
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NACU: A Non-Linear Arithmetic Unit for Neural Networks / Baccelli, Guido; Stathis, Dimitrios; Hemani, Ahmed; Martina,
Maurizio. - ELETTRONICO. - 1:(2020), pp. 1-6. (Intervento presentato al convegno Design Automation Conference
tenutosi a San Francisco (USA) nel 20-24 July 2020) [10.1109/DAC18072.2020.9218549].

Original

NACU: A Non-Linear Arithmetic Unit for Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DAC18072.2020.9218549

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2848336 since: 2020-10-16T00:16:51Z

ACM/IEEE

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

NACU: A Non-Linear Arithmetic Unit for Neural
Networks

Guido Baccelli
DET, Politecnico di Torino, Italy
guido.baccelli@studenti.polito.it

Dimitrios Stathis
ELE, KTH, Sweden

stathis@kth.se
Maurizio Martina

DET, Politecnico di Torino, Italy
maurizio.martina@polito.it

Ahmed Hemani
ELE, KTH, Sweden

hemani@kth.se

Abstract— Reconfigurable architectures targeting neural
networks are an attractive option. They allow multiple neural
networks of different types to be hosted on the same hardware,
in parallel or sequence. Reconfigurability also grants the ability
to morph into different micro-architectures to meet varying
power-performance constraints. In this context, the need for a
reconfigurable non-linear computational unit has not been
widely researched. In this work, we present a formal and
comprehensive method to select the optimal fixed-point
representation to achieve the highest accuracy against the
floating-point implementation benchmark. We also present a
novel design of an optimised reconfigurable arithmetic unit for
calculating non-linear functions. The unit can be dynamically
configured to calculate the sigmoid, hyperbolic tangent, and
exponential function using the same underlying hardware. We
compare our work with the state-of-the-art and show that our
unit can calculate all three functions without loss of accuracy.

Keywords— Sigmoid, Hyperbolic tangent, Neural Networks,

approximate, exponential, reconfigurable architecture

I. INTRODUCTION
Today, artificial neural networks (ANNs), as a tool for

machine learning, are a mega-trend. However, their power
consumption is a challenge for power-constrained embedded
systems, and the VLSI design community has been intensely
researching efficient implementations that come close to
ASICs. Coarse Grain Reconfigurable Architectures
customised for ANNs provide ASIC comparable efficiency [1,
2] while retaining a degree of flexibility to morph into
different ANN topologies like CNN or LSTM of varying
dimensions. Such design frameworks require a versatile
arithmetic unit that can morph into different non-linear
functions like hyperbolic tangent (tanh), sigmoid (σ),
exponential (e), etc. which serve as activation functions in
different ANNs. Besides ANNs, these non-linear functions are
also extensively used in biologically plausible integrate-and-
fire neurons using differential equations and integrations,
whose numerical solutions often involve these non-linearities.

Another major trend in research on efficient
implementation of ANNs is approximate computing and fixed-
point arithmetics [3] that try to exploit the robustness of ANNs
by sacrificing the resolution to gain speed and lower power
consumption. In this context, the state-of-the-art lacks a
systematic method to do a trade-off between the

implementation complexity of these non-linear functions and
the accuracy that they can achieve.

The key contributions of this paper are solutions to these
two needs. a) A common mathematical basis for the
calculation of the σ, tanh, and e is used to design a versatile
computational unit that can morph between these three
functions. b) A formal method of selecting the fixed-point
representation that maximises the accuracy of these non-linear
functions.

II. SIGMOID AND HYPERBOLIC TANGENT FUNCTIONS
The σ and tanh are continuous and differentiable

functions, and their shape acts as a “softened” approximation
of the threshold function. Their unique shape and their non-
linearity are what makes them suitable for use in NNs. In this
section, we mathematically relate the two functions that will
then become the basis for a common micro-architectural
hardware. Eqs. 1 and 2 define σ and tanh, respectively.
Manipulating them allows us to express tanh in terms of σ, as
shown in Eq. 3, which can be interpreted as tanh being a
stretched and translated version of σ. The scaling factor of 2 is
easily implemented in fixed-point representation by an
arithmetic left shift.

𝜎 𝑥 =
1

1 + 𝑒'(
 1 𝑡𝑎𝑛ℎ 𝑥 =

𝑒(− 𝑒'(

𝑒(+ 𝑒'(
 2

𝑡𝑎𝑛ℎ 𝑥 = 2𝜎 2𝑥 − 1 (3)

The gradient of tanh is steeper compared to σ, as shown in
Fig. 1. Smaller gradient implies that a smaller lookup table
(LUT) would be required for σ compared to tanh. This is
because a smaller gradient requires fewer levels of
quantisation to achieve the same accuracy, for the same range
of input x, see Fig 1. This is the reason for modelling σ as a
LUT and calculating tanh values from it.

