFANIN) [35] 1 1
— Branching complexity (Sneed Metric) [35] 1 1
— Branch stability [53] 1 1
— Bug patterns [14] 1 1
— CA, afferent coupling [5, 21] 2 2
— CAM, cohesion among methods of a class [21] 1 1
— CBM, coupling between methods [21] 1 1

— CC, McCabe’s cyclomatic complexity [14, 24, 44, 51], [6, 16, 32, 44, 48],
[23, 29, 31, 35, 47] 14 12

— CE, efferent coupling [5, 21, 25] 3 3
— CHANGE, number changed in the class [5, 25, 26, 43] 4 4
— CHC, class coupling complexity [46] 1 1
Chidamber and
Kemerer CBO, coupling between objects [5, 14, 15, 25, 26], [21, 27, 32, 44],

[20, 28, 36, 39], [23, 29, 35, 47, 50] 18 16

Chidamber and
Kemerer DIT, depth of inheritance tree [5, 14, 26, 43, 44], [20, 21, 27, 32],

[23, 28, 29, 39], [35, 47] 15 13

Chidamber and
Kemerer LCOM, lack of cohesion in methods [5, 14, 26, 43, 44], [20, 27, 28, 32],

[23, 36, 39, 46, 47] 14 12

Chidamber and
Kemerer NOC, number of children [5, 14, 26, 43, 44], [20, 27, 32, 39],

[23, 29, 35, 47] 13 11

Chidamber and
Kemerer RFC, response for class [5, 15, 19, 26, 43], [14, 21, 27, 44],

[20, 29, 32, 39], [23, 46, 47, 50] 17 15

Chidamber and
Kemerer WMC, weighted methods per class [5, 21, 26, 43, 44], [16, 20, 27, 32],

[23, 29, 39, 47] 13 11

— CI, clone instances [19] 1 1
— CLOC, comment lines of code [5, 24, 25, 28, 44], [35] 6 6
— Clone coverage [14] 1 1
— Cocol’s metric [48] 1 1
Code smells Feature Envy (# per KLOC of code) [44] 1 1
Code smells God Class (# per KLOC of code) [44] 1 1
— Code-to-comment ratio [14, 15] 2 2
— Complexity average by class [31] 1 1
— Complexity average by file [31] 1 1
— Complexity average by function [31] 1 1
— CONS, number of constructors [5, 25] 3 1
— Coupling and cohesion [14] 1 1
— Coupling dispersion [35] 1 1
— Coupling intensity [35] 1 1
— CPC, class coupling complexity [46] 1 1
— CSA, class size (attributes) [5, 25] 2 2
— CSO, class size (operations) [5, 25] 2 2
— CSOA, class size (operations + attributes) [5, 25] 2 2
— Cyclic, number of cyclic dependencies [25] 1 1
— Cyclomatic complexity in classes [31] 1 1
— Cyclomatic complexity in functions [31] 1 1
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Table 5: Continued.

Metric suite Metric Papers using it TOT Score
— DAM, data access metric (Card Metric) [21, 47] 2 2
— Data complexity (Chapin Metric) [35] 1 1
— Dataflow [14] 1 1
— Dcy, number of dependencies [5] 1 1
— Dcy∗, number of transitive dependencies [5] 1 1
— Decisional complexity (McClure) [35] 1 1
— Divergent change [34] 1 1
— Dominator tree metrics [20] 1 1
— Dpt, number of dependents [5] 1 1
Dynamic metrics DCBO, dynamic coupling between objects [9] 1 1
Dynamic metrics MTBF, mean time between failure [9] 1 1
Dynamic metrics MTTF, the mean time to failure [9] 1 1
— ECC, external class complexity (CIC + ICP) [46] 1 1
— Essential complexity [35] 1 1
— Fan-in [35] 1 1
— Fan-out [35] 1 1
Halstead Halstead bugs (B) [5, 14, 23, 25, 48], [47] 6 4
Halstead Halstead difficulty (D) [5, 14, 25, 44, 51], [23, 47, 48] 8 6
Halstead Halstead effort (E) [5, 14, 25, 44, 51], [23, 47, 48] 8 6
Halstead Halstead length (N) [5, 14, 24, 25, 51], [23, 44, 47, 48] 9 7
Halstead Halstead vocabulary (n) [5, 14, 25, 44, 51], [23, 47, 48] 8 6
Halstead Halstead volume (V) [5, 14, 25, 44, 51], [6, 23, 44, 47, 48] 10 8
History sensitive
metrics pLOC [40] 1 1

History sensitive
metrics rdocLOC [40] 1 1

History sensitive
metrics rniLOC [40] 1 1

History sensitive
metrics rpdLOC [40] 1 1

History sensitive
metrics rpiLOC [40] 1 1

History sensitive
metrics TL [40] 1 1

— I, instability [28] 1 1
— IC, inheritance coupling [21] 1 1
— ICC, internal class complexity (CAC+CMC) [46] 1 1
— Indentation as proxy for complexity metric [44] 1 1
— Inner∗, number of inner classes [5] 1 1
— Jensen’s Nf [24] 1 1
— JLOC, JavaDoc lines of code [5, 25, 28] 3 3
— Kaur’s metric [25] 1 1
— LCOM2, lack of cohesion in methods [21, 29, 35] 3 3
— LCOM3, lack of cohesion of methods [21, 35] 2 2
— Level, level order [5] 1 1
— Level∗, level order [5] 1 1
Li and Henry
(L&H) DAC [39, 43] 2 2

Li and Henry
(L&H) DIT, depth of inheritance tree [25] 1 1

Li and Henry
(L&H) LCOM, lack of cohesion in methods [25] 1 1

Li and Henry
(L&H) MPC, message passing coupling [25, 39, 43, 46] 4 4

Li and Henry
(L&H) NOC, number of children [25] 1 1

Li and Henry
(L&H) NOM [39] 1 1

Li and Henry
(L&H) RFC, response for a class [25] 1 1
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Table 5: Continued.

Metric suite Metric Papers using it TOT Score
Li and Henry
(L&H) SIZE2 [39] 1 1

Li and Henry
(L&H) SLOC, source lines of code [25] 1 1

Li and Henry
(L&H) WMC, weighted method per class [25] 1 1

— LOC, lines of code [15, 24–26], [14, 44, 51], [6, 21, 23, 31, 32],
[35, 50] 15 11

— Logic [14] 1 1
— MC, method coupling [46] 1 1
— MFA, measure of functional abstraction [21] 1 1
— MI, maintainability index [6, 14, 25, 44, 51], [30] 6 4
Misra’s metrics AAC, average attributes per class [27] 1 1
Misra’s metrics AC, attribute complexity [27] 1 1
Misra’s metrics ACC, average class complexity [27] 1 1
Misra’s metrics ACF, average coupling factor [27] 1 1
Misra’s metrics AMC, average method complexity [27] 1 1
Misra’s metrics AMCC, average method complexity per class [27] 1 1
Misra’s metrics CLC, class complexity [27] 1 1
Misra’s metrics CC, code complexity [27] 1 1
Misra’s metrics CWC, coupling weight for a class [27] 1 1
Misra’s metrics MC, method complexity [27] 1 1
Misra’s metrics OMMIC, coupling [44] 1 1
— MOA, measure of aggregation [21, 28] 2 2
Mood’s metrics AHF, attribute hiding factor [23] 1 1
Mood’s metrics AIF, attribute inheritance factor [23] 1 1
Mood’s metrics CF, coupling factor [23] 1 1
Mood’s metrics MHF, method hiding factor [23] 1 1
Mood’s metrics MIF, method inheritance factor [23] 1 1
Mood’s metrics PF, polymorphism factor [23] 1 1
— NAA, number of attributes added [25] 1 1
Narsimhan’s
metrics AID, average interaction density [23] 1 1