𝜎(−𝑥) = 1 − 𝜎(𝑥) 4 tanh −𝑥 = −tanh	(𝑥) 5

The σ and tanh functions are centrosymmetric, as shown
in Eqs. 4 and 5 and depicted in Fig. 1. This property allows a
full-function to be realised with a LUT that models only the
positive (or the negative) input range of the function. This
halves the size of the LUT required for σ and allows modelling
of the full range of σ and tanh using Eqs. 3, 4 and 5.

III. FIXED-POINT FORMAT
Fixed point representation is the most widely used number

representation in embedded systems because of the simpler
arithmetic units leading to more energy-efficient designs. The
Q(ib).(fb) notation is the standard way to specify fixed-point
numbers, where ib represents the integer bits excluding the
sign bit, and fb represents the fractional bits. The total number
of bits is N = 1+ ib + fb; the extra ‘1’ is for the sign bit. The

Fig. 1. Sigmoid and hyperbolic tangent function

2"#

𝑥%

−2"# 0.5

-1

1

σ
tanhQ

ua
nt

iz
at

io
n

le
ve

ls
of

 ta
nh

Q
ua

nt
iz

at
io

n
le

ve
ls

of
 σ

dynamic range of the input and the desired accuracy decide N
and ib, implying fb. The objective is to use the smallest N to
lower power consumption.

When deciding the fixed-point format for σ, the dimension
for input x is driven by the need to cover the desired dynamic
range of the function, as shown in Fig. 1. Since the input range
exceeds ±1, the ib for the input variable x must be greater than
1. Whereas, the dynamic range of the output of σ is bounded
[0,1], and accuracy is the primary concern which is decided
by fb. Based on these arguments, we next formalise how ib for
the input variable x and fb for σ can be dimensioned to
maximise the accuracy of output and cover the desired input
range. Let Inmax be the largest positive number that the fixed-
point format for input needs to represent, Eq. 6 gives the
maximum value that the σ can reach.

𝜎 𝐼𝑛9:(=
1

1 + 𝑒';<=>?
, 𝐼𝑛9:(=2

ABCD − 2'EBCD 	 (6)

Inmax should be large enough that 𝑒';<=>? approaches
zero, resulting in σ approaching 1. Inmax is also inherently
related to the accuracy of σ represented by fb_out because any
change in σ beyond σ(Inmax) should be so small that it is
interpreted as zero. This can be formalised as 𝑒';<=>? <
	2'EB_IJK . If this condition is satisfied, the value of σ will
saturate to 1. For any value beyond Inmax, the change in σ will
be so small that it will be interpreted as zero change, thus
satisfying the desired accuracy. This condition formalises the
relationship between the desired input range and the resolution
or accuracy of the output in Eq. 7.

𝑒';<=>? < 2'EB_IJK		

⟹ −𝐼𝑛9:(< 𝑙𝑛	(2) ⋅ −𝑓P_QRS 	

⟹ 2ABCD − 2'EBCD > 𝑙𝑛	(2) ⋅ 𝑓P_QRS	

𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 − 𝑓P = 𝑖P − 𝑁 + 1	

⟹ 	2ABCD 1 − 2['\CD > 𝑙𝑛(2) ⋅ 𝑓P_QRS	

𝑏𝑒𝑐𝑎𝑢𝑠𝑒	𝑓P = 𝑁 − 𝑖P − 1	

⟹ 2ABCD > 𝑙𝑛(2) ⋅
𝑁QRS − 𝑖P_QRS − 1
1 − 2 ['\CD

(7)

Only fixed-point formats that satisfy Eq. 7 can fulfil the
desired input range and output accuracy. The equation cannot
be expressed in closed form, so it has to be solved case by
case. This result provides a lower bound for input and output
integer bits. In most cases it’s beneficial to have the same input
and output format and implies ib_in=ib_out=ib, fb_in=fb_out=fb and
Nin=Nout=N. The final choice on fixed-point format must be
based on the general features of the target application, such as
the maximum value a number can reach within the application
and the desired precision. Here we present the limits of the σ
fixed-point implementation for the general case, which will
allow us to represent the full range of the output with the best
accuracy for a given bit-width.

Consider a case of 16-bit fixed-point number for both the
input and the output. Using Eq. 7, we can calculate that to
represent the full input range of σ, ib needs a minimum of 4
bits, and the remaining 11 bits can be allocated as fractional
bits to maximise the accuracy.

IV. FUNCTION MODELS
In the previous sections, we discussed the basic properties

of the two functions and presented a systematic method to find
the bounds on the fixed-point representation. In this section,
we will see how we can use these properties as the basis for
an efficient hardware model of a reconfigurable arithmetic
unit to compute σ, tanh, and e functions. Where σ is used as
the elementary function, and other functions are derived from
it. We first express σ and tanh in terms of a unified equation
with a set of coefficients deciding if it is σ or tanh that will be
computed. Next, we show how e and by extension the softmax
can be derived from the σ. We also show how the error
propagation between σ and e can be modelled and also
bounded, given the max input to e.