Narsimhan’s
metrics IID, incoming interaction density [23] 1 1

Narsimhan’s
metrics OID, outgoing interaction density [23] 1 1

— Nesting depth [14] 1 1
— Nesting (Max Nest) [35] 1 1
— NIM, instance methods [35] 1 1
— NIV, instance variables [35] 1 1
— NOAC, number of operations added [5, 25] 2 2
— NOI, number of outgoing invocations [19] 1 1
— NOOC, number of operations overridden [5] 1 1
— NOM, number of methods [26, 28, 31, 43] 4 4

— Noncommenting lines of code (lines only containing
space, tab, and CR are ignored) [31] 1 1

— Noncommenting lines of new code [31] 1 1
— NOP, number of polymorphic methods [28] 1 1
— NOPA, number of public attributes [35] 1 1
— NPATH [32] 1 1
— NPM, number of public methods [5, 21, 28, 29] 4 4
— Number of attributes added [5] 1 1
— Number of code characters [24] 1 1

— Number of classes (including nested classes, interfaces,
enums, and annotations) [31, 35] 2 2

— Number of commands [5, 25] 2 2
— Number of comment characters [24] 1 1
— Number of directories [31] 1 1
— Number of files [31, 33] 2 2
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this metric is that if a class is continuously mod-
ified, it can be a sign that it is hardly maintainable.
Generally, three types of changes can be made to a
line of code: additions, deletions, or modifications.
In the literature, there is typically accordance about
how to count the operations of modifications,
which typically counts two times as the additions
or deletions (the modification is considered as a
deletion followed by an addition). Most of the
times, comments, and blanks are not considered in
the computation of the changed LOCs during the
evolution of software code.

(iv) C&K (Chidamber and Kemerer Suite). It is one of
the best-known sets of metrics, which was intro-
duced in 1994 [58]. 'is suite has been designed
keeping into consideration the object-oriented
approach. It is composed of 6 metrics, listed as
follows:

WMC, weighted method per class, defined in the
same way as McCabe’s WMC (weighted method
count, described below) but applied to a class, i.e.,
it gives the complexity of that particular class by

Mentions Scores
Measure

5

10

15

Set
All metrics

With 2 + mentions

Figure 3: Distributions of total number of mentions and the
measured score for the metrics.

Table 5: Continued.

Metric suite Metric Papers using it TOT Score
— Number of God Classes [34] 1 1
— Number of queries [5, 25] 2 2
— Ocmax, maximum operation complexity [25] 1 1
— OSmax, maximum operation size [25] 1 1
— Override ratio [35] 1 1
— Paths [35] 1 1
— PDcy, number of package dependencies [5, 25] 2 2
— RAM, RAM+CPU memory usage [48] 1 1
— RCI, ratio of cohesion interactions [46] 1 1
— Shotgun Surgery [34] 1 1
SM, structural
measures OMMIC, coupling [44] 1 1

SM, structural
Measures TCC, tight class cohesion [35, 44] 2 2

SM, structural
Measures WMC1, size of classes [44] 1 1

— Structure stability [53] 1 1
— Spatial complexity metrics [49] 1 1
— STAT, number of statements [5, 25, 31, 35] 4 4
— TCLOC, total comment lines of code [19] 1 1
— Test results and coverage [14] 1 1
— TLLOC, total logical lines of code [19] 1 1
— TNOS, total number of statements [19] 1 1
— Token count [23] 1 1
— Total number of characters [24] 1 1
— Version distance [53] 1 1
— Version stability [53] 1 1
— Vytovtov’s metric [48] 1 1
— Welker and Oman [25] 1 1
— WMC, McCabe’s weighted method count [14, 15, 25, 38], [28, 36, 50] 7 7

— WMCU, McCabe’s weighted method count-
unweighted [15, 50] 2 2

— WOC, weight of classes [35] 1 1

Scientific Programming 11



adding together the CC of all the methods within
that same class [58].
DIT, depth of inheritance tree, defined as the
length of the maximal path from the leaf node to

the root of the inheritance tree of the classes of the
analyzed software.
Inheritance helps to reuse the code; therefore, it
increases the maintainability. 'e side effect of

Table 6: Metrics found in the selected set of primary studies, with the number of mentions and score higher or equal to 2.

Metric suite Metric Mentioned by TOT Score
— Avg CC, average cyclomatic complexity [5, 54] 2 2
— CA, afferent coupling [5, 21] 2 2

— CC, McCabe’s cyclomatic complexity [14, 24, 51], S13, [6, 16, 32, 45, 48],
[23, 29, 31, 35, 47] 14 12

— CE, efferent coupling [5, 21, 25] 3 3
— CHANGE, number of lines changed in the class [5, 25, 26, 43] 4 4
Chidamber and
Kemerer CBO, coupling between objects [5, 14, 15, 21, 25–27, 32, 44],

[20, 23, 28, 29, 35, 36, 39, 47, 50] 18 16

Chidamber and
Kemerer DIT, depth of inheritance tree [5, 14, 26, 43], S13, [20, 21, 27, 32],

[23, 28, 29, 35, 39, 47] 15 13

Chidamber and
Kemerer LCOM, lack of cohesion in methods [5, 14, 26, 43], S13, [20, 27, 28, 32],

[23, 36, 39, 46, 47] 14 12

Chidamber and
Kemerer NOC, number of children [5, 14, 26, 43], S13, [20, 27, 32, 39], [23, 29, 35, 47] 13 11

Chidamber and
Kemerer RFC, response for class [5, 14, 15, 19, 21, 26, 27, 43, 44],

[20, 23, 29, 32, 39, 46, 47, 50] 17 15

Chidamber and
Kemerer WMC, weighted methods per class [5, 26, 43], S13, [16, 20, 21, 27, 32], [23, 29, 39, 47] 13 11

— CLOC, comment lines of code [5, 24, 25], S13, [28, 35] 6 6
— Code-to-comment ratio [14, 15] 2 2
— CSA, class size (attributes) [5, 25] 2 2
— CSO, class size (operations) [5, 25] 2 2
— CSOA, class size (operations+attributes) [5, 25] 2 2
— DAM, data access metric (card metric) [21, 47] 2 2
Halstead Halstead bugs (B) [5, 14, 23, 25, 47, 48] 6 4
Halstead Halstead difficulty (D) [5, 14, 23, 25, 45, 47, 48, 51] 8 6
Halstead Halstead effort (E) [5, 14, 23, 25, 45, 47, 48, 51] 8 6
Halstead Halstead length (N) [5, 14, 23–25, 45, 47, 48, 51] 9 7
Halstead Halstead vocabulary (n) [5, 14, 23, 25, 45, 47, 48, 51] 8 6
Halstead Halstead volume (V) [5, 14, 25, 51], S13, [6, 23, 45, 48], [47] 10 8
— JLOC, JavaDoc lines of code [5, 25, 28] 3 3
— LCOM2, lack of cohesion of methods [21, 29, 35] 3 3
— LCOM3, lack of cohesion of methods [21, 35] 2 2
Li and Henry
(L&H) DAC [39, 43] 2 2