A. A common mathematical basis for sigmoid and tanh
Most of the state-of-the-art implementations of σ use

polynomial approximation on a sub-portion of the input range,
see section VI. Eq. 8 presents such a polynomial
approximation with P representing the degree of the
polynomial, m the coefficients for the non-zero powers of x,
and q the constant bias. Eq. 8 can only be used for a positive
input range of the σ. Using the symmetric property of σ, Eq. 8
can be tweaked for the negative range. Eq. 9 uses the same
coefficients as Eq. 8, and models the negative input range.

𝜎 𝑥 ≈ 𝑚A𝑥A
`

Aa[
+ 𝑞	,			x ≥ 0 8

𝜎 x ≈ −𝑚A𝑥A
`

Aa[
+ 1 − 𝑞 ,			x < 0 (9)

The tanh function can be computed by substituting Eqs. 8
and 9 in Eq. 3 to get Eqs 10 and 11. Notice that the two sets
of equations have the same form, and the coefficients and bias
constants differ only in their scaling factors. This forms the
basis for the reconfigurable NACU.

tanh 𝑥 ≈ 2Ah[𝑚A𝑥A
`

Aa[
+ 2𝑞 − 1 ,			x ≥ 0 10

tanh x ≈ −2Ah[𝑚A𝑥A
`

Aa[
+ 1 − 2𝑞 ,			x < 0 (11)

B. Exponential Function for Softmax
Most DNNs classify the input in the last layer based on the

softmax function. Softmax is a vector-valued function that
takes a collection of inputs and normalises them into a
probability distribution. Given a vector of N inputs X = [x1, x2,
…, xN] the softmax will output a vector of probabilities SM =
[sm1, sm2, …, smN]. Each probability smi ∈	SM is calculated
according to Eq. 12, with xi ∈	X.

𝑠𝑚A =
𝑒(C

𝑒(k\
la[

 12 𝑠𝑚A =
𝑒 (C'(=>?

𝑒 (k'(=>?\
la[

 13

Softmax behaves like a “soft” maximum function, where
the highest input tends to be 1 while all others get flattened out
to 0. The softmax function, given in Eq. 12, suffers from
numerical instability due to the saturation of exponentials. If
more than one result saturates to the maximum value, multiple
classes are simultaneously associated with the same input,
invalidating the classification purpose of softmax. By
normalising the numerator and denominator of the function to
𝑒(=>?, the saturation problem is avoided, as shown in Eq. 13.

The benefit of Eq. 13 is that the maximum value of the
exponential will be equal to e0 = 1. This reduces the dynamic
range of the ex function to [0, 1].

Using Eq. 1 as a starting point, we can derive the Eq. 14
for e. Eq. 15 presents the propagation of uncertainty from σ to
e, as described in [17]. In this paper, we refer to this as error
propagation. Let δe and δσ be the uncertainty/error in e and σ,
respectively. The error propagation coefficient [1/(1-σ)2]
diverges, i.e., tends to infinity, as σ saturates to 1.

𝑒(=
1

𝜎 −𝑥
− 1	 =

1
1 − 𝜎 𝑥

− 1 (14)

𝛿𝑒 =
𝜕𝑒
𝜕𝜎

𝛿𝜎 =
1

1 − 𝜎 p 𝛿𝜎		 (15)

Assuming that the range of input to e is known and if e is
normalised to the maximum input value as shown in Eq. 13,
the error propagation from σ to e can be bounded. The
normalised input takes the form of 𝑥q = 𝑥 − 𝑥9:(, and the
range of such inputs is 𝑥′ ∈ −2AB, 0 , consequently σ 𝑥 −
𝑥9:(∈ 0,0.5 , as shown in Fig. 1. Using the above, we can
bound the σmax to 0.5, and this bounds the error coefficient to
4, as shown in Eq. 16 and has accuracy comparable to σ.

𝜕𝑒
𝜕𝜎 9:(

=
1

1 − 𝜎9:(p =
1

1 − 0.5 p = 4	 (16)

This method for bounding the error is predicated on a
known range of input x. This condition is always fulfilled
while computing softmax function in NNs using fixed-point
representation. Using these arguments as the basis, we next
elaborate the micro-architecture of the reconfigurable
arithmetic unit that can compute σ, tanh, e, and softmax.

V. HARDWARE ARCHITECTURE
The micro-architecture of the morphable Non-linear

Arithmetic Computation Unit (NACU)1 is shown in Fig. 2.
The design has two main parts. The first part computes the
coefficient and the bias in Eqs. 8-11. The second part
implements the Eqs. 8-11 to compute σ and tanh and Eqs. 13
and 14 to compute e and softmax functions. The next two sub-
sections elaborate these two parts of NACU.