Li and Henry
(L&H) MPC, message passing coupling [25, 39, 43, 46] 4 4

— LOC, lines of code [14, 15, 21, 24–26, 44, 51], [6, 23, 31, 32, 35, 50] 15 11
— MI, maintainability index [6, 14, 25, 30, 44, 51] 6 4
— MOA, measure of aggregation [21, 28] 2 2
— NOAC, number of operations added [5, 25] 2 2
— NOM, number of methods [26, 28, 31, 43] 4 4
— NPM, number of public methods [5, 21, 28, 29] 4 4

— Number of classes (including nested classes,
interfaces, enums, and annotations) [31, 35] 2 2

— Number of commands [5, 25] 2 2
— Number of files [31, 33] 2 2
— Number of queries [5, 25] 2 2
— PDcy, number of package dependencies [5, 25] 2 2
SM, structural
measures TCC, tight class cohesion S13, [35] 2 2

— STAT, number of statements [5, 25, 31, 35] 4 4
— WMC, McCabe’s weighted method count [14, 15, 25, 28, 36, 38, 50] 7 7

— WMCU, McCabe’s weighted method count-
unweighted [15, 50] 2 2
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inheritance is that classes deeper within the hi-
erarchy tend to have increasingly complex be-
haviour, making them difficult to maintain.
Having one, two, or even three levels of inheri-
tance can help the maintainability, but increasing
the value further is deemed detrimental.
NOC, number of children, is the number of
immediate subclasses of the analyzed class. As the
NOC increases, maintainability of the code
increases.
CBO, coupling between objects, is the number of
classes with which the analyzed class is coupled.
Two classes are considered coupled when
methods declared in one class use methods or
instance variables defined by the other class.
'us, this metric gives us an idea on how much
interlaced the classes are to each other and hence
how much influence the maintenance of a single
class has on other ones.
RFC, response for class, is defined as the set of
methods that can potentially be executed in re-
sponse to a message received by an object of that
class. Also, in this case, the greater is the returned
value, the greater is the complexity of the class.
LCOM, lack of cohesion in methods, is defined as
the subtraction between the number of method
pairs having no attributes in common, and the
number of method pairs having common attri-
butes. Several other versions of the metrics have
been provided in the literature. High values of
LCOM metric value provide a measure of the
relative disparate nature of methods in the class.

(v) CLOC (Comment Line of Code). It is the metric
which gives the number of lines of code which
contain textual comments. Empty lines of com-
ments are not counted. In contrast to the LOC
metric, the higher the value CLOC returns, the

more the comments there are in the analyzed code;
therefore, the code should be easier to understand
and to maintain.
'e literature has also proposed a metric that puts
in relation between CLOC and LOC, and it is called
the code-to-comment ratio.

(vi) 6e Halstead Suite. It is introduced in 1977 [59]
and is a set of statically computed metrics, which
tries to assess the efforts required to maintain the
analyzed code, the quality of the program, and the
number of errors in the implementation.
To compute the metrics of the Halstead suite, the
following indicators must be computed from the
source code: n1, i.e., the number of distinct op-
erators; n2, i.e., the number of distinct operands;
N1, i.e., the total number of operators; and N2, i.e.,
the total number of operands. Operands are the
objects that are manipulated, and operators are all
the symbols that represent specific actions.
Operators and operands are the two types of
components that form all the expressions. 'e
following metrics are part of the Halstead suite:

Length (N): N�N1 +N2, i.e.,
where N1 is the total number of occurrences of
operators and N2 is the total number of occur-
rences of operands.
Vocabulary (n): n� n1 + n2, i.e., where n1 is the
total number of distinct operators and n2 is the
number of distinct operands in the program. By
definition, the Vocabulary constitutes a lower
bound for the Length, since each distinct operator
and operand has at least an occurrence.
Volume (V): V�N log2 n, i.e., the size, in bits, of
the space used to store the program (note that this
varies according to the specific implementation of
the program).
Difficulty (D): D� n1/2·N2/n2, which represents
the difficulty to understand the code.
Effort (E): E�D V, which represents effort nec-
essary to understand a class.
Bugs (B): B� E(2/3)/3000, which tries to give an
esteem of the number of bugs present during the
implementation of the code.
Time (T): T� E/18, which gives an esteem of the
time needed to implement that code.

(vii) JLOC, (JavaDoc Lines of Code). It is a metric
specific for Java code, which is defined as the
number of lines of code to which JavaDoc com-
ments are associated. It is similar to other metrics
discussed in the literature that measure the
number of comments in the source code. In
general, a high value for the JLOC metrics is
deemed positive, since it suggests better docu-
mentation of the code and hence a better
changeability and maintainability. 'is metric is
specific to the Java programming language. Similar

Table 7: Metrics (suites) with citation count and score above the
median.

Metric Total
mentions Score

CC, McCabe’s cyclomatic complexity 14 12
CE, efferent coupling 3 3
CHANGE, number of lines changed in
class 4 4

C&K, Chidamber and Kemerer suite 13+ 11+
CLOC, comment lines of code 6 6
Halstead’s suite 6+ 4+
JLOC, JavaDoc lines of code 3 3
LOC, lines of code 14 11
LCOM2, lack of cohesion in methods 3 3
MI, maintainability index 6 4
MPC, message passing coupling 4 4
NOM, number of methods 4 4
NPM, number of public methods 4 4
STAT, number of statements 4 4
WMC, McCabe’s weighted method count 7 7
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documentation generators are available for Java-
Script (JSDoc) and PHP (PHPDocumentor);
however, we were not able to gather evidence from
the manuscripts about the applicability of the
JLOC metric to them, so we deemed it applicable
only for source code written in Java.

(viii) LOC (Lines of Code). It is a widely used metric
which is often used for its simplicity. It gives an
immediate measure of the size of the source code.
Among the most popular metrics, the LOC metric
was the only one to have two negative mentions in
other works in the literature. 'ese comments are
related to the fact that there appears to be no single,
universally adopted definition of how this metric is
computed [14]. Some works consider the count of

all the lines in a file, and others (the majority)
remove blank lines from such computation; if
there is more than one instruction in a single line
or a single instruction is divided into different
rows, there is ambiguity about considering the
number of lines (physical lines) or the actual
number of instructions involved (logical lines).
'us, it is of the utmost importance that the tools
to calculate the metrics specify exactly how they
calculate the values they return (or that they are
open source, hence allowing an analysis of the tool
source code for deriving such information).
Although LOC seems to be poorly related to the
maintenance effort [14] and there is more than one
way to calculate it, this metric is used within the

Table 8: All tools found in the selected set of primary studies.

Tool name Papers using it Source
Columbus quality model [15] Not found
Analyst4j [6] Not found
Lachnesis [6] Not found
Metrics [6] Not found
CCEvaluator [16] Not found
Lagrein [55] Not found
Code Crawler [55] Not clear what program they used
RAMOOS, reconfigurable automated metrics for object-
oriented software [46] Reconfigurable

Baker (Baker, 1993) [33, 41] Not found/not clear what program they used
Kamiya (Kamiya et al., 2002) [33] Not found/not clear what program they used
Li (Li and 'ompson, 2010) [33] Not found/not clear what program they used
Baxter (Baxter et al., 1998) [33] Not found/not clear what program they used
Brown (Brown and 'ompson, 2010) [33] Not found/not clear what program they used
Koschke (Koschke et al., 2006) [33] Not found/not clear what program they used
Higo (Higo and Kusumoto, 2009) [33] Not found/not clear what program they used
Mayrand (Mayrand et al., 1996) [33] Not found/not clear what program they used
Elva (Elva and Leavens, 2012) [33] Not found/not clear what program they used
Murakami (Murakami et al., 2014) [33] Not found/not clear what program they used
Higo (Higo et al., 2007) [33] Not found/not clear what program they used
Closed-source tools
Codacy [15] https://www.codacy.com

Visual Studio [48] https://docs.microsoft.com/en-us/visualstudio/code-
quality/code-metrics-values

Understand [6, 50] https://scitools.com/feature/metrics
JHawk [6] http://www.virtualmachinery.com/jhawkprod.htm
CMT++/CMTJava [6] https://www.verifysoft.com/en cmtx.html

CAST’s Application Intelligence Platform [22] https://www.castsoftware.com/products/application-
intelligence-platform

Open-source tools
CKJM [5, 21, 25, 26, 43] https://www.spinellis.gr/sw/ckjm
MetricsReloaded (IntelliJ IDEA plugin) [5] https://github.com/BasLeijdekkers/MetricsReloaded
CodeMetrics (IntelliJ IDEA plugin) [5] https://github.com/kisstkondoros/codemetrics-idea
Ref-Finder (Eclipse plugin) [19, 38] https://sites.google.com/site/reffindertool
Squale [15] http://www.squale.org
Quamoco Benchmark for software quality [15] https://github.com/wagnerst/quamoco
CBR Insight [15] https://github.com/StottlerHenkeAssociates
Halstead Metrics Tool [38] https://sourceforge.net/p/halsteadmetricstool
SonarQube and CodeAnalyzers, by SonarSource [6, 15, 31] https://www.sonarsource.com
JSInspect [40] https://www.npmjs.com/package/jsinspect
Escomplex [40] https://github.com/escomplex/escomplex
Eslint [40] https://eslint.org
CCFinder (code clones finder), now called CCFinderX [33] http://www.ccfinder.net/ccfinderxos.html
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maintainability index, and it seems to be correlated
with many of different metric measures [60]. 'e
assumption is that the bigger the LOC metric, the
less maintainable the analyzed code is.

(ix) LCOM2 (Lack of Cohesion in Methods). It is an
evolution of the LCOMmetric, which is part of the
Chidamber and Kemerer suite. LCOM2 equals the
percentage of methods that do not access a specific
attribute averaged over all attributes in the class. If
the number of methods or attributes is zero,
LCOM2 is undefined and displayed as zero. A low
value of LCOM2 indicates high cohesion and a
well-designed class.

(x) MI (Maintainability Index). It is a composite
metric, proposed as a way to assess the main-
tainability of a software system. 'ere are different
definitions of this metric, which was firstly in-
troduced by Oman and Hagemeister in 1992 [61].
'ere are two different formulae to calculate the
MI, one utilizing only three different metrics,
Halstead volume (HV), cyclomatic complexity
(CC), and the number of lines of code (LOC), while
the other takes in consideration also the number of
comments. Despite being quite popular, Ostberg
and Wagner express their doubts about the ef-
fectiveness of this metric, claiming it does not give
information about the maintainability of the code,
since it is based on metrics considered not suited
for that task, and the result of themetric itself is not
intuitive [14]. In contrast, Sarwar et al. state that
MI proved to be very efficient in improving soft-
ware maintainability and cost-effectiveness [6].
'e 3-metric equation is as follows: MI� 171−5.2·ln
(avgV)−0.23·avgCC−16.2·ln (avgLOC).
'e 4-metric equation is as follows: MI √� 171–5.2
ln (avgV)− 0.23 avgCC+− 16.2 ln (avgLOC) + 50
sin (2.4 perCM).
In both equations, the following symbols are
adopted: avgV is the average Halstead volume for
the source code files; avgLOC is the average LOC
metric; avgCC is the average cyclomatic com-
plexity; perCM is the percentage of LOC con-
taining comments.
A returned value above 85 means that the code is
easily maintainable; a value from 85 to 65 indicates
that the code is not so easy to maintain; below 65,
the code is difficult to maintain.'e returned value
can reach zero, and even become negative, espe-
cially for large projects.

(xi) MPC (Message Passing Coupling). It is a metric
from the Li andHenry suite (the onlymetric of that
suite to have a score above the rounded median),
and it is defined as the number of send statements
defined in a class [62], i.e., the number of method
calls in a class.

(xii) NOM (Number of Methods Counts). It is the
number of methods in a given class/source file,
with the assumption that the higher the number of
methods, the lower the maintainability of the code.

(xiii) NPM (Number of Public Methods). It returns the
number of all the methods in a class that are de-
clared as public.

(xiv) STAT (Number of Statements). It counts the
number of statements in a method. Different
variations of the metric have been proposed in the
literature, which differ on the decision of counting
statements also in named inner classes, interfaces,
and anonymous inner classes. For instance, Kaur
et al., in their study for software maintainability
prediction, count the number of statements only in
anonymous inner classes [5].

(xv) WMC (McCabe’s Weighted Method Count). It is a
measure of complexity that sums the complexity of
all the methods implemented in the analyzed code.
'e complexity of each method is calculated using
McCabe’s cyclomatic complexity, which is also
present among the most cited metrics and dis-
cussed above. A simplified variant of this metric,
called WMC-unweighted, simply counts each
method as if it had unitary complexity; this variant
corresponds to the NOM (number of methods)
metric.

3.3. RQ2.1: Available Tools. In Table 8, we report all the tools
that were identified while reading the papers. 'e columns
report, respectively, as follows: the name of the tool, as it is
presented in the studies; the studies using it; a web source
where the tool can be downloaded. In the upmost section of
the table, we reported papers from which we cannot find the
used tool (i.e., a tool was mentioned but no download
pointer was provided, indicating that the tool has never been
made public and/or it had been discontinued), or for which
no information about the used tool was provided. For the
latter, we have indicated the studies in the table with the
respective author’s name.

In the second and third section of the table, we have
divided the tools according to their release nature, i.e., we
discriminated between open-source and commercial tools.
'e table reports information about a total of 38 tools: 19
were not found; 6 were closed source; and 13 were open
source.

'e majority of the tools we found are mentioned by
only one study; three are cited by two studies, and only one,
CKJM, is quoted by five papers.