A. Sigmoid and Tanh coefficient and bias calculation
The first step is obtaining coefficients and bias for the

positive range of the σ as per Eq. 8. In the implementation
reported in this paper, this is realised as a piecewise linear
approximation (PWL) using 1st order polynomial. The
coefficient m1 and the bias q for the σ are stored in a LUT.
Each element of LUT provides m1 and q for each linear
segment in the PWL model. The remaining micro-architecture
is agnostic to how m1 and q for σ are calculated. The
coefficient and bias for the positive range of σ are then used to
calculate the coefficients and biases for a) negative range of σ,
b) positive, and c) negative ranges of tanh. These three
computations require only simple shift and twos complement
operations that we explain next.

The range of q (Eqs. 8-11) for all three cases is in the
interval [σ(0),1]=[0.5,1]. This range is based on the
centrosymmetric nature of the functions, as argued in section
II. Besides the limited range, the operations that act on q are
also restricted to 1−2q, 2q−1 and 1−q. Based on these facts,

1 The RTL HDL design of NACU, test-bench, reference model in Matlab can be found on a publicly available repository https://github.com/silagokth/NACU

we can use the properties of fixed-point numbers to design
specialised units that are simpler than the general
adders/subtractors, Fig. 3. We next elaborate on the design of
the simplified circuitry to compute coefficients and biases for
the three cases. We adopt a common convention for all three
units and denote the output of the three units as r and the bits
of the input as aj that can be q or 2q.

Coefficient and Bias for the negative range of σ: The
interval q ∈	[0.5,1] is split into two ranges: q ∈	[0.5, 1) and
q=1 to compute the result r = 1-q. For the first range, 1-q will
result in integer bits being zero and the fractional bits being
negated. The negation is implemented by taking 2’s
complement, as shown in Fig. 3a. For the second range (q=1),
both the integer and the fractional bits are zero, and the
implementation shown in Fig. 3a is still valid.

Coefficient and Bias for the positive range of tanh: We
again split the range 2q ∈	[1, 2] into two intervals: 2q ∈ [1, 2)
and 2q = 2 to compute the result r = 2q-1. For both intervals,
since we subtract integer 1, the fractional bits are unaffected
and passed on as it is, as shown in Fig. 3b. The integer bits for
the first interval 2q ∈ [1, 2) are a1a0=01, and when 1 is
subtracted they become a1a0=00. For the second interval
2q=2, the integer bits are a1a0=10, subtracting 1 makes them
a1a0=01. We can avoid subtraction by propagating a1 as a0 to
cover both intervals, as shown in Fig. 3b.

Coefficient and Bias for a negative range of tanh: Once
again, we split the range -2q ∈ [-2,-1] into two intervals: 2q
∈ [-2, -1) and 2q=1 to compute the result r = 1-2q. As argued
in the previous case, the fractional bits remain unaffected, as
shown in Fig. 3c. When 2q is in the first interval [-2, -1), the
integer bits of r will be 1-2 = -1, i.e., all bits will be 1. In the
second interval, where 2q=1, the integer bits of r will be all 0
since 1-1=0. We can avoid subtraction with an observation
that for the first interval, a0=0 and the second interval a0=1.

Fig. 2. Hardware architecture of the arithmetic unit

Fig. 3. Proposed design for replacing subtractors for calculation of bias

O
ut

pu
t

ac
t

M
AC

ac
t

M
AC

bias

co
ef

.

ta
nh
(x
),	
x
<0

ta
nh
(x
),	
x³
0

σ(
x)
,	x
<0σ(

x)
,	x
³0

[L
U

T]

x0

÷

𝑒

SM

𝑒

SMx0

1

SMin

MACout

SM
M
AC
/σ
/t
an
h

x1

M
AC

ou
t

-1

Calculation of Bias and coefficient

{m1,q}

{c
oe
f.,
bi
as

}

Calculation of Equation

x

x

x

x
{-22m1,1-2q}

{22m1,2q-1}

{-m1,1-q}

x0

× +

MAC

(a)σ(x),	x<0

⋯

𝑎+,-𝑎+.0

⋯

⋯ ⋯

⋯

20𝑠
compliment

⋯00

r	=1-q

q

ib fb

(b) tanh(x),	x³0
r	=2q-1

2q

⋯

𝑎+,-𝑎+.𝑎;𝑎.
⋯

𝑎<-

⋯⋯
00

⋯

⋯

⋯
ib fb

(c) tanh(x),	x <0
r	=1-2q

2q

⋯

𝑎+,-𝑎+.𝑎;𝑎.
⋯

𝑎<-

⋯⋯

⋯ ⋯
ib fb

This allows us to feed the inversion of a0 to all integer bits of
r to cover both intervals as shown in Fig. 3c.

B. Sigmoid, Tanh, Exponential and Softmax Computation
Once the coefficients and biases for σ and tanh are

computed as explained above, the computation of σ and tanh
are straightforward using a multiply and add unit, as shown in
the top-right corner of Fig. 2. The multiply and add unit is also
shown to have a feedback path to accumulate the sum to
function as a typical MAC unit. This MAC unit serves two
purposes. The first is to accumulate a convolution sum that is
common in ANNs before the non-linearity is applied. The
second is to compute the normalisation factor for softmax
function, the denominator in Eq. 13.

To compute ex, we implement Eq.14; we first compute
σ(−x), as explained above. The result is then fed to a divider
followed by a decrementor, as shown in Fig. 2. The
decrementor can be optimised, as explained next. Due to the
normalisation of the first term, the range of 𝜎q of Eq. 14 is
bounded: 𝜎q = [

t (=>?'(
∈ 1,2 . The interval of the term

𝜎qis the same as the that of 2q in subsection V.A, so 𝜎q − 1
can be implemented using the circuit in Fig. 3c.

Finally, to compute the softmax function, we need to first
compute the common normalising factor, the denominator in
Eq 13, using the circuitry described above. Next, for each
input, the e(xi−xmax) is computed and scaled with the
normalising factor to compute the softmax function.

VI. RELATED WORK
This section presents an overview of the most widely used

architectural alternatives for the σ, tanh, and e and by
implication also softmax. We first categorise the landscape of
architectural alternatives in generic dimensions and compare
them qualitatively in a normalised manner. This is followed
by reviewing specific related work by different research
groups and NACU and classifying them into one of the
discussed categories. We defer the quantitative results of
NACU and a best-effort comparison with the related work to
section VII.

There are three broad categories of implementation
alternatives to compute the non-linear functions. In all three
categories, the range of the function is uniformly or non-
uniformly divided into segments. Each segment approximates
the function of the range it represents. The approximation can
be a constant, a straight line, or a higher-order polynomial. All
other things being equal, non-uniform segments can achieve
better accuracy because, by definition, non-linear functions
have non-uniform gradients, and we can better approximate
the function by having smaller segments in regions with a high
degree of non-uniformity and vice-versa.

All three alternatives can be implemented by look-up
tables (LUTs) for uniform segments and RALUTs (Range
Addressable LUTs) for non-uniform segments. Depending on
how the segment is approximated, each entry in LUT/RALUT
would be a constant or a list of polynomial coefficients. When
segments are approximated by a straight line, the alternative
is commonly called piecewise linear model (PWL), and when
the segment is non-uniform, the alternative is called NUPWL.
There is no widely accepted acronym when segments are
approximated by higher-order functions.

The four alternatives discussed above - LUT/RALUT or
PWL/NUPWL – lend themselves well for implementing σ and
tanh because they have bounded range [0, 1]. e, on the other
hand, can be derived from σ as we proposed in subsection

IV.B, or it can be approximated by a higher-order polynomial
where the entire desired range is treated as a single segment.

We next analyse the trade-offs between the four most
widely used alternatives for implementing σ and tanh –
LUT/RALUT, PWL, NUPWL. A common rule that applies to
all four alternatives is that accuracy is improved at the expense
of increasing their implementation cost: more fractional bits
and more entries. Fig. 4a compares the four alternatives and
shows how the implementation cost increases to achieve the
same level of accuracy, e.g., with 10 fractional bits,
PWL/NUPWL alternative achieves the same level of accuracy
with just ~50 entries compared to 668 and 1026 entries for
RALUT and LUT alternatives. Fig. 4b presents the scaling of
the maximum error depending on the number of entries. It can
be seen that PWL and NUPWL have better scaling than
LUT\RALUT, and the error improvement flattens out after a
certain point. Even if the NUPWL allows for better error with
fewer entries, the improvement is minimal since it occurs after
the knee of the curve. For the implementations presented in
Fig. 4, all possible interval sizes, ranges and fixed-point
formats were explored, and the one with the best accuracy was
selected.

Based on the above primer on the landscape of
implementation alternatives and their trade-offs, we review
the reported related work. A RALUT implementation of tanh
is reported in [4]. This work divides the input into three
regions, a pass region where tanh(x) ≈ x, an elaboration region
where the input is covered by a RALUT, and a saturation
region where the output is constant. This leads to a reduced
number of entries for the RALUT. The work also provides an
analysis of the interval boundaries and number of LUT entries
needed to achieve maximum accuracy. [5] gives an overview
of such a table-based implementation of the tanh.

An implementation of σ is presented in [6] using a 4-
interval NUPWL. In contrast, [7] reports a PWL
implementation where they used a recursive approach to
progressively refine and dimension the number of segments to
achieve the desired level of accuracy. In [8], a hybrid approach
is proposed, where a PWL gives a coarse approximation, and
then a RALUT refines the tanh curve.