It is immediately evident that the open-source tools are
more than two times in number than the closed-source ones.
'is result may be unrelated to the quality of the tools
themselves but instead be justified by the fact that open-
source tools are better suited for academic usage since they
provide the possibility of checking the algorithms and pos-
sibly modify or integrate them to analyze their performance.
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For each of the tools that we were able to identify, we give
a brief description in the following; the details about their
supported languages and metrics can be found after the
descriptions of the tools.

3.3.1. Closed-Source Tools. Six closed-source tools can be
found in the analyzed primary studies, three of which are
mentioned in the same paper. 'e tools described hereafter
are listed in alphabetical order and not in any order of
importance.

(i) CAST’s Application Intelligence Platform. 'is tool
analyzes all the source code of an application, to
measure a set of nonfunctional properties such as
performance, robustness, security, transferability,
and changeability (which is strictly tied to main-
tainability). 'is last nonfunctional property is
measured based on cyclomatic complexity, cou-
pling, duplicated code, and modification of indexes
in groups [63]. 'e tool produces as output a set of
violation of typical architectural and design patterns
and best practices, which are aggregated in formats
specific for both the management and the
developers.

(ii) CMT++/CMTJava. CMT is a tool specifically made
to estimate the overall maintainability of code done
in C, C++, C#, or Java, and to identify the less
maintainable parts of it. It is possible to compute
many of the discussed metrics with the tool:
McCabe’s cyclomatic number, Halstead’s software
science metrics, lines of code, and others. CMTalso
allows computing the maintainability index (MI).
'e tool can work in command line mode or with a
GUI.

(iii) Codacy. It is a free tool for open-source projects and
can be self-hosted, otherwise a license must be
purchased to use it. 'is tool aims at improving the
code quality, to augment the code coverage and to
prevent security issues. Its main focus is on iden-
tifying bugs and undefined behaviours rather than
calculating metrics. It provides a set of statistics
about the analyzed code: error-proneness, code
style, code complexity, unused code, and security.

(iv) JHawk. 'e tool is tailored to only analyze code
written in Java, but it can calculate a vast variety of
different metrics. JHawk is not new on the market
since its first release was introduced more than ten
years ago. At the time of writing this article, the last
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Figure 4: Programming languages supported by each tool.
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available version is 6.1.3, from 2017. It is used and
cited in more than twenty of the selected primary
studies. JHawk aids the empirical evaluation of
software metrics with the possibility of reporting the
computed measures in various formats, including
XML and CSV, and it supports a CLI interface.

(v) Understand. Developed by SciTools, it can calculate
several metrics, and the results can be extracted
automatically via command line, graphical inter-
face, or through their AIP. Most of the metrics
supported by this program are complexity metrics
(e.g., McCabe’s CC), volume metrics (e.g., LOC),
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Figure 6: Tool support to the metrics found in primary studies.
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Table 9: Tools available for computing the most popular metrics for the most supported programming languages (open-source tools in
bold).

Metric C C++ C# Java JavaScript

CC

CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP
Codacy Codacy Codacy Codacy Codacy
CMT++ CMT++ CMT++ CMTJava Understand

Understand Understand Understand JHawk CodeAnalyzers
Visual Studio Visual Studio CodeAnalyzers Understand Escomplex

MetricsReloaded Squale CCFinderX MetricsReloaded Eslint
Squale CodeAnalyzers CodeMetrics

CodeAnalyzers CCFinderX CodeAnalyzers
CCFinderX CCFinderX

CE

CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP
Understand Understand Understand JHawk Understand
Visual Studio Visual Studio Understand

MetricsReloaded Squale MetricsReloaded
Squale

CHANGE CCFinderX CCFinderX CCFinderX CCFinderX
Ref-Finder

C&K
Understand Understand Understand Understand Understand
Visual Studio Visual Studio CKJM

MetricsReloaded MetricsReloaded

CLOC

Codacy Codacy Codacy Codacy Codacy
Understand Understand Understand JHawk Understand
CBR Insight CBR Insight CBR Insight Understand CBR Insight

CodeAnalyzers CodeAnalyzers CodeAnalyzers CBR Insight CodeAnalyzers
CodeAnalyzers Eslint

Halstead’s
CMT++ CMT++ CMT++ CMTJava Escomplex

Halstead Metrics Tool Halstead Metrics Tool JHawk
Halstead Metrics Tool

JLOC
— — — Codacy —

MetricsReloaded
Squale
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and object-oriented metrics. 'e correlation be-
tween the supported metrics and the inferred
maintainability of software projects is not explicitly
mentioned in the tool’s documentation.

(v) Visual Studio. It is a very well-known IDE developed
by Microsoft. It comes embedded with modules for
the computation of code quality metrics, in addition
to all its other functions. Among the maintainability
metrics listed in the previous section, it supportsMI,
CC, DIT, class coupling, and LOC. 'e main lim-
itation for the Visual Studio tool is that these metrics
can be computed only for projects written in the C
and C++ languages, and not for projects in any
other of the many languages supported by the IDE.
Also, from the Visual Studio documentation, it can
be seen that the IDEmakes some assumptions about
the metrics that are different from the standard
ones. As an example, the MI metric used in Visual
Studio is an integer between 0 and 100, with dif-
ferent thresholds from the standard ones defined for
MI (MI 20 indicates a code easy tomaintain, a rating
from 10 to 19 indicates that the code is relatively

maintainable, and a value below 10 indicates low
maintainability).

3.3.2. Open-Source Tools. Fourteen open-source tools could
be found in the analyzed primary studies. Most of them,
however, require a license to be used in not open-source
projects or to be used without limitations. 'e tools de-
scribed hereafter are listed in alphabetical order and not in
any order of importance:

(i) CBR Insight. It is a tool built on top of Understand
(see the previous section about closed-source
tools), and it uses it to calculate the metrics. 'e
tool calculates metrics that are highly related to
software reliability, maintainability, and prevent-
able technical debt. It provides a dashboard to
present the data to developers/maintainers. It is
worth noting that the tool, although open source,
needs a license for the Understand tool to be used.

(ii) CCFinderX (Code Clones Finder). Previously
known as CCFinder, it is a tool able to detect
duplicate code fragments in source codes written
in Java, C, C++, C#, COBOL, and VB. At the time

Table 9: Continued.

Metric C C++ C# Java JavaScript

LOC

CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP
Codacy Codacy Codacy Codacy Codacy
CMT++ CMT++ CMT++ CMTJava Understand

Understand Understand Understand JHawk CBR Insight
Visual Studio Visual Studio CBR Insight Understand CodeAnalyzers

MetricsReloaded Squale CodeAnalyzers MetricsReloaded JSInspect
Squale CBR Insight CCFinderX Quamoco Benchmark Eslint

CBR Insight CodeAnalyzers CBR Insight
CodeAnalyzers CCFinderX CodeAnalyzers
CCFinderX CCFinderX

LCOM2 CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP
Understand Understand Understand Understand Understand

MI
CMT++ CMT++ CMT++ CMTJava CodeAnalyzers

Visual Studio Visual Studio CodeAnalyzers JHawk Eslint
CodeAnalyzers CodeAnalyzers CodeAnalyzers

MPC CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP CAST’S AIP
JHawk

NOM
Understand Understand Understand Understand Understand

Squale Squale CodeAnalyzers CodeAnalyzers CodeAnalyzers
CodeAnalyzers CodeAnalyzers

NPM
Understand Understand Understand Understand Understand

Squale Squale CodeAnalyzers CKJM CodeAnalyzers
CodeAnalyzers CodeAnalyzers CodeAnalyzers

STAT
Understand Understand Understand JHawk Understand

CodeAnalyzers CodeAnalyzers CodeAnalyzers Understand CodeAnalyzers
CodeAnalyzers Eslint

WMC
Understand Understand Understand Understand Understand
CBR Insight CBR Insight CBR Insight CKJM CBR Insight

CBR Insight
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of writing this SLR, the project appears to be not
maintained, and the last version dates back to May
2010.

(iii) CKJM. 'e tool [64], cited in five of our selected
studies, supports only the Java programming
language. It can calculate the six metrics of the
C&K suite, plus the afferent coupling (CA), and the
number of public methods (NPM). 'e results can
be exported in XML format, and the program can
be integrated with Ant. 'e tool appears to have
been discontinued, since its last release at the time
of the writing of this manuscript, i.e., the 1.9, was
released in 2008.

(iv) CodeMetrics (IntelliJ IDEA Plugin). 'e tool is
released under the MIT license. It can compute the
complexity of each method and the total for each
class of the source code. It does not calculate the
standard cyclomatic complexity, but an approxi-
mation of that. At the time of writing this article,
the project is still maintained.

(v) Escomplex. It is a tool that performs a software
complexity analysis of JavaScript abstract syntax
trees. It can compute several metrics among those
previously identified, e.g., the maintainability in-
dex, the Halstead suite, McCabe’s CC, and LOC.
'e results are returned in JSON format so that
they can be used by front-end programs. At the
time of writing this SLR, the last version of the tool
dates back to the end of 2015.

(vi) Eslint.'e tool is a linting (i.e., running a program
to analyze code to automatically verify the pres-
ence of potential errors) utility for JavaScript. 'e
tool allows using a set of built-in linting rules and
also allows adding custom ones as plugins that are
dynamically loaded. 'e tool also allows fixing
automatically some of the issues that it finds. At the

time of writing the SLR, the project’s last available
release is v6.5.1, released in September 2019.

(vii) Halstead Metrics Tool. A software metrics analyzer
for C, C++, and Java programs. It provides a
computation of the Halstead metric suite only. It is
written in Java and can export the results in HTML
and PDF. At the time of writing this SLR, no
development of the tools has been performed after
2016.

(viii) JSInspect. It is a program to analyze JavaScript code
in search of code smells, such as duplicate code and
repeated logic. 'e basic aim of the tool is to
identify separate portions of code with a similar
structure in a software project, based on the AST
node types, e.g., BlockStatement, VariableDecla-
ration, and ObjectExpression. At the moment of
writing this SLR, the tool seems to have been
discontinued, since the last commit on the re-
pository dates back to August 2017.

(ix) MetricsReloaded (IntelliJ IDEA Plugin).'e tool, in
addition to being available as a plugin for the
popular IDE IntelliJ IDEA, can also be used stand-
alone from the command line.'e project seems to
be discontinued since September 2017.

(x) Quamoco Benchmark for Software Quality. It is a
Java-based tool aimed to analyze code written in
Java. It is based on the Quamoco model, aimed at
integrating abstract code quality attributes and
concrete software quality assessments [65]. 'e
tool is mentioned in several academic studies se-
lected in this SLR, and its code repository is
available on GitHub. From the repository, it can be
seen that the development has been discontinued,
and the last commit dates back to July 2013.

(xi) Ref-Finder (Eclipse Plugin). A tool whose principal
aim is to detect refactorings occurred between two

Table 10: Optimal set of tools for most supported programming languages.

Programming
Language Optimal set of tools Metrics covered

C CAST’s AIP, Understand, CCFinderX, CMT++ 14/14
C++ CAST’s AIP, Understand, CCFinderX, CMT++ 14/14
C# CAST’s AIP, Understand, CCFinderX, CMT++ 14/14

Java (CAST’s or JHawk), (CCFinderX or Ref-Finder), Understand, CMTJava, (MetricsReloaded,
Squale, or Codacy) 15/15

JavaScript CAST’S AIP, Understand, escomplex, (CodeAnalyzers or eslint) 14/14

Table 11: Optimal set of open-source tools for most supported programming languages.

Programming Language Optimal set of tools Metrics covered
C CBR Insight, CCFinderX, CodeAnalyzers, Halstead Metrics Tool, MetricsReloaded 12/14
C++ CBR Insight, CCFinderX, CodeAnalyzers, Halstead Metrics Tool, Squale 11/14
C# CBR Insight, CCFinderX, CodeAnalyzers 9/14
Java (CCFinderX or Ref-Finder), CKJM, CodeAnalyzers, Halstead Metrics Tool, MetricsReloaded 13/15
JavaScript CBR Insight, CodeAnalyzers 8/14
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program versions and helping the developers to
better understand code changes. 'e plugin can
recognize even complex refactoring with high
precision, and it supports 65 of the 72 refactoring
types in Fowler’s catalogue [66].

(xii) SonarQube. Along with CodeAnalyzers, it is a
product by SonarSource. 'e two products are
provided in two different editions: the community
one, which is open source, and a commercial one.
'e community edition features fewer metrics and
less programming languages and does not provide
the security reports that are a main feature of the
commercial versions. 'ey support more than 25
programming languages (15 in the OS editions)
and hundreds of rules, among which code smells
and maintainability metrics.

(xiii) Squale (Software QUALity Enhancement). It is
based on third party technologies (commercial or
open source) that produce raw quality information
(such as metrics for instance) and uses quality
models (such as ISO-9126) to aggregate the raw
information into high-level quality factors. Re-
leased under the LGPLv3 license, it is a program to
help to assess the software quality, giving as output
information to be used from both the development
and the management team, dealing with both
technical and economic aspects of software quality.
It targets different programming languages (in-
cluding Java, C/C++,.NET, PHP, and Cobol) and
utilizes code metrics and quality models to assess
the grade of the code. 'e tool appears to be
discontinued, and the last version of the program,
v7.1, released in May 2011.

3.3.3. Correspondence between Tools and Languages.
Figure 4 shows which languages are supported by each tool.
Some of the considered tools support a wide variety of
languages, such as Understand, Codacy, and the tools by
SonarSource (SonarQube and CodeAnalyzers). CBR Insight,
as stated before, is based on Understand; hence, it supports
the same set of programming languages. 'e majority of
tools, however, support a limited number of programming
languages or also just one. For instance, JHawk, CKJM,
CodeMetrics, and Ref-Finder all support only Java; JSIns-
pect, escomplex, and eslint are tailored to work only with
JavaScript.

From the table, it is evident that the closed-source tools
support more programming languages (an average of 10.5)
compared to open-source tools (an average of 4.85). By
analyzing the primary studies selected for this SLR, it is also
reported that closed-source tools tend to support some
metrics better than open-source counterparts: for instance, a
comparative study between different tools capable of MI
reports a higher dependability of such metric when com-
puted using closed-source tools rather than open-source
alternatives [6].