Using polynomials of higher degree can provide sufficient
accuracy, without the need for partitioning the input. Works
reported in [6, 9] use parabolic curves to model the σ and tanh
functions, with reasonable accuracy up to the saturation
region. We note that all the works mentioned above use
coefficients that are powers of two, to enable using shift
operations for multiplication. A 2nd order Taylor series based
implementation is reported in [10]. For it to achieve the same
level of accuracy, the input needs to be partitioned in multiple
intervals. A very different approach is taken by [11], where

Fig. 4. Graph presenting (a) LUT entries depending on fractional bits and
(b) Maximum error depending on number of entries for 11 fractional bits

(b) Maximum Error(a) Number of Entries

0,0001

0,001

0,01

0,1

1

0 500 1000 1500

M
ax

 E
rro

r (
lo

g)

Number of Entries

LUT, 11 bits
RALUT, 11 bits
PWL, 11 bits
NUPWL, 11 bits

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 1011

N
um

be
r o

f E
nt

rie
s

Fractional Bits

LUT
RALUT
UPWL
NUPWL

they compute σ in terms of e as defined in Eq. 1. This work
implements e based on [12] and increments it by 1. The work
also implements tanh in terms of σ as defined in as Eq. 3.

Implementation of e is considered a more significant
challenge as it requires higher order polynomials to achieve
sufficient accuracy. The work in [13] makes use of a 6th order
Taylor expansion to describe the whole exponential curve,
compared to the 2nd order used for σ or tanh. A parabolic
synthesis approach is presented in [14] that obtains the e by
the multiplication of several parabolic curves. Also, [14]
introduces and compares with a CORDIC based
implementation that is also used in [15] to implement e. A
different approach is taken in [12], by exploiting the
exponential change of base to express e as a power of 2. It
splits the calculation between the fractional and integer bits.
The fractional part is approximated as the line 1+x, and the 2nd
power of the integer part is implemented using bit shifts.

VII. RESULTS AND COMPARISON
In this section, we report the implementation results of

NACU and make a best-effort comparison with the state-of-
the-art. We mainly compare accuracy, both max and average
error. Where possible, we also compare the area. NACU has
been implemented as an ASIC macro in 28 nm node and can
operate at 267 MHz. Fig. 5 presents the area break down,
power consumption, and latency for different functions. All
results are based on post-layout data, including simulation for
power numbers, with all the parasitic and actual wire delay
and capacitances of the entire design.

The area of NACU is dominated by a pipelined divider. It
is possible to reduce the area by adopting a sequential divider,
as reported in [11]. We note that the cost of the pipelined
divider is justified since it is shared between the e and softmax
functions and gives us a higher throughput. The coefficient
calculation area includes the LUTs for the PWL approximation
and the dedicated units, as described in section V. The rest of
the units are shared between the σ, tanh, e, and MAC

functions. We note here that the area of the coefficient and
bias calculation is comparable to that of the adder, as
illustrated in Fig. 5. Adopting dedicated LUTs for the tanh or
even using a generic adder to derive slope and bias from the σ
LUTs would have nearly doubled the area.

We compare NACU with the state-of-the-art in three
dimensions. The first dimension is its reconfigurability.
NACU is designed to be used as part of coarse grain
reconfigurable architectures (CGRAs) that can be
dynamically configured for any mix of ANNs and SNNs
(spiking neural networks) in the same fabric instance. Such a
CGRA needs these varieties of non-linearity available in the
same unit. Table I shows that this has not been the objective
of the reported implementations. The other two dimensions
are related to the accuracy and the implementation costs.

The results of comparing NACU’s accuracy with those of
the related work are plotted in Fig. 6. All comparisons are
normalised to the 16-bit NACU. The left column shows the
max error for σ, tanh, and e. The right column shows the
average error for σ and tanh, where it is available. For e, none
of the related work reports average error. In Fig. 6c, d, and e
we also report the accuracy results of the NACU using
different bit-widths. The selected bit-widths match the ones
used in the related work and allow for better comparison.
Table I summarises the implementation costs for the reported
related-work, against whom we compare. The reported
metrics in Table I are not scaled to NACU’s technology, but
they are reported as in the original work. Area comparison
with the σ and tanh implementation is difficult, due to very old
technology used [4,5,8] and FPGA implementations [6,11].

A. Comparison of the σ function
The NUPWL approximation of [6] avoids multipliers

using power of two shifts and for this reason, has 10X worse
max error compared to NACU. The same group also reports
two implementations of 2nd order Taylor expansions in [6].
However, the use of a multiplier in the Taylor series does not
result in any accuracy improvement. The work reported in
[10] splits σ into 102 segments to achieve 10X better accuracy
compared to NACU. The large number of segments implies
large LUTs, but these are not reported in the paper. A 2nd order
Taylor series implementation with fewer segments is also
reported in [10]. This gives comparable accuracy but, as
expected, with increased latency – 7 cycles as opposed to 4
cycles for the 1st order. The average error for [6] is comparable
to its max error, [10] does not report average error. The σ
implementation reported in [11] is based on first

TABLE I. RELATED WORK

 [6] [6] [6] [10] [10] [11] [4] [5] [8] [13] [14] [14] NACU

Implem. NUPWL 2nd order
Taylor

2nd order
Taylor opt

1st order
Taylor

2nd order
Taylor

Based on
ex RALUT RALUT PWL &

RALUT
6th order
Taylor CORDIC Parabolic PWL

Area [µm2] Not
applicable

Not
applicable

Not
applicable

Not
reported

Not
reported

Not
applicable 1280.66 11871.53 5130.78 20700 19150 26400 9671

Logic
Elem.

246/
15408

368/
15408 167/15408 Not

reported
Not

reported
287, 372/

16416
Not

applicable
Not

applicable
Not

applicable
Not

applicable
1837/
18752

481/
18752

Not
applicable

Tech.
Node [nm] 65 65 65 40 40 90 180 180 180 65 65 ASIC,

90 FPGA
65 ASIC,
90 FPGA 28

LUT
entries 7 4 4 102a 28a Not

applicable 14 127 Not
reported

Not
applicable

Not
applicable

Not
applicable 53

Nr. of Bits 16 16 16 16 16 6 to 14 9 in, 6 out 10 10 18b 21 18 16
Clock

Period [ns] 10 10 10 2.677 2.677 2.605,
2.294 2.12 2.12 2.8 40.3 86,

140.74
20.8,
70.41 3.75

Latency
[Cycles] 2 2 3 4 7 4, 5 1 1 1 1 1 1 3, 3, 8

Functions σ σ σ σ σ σ, tanh tanh tanh tanh e e e σ, tanh, e,
softmax

a Number of intervals, the authors do not report the LUT entries b Fractional bits

Fig. 5. Experimental results and area breakdown of NACU

9%

2%
2%

81%

6%

Multiplier
Adder
Coef. Calculation
Divider
Registers

Total Area 9671.4 μm2

Power [mW] Latency
[cycles]

σ 2.159 3

tanh 1.95 3

e 3.74 8

implementing e and using Eqs. 1. We argue that NACU is
more efficient because it relies on division, only for the
e/softmax function, which is only required in the last layer.
Whereas [11] would need division in all layers for the σ /tanh
activation functions. The work in [11] reports RMSE of
9.1×10-3 with 0.998 correlation for the σ. In comparison,
NACU achieves 2.07×10-4 RMSE with 0.999 correlation.

B. Comparison of the tanh function
The tanh implementation reported in [11] is also based on

first implementing e and calculating tanh base on Eq. 3. The
design in [11] reports RMSE of 1.77×10-2 with 0.999
correlation for the tanh function., compared to NACU’s
2.09×10-4 RMSE and 0.999 correlation. The other solutions
for tanh reported in [4,5,8] are all based on RALUT.
Comparing tanh LUTs to our work leads again to a trade-off
between area and accuracy, the lower error of PWL in NACU
provides 10X accuracy but comes at the expense of higher bit-
width and an extra multiplier and an adder. As noted by [10],
the multiply and add unit can also be used as a MAC for
computing the linear computation as well. For this reason, we
claim that a PWL approach for non-linear activators is the
most natural fit for ANN hardware implementation.

C. Comparison of the e function
The max error comparison of e shows that NACU is 10X

worse. This is explained by the fact that [13,14] uses 18 to 21
bits as opposed to NACU's 16 bits. NACU implementations
that use larger bit-widths can reach accuracies closer to the
related work. The use of higher-order function allows for
better accuracy but increases the complexity of the design.
The area of [14] scaled to 28nm node is ~5800µm2 for the
smallest CORDIC implementation. In comparison, NACU
takes ~9600 µm2 but implements not just e but also σ, tanh,
and softmax. Further, note that [14] is a sequential design that
would take 42 ns scaled to 28 nm node using data from [16].
In contrast, NACU, with its pipelined design, takes 90 ns for
filling the pipeline and 3.75ns for computing each consecutive
e. For comparison, the 6th order Taylor implementation [13]
scaled down to 28nm [16] will have an area of ~6200µm2 and
period of 20ns, and the parabolic implementation [14] will
have an area of ~8000µm2 and a period of 10ns.

The e design in [12] looks promising due to its potentially
low hardware cost and reasonable precision. However, we

cannot quantify area comparison as none is reported. Overall,
NACU provides a good balance between versatility, accuracy,
area, and latency compared to the related work.

VIII. CONCLUSION
In this work, we presented a common mathematical basis

for implementing the three most common non-linear functions
of NNs, σ, tanh, and e. We also presented a formal method to
find the best fixed-point representation. We propose a novel
architecture that can be dynamically configured to calculate
the three different functions together with the softmax
function and the MAC operation. The numerical properties of
the functions are exploited to derive a more efficient
architecture. The design provides accuracy comparable with
the state-of-the-art and is proven to be more cost-efficient than
the other implementations. The proposed architecture’s
versatility targets reconfigurable neural network architectures
to fulfil their diverse non-linear activation needs. In the future,
we plan to optimise out the conventional divider with an
approximate one. This will allow us to significantly lower the
area cost with a small reduction in overall accuracy.