Figure 5 shows how many closed-source and open-
source tools have been found for each language. From that

chart, it is evident that some languages are better supported
than others. Java, C, and C++, followed closely by JavaScript
and C#, are supported by at least half of the tools we
considered in our study. More specifically, Java, C, C++, and
C# are supported by almost all the closed-source programs
we found. Some less widespread languages (e.g., APAB, GO,
RPG, and T-SQL) are supported only by open-source tools,
among the set of tools that we gathered from analyzing the
primary studies used for the SLR.

3.3.4. Correspondence between Tools and Metrics.
Figure 6 (CS tools and metrics) shows what metrics are
calculated by each of the considered tools. For conciseness,
only the metrics that are computed by at least one tool are
reported in the table. In the upper section of the table, the
most popular metrics identified in the answer to RQ1 are
reported. Instead, the lower section of the table includes
other metrics belonging to the complete set of metrics found
in the set of primary studies mined from the literature. 'e
table features a mark for a tool and a metric only in cases
when an explicit reference to such metric has been found in
the documentation of the tool.

Also, a suite was considered as supported if at least one of
its metrics was supported by a given tool.

In the case of the closed-source tools, the metrics have
been most of the times inferred from limited documenta-
tion. Most of the times, in fact, closed-source tools provide
dashboards with custom-defined evaluations of the code, for
which the linkage with widespread software metrics is un-
clear. For instance, the Codacy tool provides a single, overall
grade for a software project, between A and F. 'is grade
depends on a set of tool-specific parameters: error-prone-
ness, code complexity, code style, unused code, security,
compatibility, documentation, and performance. In addition
to somemetrics whose usage was explicitly mentioned by the
tool’s creators (e.g., number of comments and JavaDoc lines
for the documentation property and McCabe’s CC for the
code complexity property), it was not possible to find the
complete set of metrics used internally by the tool.

Inmany cases, the tools compute also compoundmetrics
(i.e., metrics built on top of other ones reported in the
literature) or metrics that were not previously found in the
analysis of the literature performed to answer to RQ1. In
these cases, the tools were labelled as featuring othermetrics:
this information is reported in the last row of the table.

As it is evident from the table, no tool supported all the
most popular metrics previously identified. 'e number of
supported metrics among the most popular ones ranged
from 1 to 10. Two tools featured just one suite/metric from
the set of the most popular ones. 'e Halstead Metrics Tool,
as evident from its name, is an open-source tool with the
only purpose of computing the entire set of metrics of the
Halstead suite; as well, the CodeMetrics plugin is a basic tool
capable of computing only the McCabe cyclomatic com-
plexity (for each method and the total for each class of the
project). Quamoco is indeed not only a tool but instead a
quality metamodel, based on a set of metrics that are defined,
in the scope of the paper presenting the approach, as base
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measures; the metamodel is theoretically applicable to any
kind of base measure that can be computed through static
analysis of source code; however, the literature presenting
the tool mentions only the LOC metric explicitly. Some
other tools, such as JSInspect, CCFinderX, and Ref-Finder
tools, featured a limited set of the maintainability metrics
previously identified, since they were mainly focused on
other aspects of code quality, e.g., detecting code duplicates
and code smells.

Tools such as MetricsReloaded, Squale, and SonarQube
featured large sets of derivedmetrics, which were obtained as
specializations, sums, or averages of basic metrics such as the
McCabe cyclomatic complexity or the coupling between
classes.

'e bar graph in Figure 7 reports the number of tools
that featured each of the considered metrics. Also, in this
case, the metrics were divided into three sections on the x-
axis: the 15 metrics/suites deemed as most popular in the
answer to RQ1, other metrics from the full set, and other
metrics not in the set of metrics mined from the literature.
Two metrics stood out in terms of the number of tools that
supported them. 'e LOC metric, despite many papers in
the literature question its usefulness as a maintainability
metric, was supported by 14 out of 19 tools. 'e metric is
closely followed by the cyclomatic complexity (CC), which
was supported by 13 tools. 'ose numbers were expectable
since both the metrics are simple to compute and are needed
by many other derived metrics. On the other hand, three of
the most popular metrics were used by only two of the
selected tools. 'e CHANGE metric refers to the changed
lines of code between different releases of the same appli-
cation and was not computed by most of the tools that
performed static analysis on single versions of the appli-
cation; it was instead computed by two tools that were
particularly aiming at measuring code refactorings and
smells. 'e LCOM2 metric is an extension of the LCOM
metric, which is part of the C&K suite; several tools just
mentioned the adoption of the suite without explicitly
mentioning possible adoptions of enhanced versions of the
metrics; finally, the message passing coupling was adopted
by two tools and in both cases defined with the synonym fan-
out.

In general, closed-source tools featured a higher number
of metrics than open-source counterparts. Open-source
tools, several times, were, in fact, plugins of limited di-
mension, tailored to compute just a single metric or suite. If
only the measures mined from the primary studies are
considered, the closed-source tools were able to compute an
average of slightly less than 8 metrics, while open-source
tools were able to compute an average of 5 metrics. Of the set
of 15 most popular metrics, on average 6 could be computed
by the closed-source tools and 3 by the open-source tools.

3.3.5. Correspondence between Tools and Languages.
Table 9 reports the tools able to compute each of the set of
most popular metrics for the five languages that were
supported the most (see bar plot in Figure 5). We took into
account C, C++, C#, Java, and JavaScript, since at least 7

tools (more than the average for all programming languages)
supported them.'e table reports all tools that can compute
a metric for a given language. For the case of the JLOC
metric, the relevant information is only related to the tools
compatible with Java, since the metric cannot be computed
for other programming languages. Open-source tools are
highlighted by using bold lettering. As it is evident from the
table, the most featured metrics (e.g., CC and LOC) can be
computed with many alternative tools (either closed source
or open source) for the same languages. On the other hand,
several metrics can be computed by just a single tool: for
instance, CCFinderX is the only tool that explicitly supports
the CHANGEmetric for all the languages of the C family, or
the MPC (message passing coupling) metric is explicitly
supported only by the CAST’s Application Intelligence
Platform for the languages of the C family and JavaScript.

3.4. RQ2.2: Ideal Selection of Tools. Tables 10 and 11 show
the optimal set of tools to cover all the most popular metrics
shown in Table 5.'e former takes into account both closed-
source and open-source tools; the latter only considers open-
source tools. We define an optimal set of tools as the
minimal set of tools which can cover the highest possible
amount of metrics (or suites) out of the set of 14 most
mentioned ones (15 for Java, for which also the JLOC metric
can be computed). Inside round brackets, we identified
alternative tools that could be selected without influencing
the number of tools in the optimal set or the number of
metrics covered.

By using both closed-source and open-source tools, it is
possible to compute all the most mentioned metrics with an
optimal set of 4 tools for all languages except for Java, for
which 5 tools were necessary. Specifically, for all the lan-
guages of the C family, all the metrics are covered by CAST’s
Application Intelligence Platform, Understand, CCFinderX,
and CMT++. Java needed also the adoption of a tool among
MetricsReloaded, Squale, or Codacy to compute the JLOC
metric; JHawk and Ref-Finder could be used, respectively, as
alternatives to CAST’s AIP and CCFinderX; CMTJava had to
be selected instead of CMT++. For JavaScript, escomplex
and one between CodeAnalyzers or eslint have to be in-
cluded in the set, replacing CCFinderX and CMT.

By using open-source tools only, it is not possible to
obtain full coverage of the most mentioned metrics. 'e
LCOM2 and MPC metrics were not explicitly supported by
any of the considered open-source tools. 'e maximum
amount of metrics that could be supported with an optimal
set of tools ranged between 8 (for the JavaScript pro-
gramming language, with two tools) and 13 (for Java, with 5
tools, also including the JLOC metric).

4. Threats to Validity

6reats to construct validity, for an SLR, are related to
failures in the claim of covering all the possible studies
related to the topic of the review. In this study, the paper was
mitigated with a thorough and reproducible definition of the
search strategy and with the use of synonyms in the search
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strings. Also, all the principal sources for the scientific lit-
erature were taken into consideration for the extraction of
the primary studies.

6reats to internal validity are related to the data ex-
traction phase of the SLR. 'e authors of this paper eval-
uated the papers manually, according to the defined
inclusion and exclusion criteria. 'e authors limited biases
in the inclusion and exclusion of the paper by discussing
disagreements. 'e metric selection phase was performed
based on the opinions extracted from the examined primary
studies (considered as adverse, neutral, or positive). Again,
the reading of the papers and the subsequential opinion
assignments are based on the judgment of the authors and
may suffer from misinterpretation of the original opinions.
It is, however, worth mentioning that none of the authors of
this paper were biased towards the demonstration of a
specific preference for one of the available metrics.

6reats to external validity are related to the incapability
of obtaining generalized conclusions from the conducted
study. 'is threat is limited in this study since its main
results, i.e., the sets of most popular metrics, were formu-
lated w.r.t. to a set of programming languages. 'e results
are not generalized to programming languages that were not
discussed in the primary studies examined in the SLR.

5. Related Works

'e literature offers several secondary studies regarding code
metrics and tools. However, usually, those studies analyze or
present a set of tools, and they describe the metrics based on
the features of the tool. Our review instead started from an
analysis of the literature that was tailored at finding all
metrics available in relevant studies in the literature, and
then the focus was moved to tools to understand whether the
found metrics were supported or not by those tools.

For example, in the literature review published in 2008,
Lincke et al. [67] compared different software metric tools
showing that, in some cases, different tools provided
uncompatible results; the authors also defined a simple
universal software quality model, based on a set of metrics
that were extracted from the examined tools. Dias Canedo
et al. [68] performed a systematic literature review for
finding tools that can perform software measures. Starting
from the tools, the authors analyzed the tool features and
described the metrics the software could analyze. For their
secondary studies, the authors analyzed papers from 2007 to
2018.

On the other hand, there are also other secondary studies
explicitly focused on metrics as the comparative case study
published in 2012 by Sjoberg et al. [69], which has a focus on
code maintainability metrics but only considers a subset of
11 metrics for the Java language. 'e work had a primary
aim at questioning the consistency between different metrics
in the evaluation of maintainability of software projects.

'e systematic mapping study published in 2017 by
Nun􏽥ez-Varela et al. [70] is one of the most complete works
on this topic. 'e authors discovered 300 source code
metrics by analyzing papers published from 2010 to 2015.

'ey also mapped those metrics with the tools that can use
them.'is work, however, covers a limited time window and
does not focus on a specific family of software metrics,
gathering dynamic and change metrics along with static
ones.

In a recent systematic mapping and review, Elmidaoui
et al. identified 82 empirical studies about software product
maintainability prediction [71]. 'e paper focuses on ana-
lyzing the different methods available for maintainability
estimation, including fuzzy, neurofuzzy, artificial neural
network (ANN), support vector machines (SVMs), and
group method of data building (GMDH). 'e paper con-
cludes that the prediction of software maintainability, albeit
many techniques are available to perform it, is still limited in
industrial practice.

Our work differs from the secondary studies presented
above. Our point of view is finding the most common
maintainability metrics and tools to be applied to new
programming languages. For doing so, we analyzed papers
in a 20-year time window (2000–2019). We also distin-
guished open-source tools from closed-source tools, and for
each of them, we mapped the maintainability metrics they
use. 'e output of this work is actionable by practitioners
wanting to create new tools for applying maintainability
metrics to new programming languages.

Other primary studies in the literature presented (or
used) popular software metric tools, which were, however,
not extracted during our study selection phase, since their
primary purpose was not analyzing code from a mainte-
nance point of view, and hence, the manuscripts could not
be found by searching for the maintainability keyword. A
relevant example of those tools is CCCC, a widespread tool
to evaluate code written with object-oriented languages
[72, 73].

6. Conclusion

Maintainability is a fundamental feature for software
projects, and the scientific literature has proposed several
approaches, metrics, and tools to evaluate it in real-world
scenarios. With this systematic literature review, we wanted
to have an overview of the most used maintainability metrics
in the literature in the last twenty years, to find the most
commonly used ones, which can be used to evaluate existing
software, and that can be adapted to measure the main-
tainability of new programming languages. In doing so, we
wanted to provide the readers actionable results by identi-
fying sets of (closed- and open-source) tools that can be
adopted to be able to compute all the most popular metrics
for a specific programming language.

With the application of a formalized SLR procedure, we
identified a total of 174 metrics, some of which were dis-
tributed in 10 metric suites. Among them, we extracted a set
of 15 most frequently mentioned ones, of which we reported
the definitions and formulae. We also identified a set of 38
tools mentioned in primary studies about software main-
tainability metrics: by filtering those that were not made
available by the authors, could not be retrieved on the web,
or were no longer available, we came up with a set of 6
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closed-source and 13 open-source tools that can be used to
evaluate software projects, covering 34 different program-
ming languages. By analyzing the tools, we found that Java,
JavaScript, C, C++, and C# are the most common pro-
gramming language compatibles with the analyzed tools. By
pairing the information about supported programming
languages and supported metrics, we found that it is possible
to find an optimal selection of at most five tools to cover all
the most mentionedmetrics for the languages of the Java and
C family. However, not all the most popular metrics could be
computed by taking into consideration only open-source
tools.

'is manuscript can provide actionable guidelines for
practitioners who want to measure the maintainability of
their software by providing a mapping between popular
metrics and tools able to compute them. Also, this manu-
script provides actionable guidelines for practitioners and
researchers who may want to implement tools to measure
software metrics for newer programming languages. Our
work identifies which tools can provide the computation of
the most popular maintenance metrics and the support they
provide to the most common programming languages. Our
work also provides pointers to existing open-source tools
already available for computing the metrics, which can be
leveraged by tool developers as guidelines for their coun-
terparts for source code written in different languages.

As future work, we aim at implementing a tool that uses
the set of metrics we found in RQ1.2 to analyze code written
in the Rust programming language. For the Rust pro-
gramming language, we identified no tool capable of
computing the most popular maintainability metrics men-
tioned in the literature. We plan to extend a tool named
Tokei1, which offers compatibility with many modern
programming languages. 'e results of these works are
considered capable of easing other researchers to create tools
for measuring the maintainability of modern programming
languages and for encouraging new comparisons between
programming languages.
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