ACKNOWLEDGEMENT
This work was supported by Vinnova as part of the Chrest

II project.
REFERENCES

[1] Y. Chen, et al., “DianNao Family: Energy-Efficient Hardware
Accelerators for Machine Learning,” In Commun. ACM, vol. 59, pp.
105–112, 2016.

[2] A. Majumdar, et al., “A Massively Parallel, Energy Efficient
Programmable Accelerator for Learning and Classification,” In ACM
Trans. Archit. Code Optim., vol. 9, pp. 1–30, 2012.

[3] S. Hashemi, et al., “Understanding the impact of precision quantization
on the accuracy and energy of neural networks,” In DATE, 2017.

[4] B. Zamanlooy, et al., "Efficient VLSI Implementation of Neural
Networks With Hyperbolic Tangent Activation Function," In IEEE
Trans. VLSI, vol. 22, pp. 39-48, Jan. 2014.

[5] K. Leboeuf, et al., “High Speed VLSI Implementation of the
Hyperbolic Tangent Sigmoid Function,” In ICCIT, 2008.

[6] I. Tsmots, et al., “Hardware Implementation of Sigmoid Activation
Functions using FPGA,” In CADSM, 2019.

[7] K. Basterretxea, et al., “An Experimental Study on Nonlinear Function
Computation for Neural/Fuzzy Hardware Design,” In IEEE Trans.
Neural Networks, vol. 18, pp. 266-283, Jan. 2007.

[8] A. H. Namin, et al., “Efficient hardware implementation of the
hyperbolic tangent sigmoid function,” In ISCAS, 2009.

[9] V. P. Nambiar, et al., “Hardware implementation of evolvable block-
based neural networks utilizing a cost efficient sigmoid-like activation
function,” In Neurocomputing, vol. 140, pp 228-241, 2014.

[10] R. Finker, et al., “Controlled accuracy approximation of sigmoid
function for efficient FPGA-based implementation of artificial
neurons,” In Electron. Lett., vol. 49, pp. 1598–1600, 2013.

[11] S. Gomar, et al., “Precise digital implementations of hyperbolic tanh
and sigmoid function,” In ACSSC, 2017.

[12] S. Gomar, et al., “Digital multiplierless implementation of biological
adaptive-exponential neuron model,” In IEEE Trans. Circuits Syst. ,
vol. 61, pp. 1206–1219, 2014.

[13] P. Nilsson, et al., “Hardware implementation of the exponential
function using Taylor series,” In NORCHIP 2014

[14] P. Pouyan, et al., “A VLSI implementation of logarithmic and
exponential functions using a novel parabolic synthesis methodology
compared to the CORDIC algorithm,” In ECCTD, 2011.

[15] M. Heidarpour, et al., “A CORDIC Based Digital Hardware For
Adaptive Exponential Integrate and Fire Neuron,” In IEEE Trans.
Circuits Syst., vol. 63, Nov. 2016.

[16] A. Stillmaker, et al., “Scaling equations for the accurate prediction of
CMOS device performance from 180 nm to 7 nm,” In Integration, vol.
58, pp. 74–81, Jun. 2017.

[17] S. V. Gupta, “Propagation of Uncertainty,” In Measurement
Uncertainties, Berlin, Heidelberg: Springer Berlin Heidelberg, pp.
109–129, 2012.

Fig. 6. Error plots comparing with state-of-the-art, (a)-(c) Maximum error,
(d) & (e) Average error normalised to the proposed architecture (lower is
better)

0.001

0.01

0.1

1

(e) e Max Error
Normalized to 16-bit NACU

[13] (18-bit, fraction)
[14] Cordic (21-bit)
[14] Parabolic (18-bit)
NACU (18-bit)
NACU (21-bit)
NACU (23-bit, 18-Fraction)

Upwards diagonal: LUT/RALUT
Solid color: Higher order polynomial,
dedicated functions
Downwards diagonal: PWL/NUPWL

X-pattern: combination PWL/RALUT

0.1

1

10

100

(b) σ Avg Error
Normalized to 16-bit NACU

[6] PWL

[6] 2ⁿᵈ order Taylor

[6] 2ⁿᵈ order Taylor
opt.0.01

0.1

1

10

100

(a) σ Max Error
Normalized to 16-bit NACU

[6] PWL
[6] 2ⁿᵈ order Taylor
[6] 2ⁿᵈ order Taylor opt.
[10] 1ˢᵗ order Taylor
[10] 2ⁿᵈ order Taylor

1

10

100

(c) Tanh Max Error
Normalized to 16-bit NACU

[4] (6-bit)
[5] (10-bit)
[8] (10-bit)
NACU (6-bit)
NACU (10-bit)

1

10

100

(d) TanhAvg Error
Normalized to 16-bit NACU

[5] (10-bit)

[8] (10-bit)

NACU (10-bit)

