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Abstract— Reconfigurable architectures targeting neural 
networks are an attractive option. They allow multiple neural 
networks of different types to be hosted on the same hardware, 
in parallel or sequence. Reconfigurability also grants the ability 
to morph into different micro-architectures to meet varying 
power-performance constraints. In this context, the need for a 
reconfigurable non-linear computational unit has not been 
widely researched. In this work, we present a formal and 
comprehensive method to select the optimal fixed-point 
representation to achieve the highest accuracy against the 
floating-point implementation benchmark. We also present a 
novel design of an optimised reconfigurable arithmetic unit for 
calculating non-linear functions. The unit can be dynamically 
configured to calculate the sigmoid, hyperbolic tangent, and 
exponential function using the same underlying hardware. We 
compare our work with the state-of-the-art and show that our 
unit can calculate all three functions without loss of accuracy. 

  
Keywords— Sigmoid, Hyperbolic tangent, Neural Networks, 

approximate, exponential, reconfigurable architecture 

I. INTRODUCTION 
Today, artificial neural networks (ANNs), as a tool for 

machine learning, are a mega-trend. However, their power 
consumption is a challenge for power-constrained embedded 
systems, and the VLSI design community has been intensely 
researching efficient implementations that come close to 
ASICs. Coarse Grain Reconfigurable Architectures 
customised for ANNs provide ASIC comparable efficiency [1, 
2] while retaining a degree of flexibility to morph into 
different ANN topologies like CNN or LSTM of varying 
dimensions. Such design frameworks require a versatile 
arithmetic unit that can morph into different non-linear 
functions like hyperbolic tangent (tanh), sigmoid (σ), 
exponential (e), etc. which serve as activation functions in 
different ANNs. Besides ANNs, these non-linear functions are 
also extensively used in biologically plausible integrate-and-
fire neurons using differential equations and integrations, 
whose numerical solutions often involve these non-linearities. 

Another major trend in research on efficient 
implementation of ANNs is approximate computing and fixed-
point arithmetics [3] that try to exploit the robustness of ANNs 
by sacrificing the resolution to gain speed and lower power 
consumption. In this context, the state-of-the-art lacks a 
systematic method to do a trade-off between the 

implementation complexity of these non-linear functions and 
the accuracy that they can achieve. 

The key contributions of this paper are solutions to these 
two needs. a) A common mathematical basis for the 
calculation of the σ, tanh, and e is used to design a versatile 
computational unit that can morph between these three 
functions. b) A formal method of selecting the fixed-point 
representation that maximises the accuracy of these non-linear 
functions. 

II. SIGMOID AND HYPERBOLIC TANGENT FUNCTIONS 
The σ and tanh are continuous and differentiable 

functions, and their shape acts as a “softened” approximation 
of the threshold function. Their unique shape and their non-
linearity are what makes them suitable for use in NNs. In this 
section, we mathematically relate the two functions that will 
then become the basis for a common micro-architectural 
hardware. Eqs. 1 and 2 define σ and tanh, respectively. 
Manipulating them allows us to express tanh in terms of σ, as 
shown in Eq. 3, which can be interpreted as tanh being a 
stretched and translated version of σ. The scaling factor of 2 is 
easily implemented in fixed-point representation by an 
arithmetic left shift. 

𝜎 𝑥 =
1

1 + 𝑒'(
 1  𝑡𝑎𝑛ℎ 𝑥 =

𝑒( − 𝑒'(

𝑒( + 𝑒'(
 2  

𝑡𝑎𝑛ℎ 𝑥 = 2𝜎 2𝑥 − 1 (3) 

The gradient of tanh is steeper compared to σ, as shown in 
Fig. 1. Smaller gradient implies that a smaller lookup table 
(LUT) would be required for σ compared to tanh. This is 
because a smaller gradient requires fewer levels of 
quantisation to achieve the same accuracy, for the same range 
of input x, see Fig 1. This is the reason for modelling σ as a 
LUT and calculating tanh values from it. 

𝜎(−𝑥) = 1 − 𝜎(𝑥) 4  tanh −𝑥 = −tanh	(𝑥) 5  

The σ and tanh functions are centrosymmetric, as shown 
in Eqs. 4 and 5 and depicted in Fig. 1. This property allows a 
full-function to be realised with a LUT that models only the 
positive (or the negative) input range of the function. This 
halves the size of the LUT required for σ and allows modelling 
of the full range of σ and tanh using Eqs. 3, 4 and 5.  

III. FIXED-POINT FORMAT 
Fixed point representation is the most widely used number 

representation in embedded systems because of the simpler 
arithmetic units leading to more energy-efficient designs. The 
Q(ib).(fb) notation is the standard way to specify fixed-point 
numbers, where ib represents the integer bits excluding the 
sign bit, and fb represents the fractional bits. The total number 
of bits is N = 1+ ib + fb; the extra ‘1’ is for the sign bit. The 

 
Fig. 1. Sigmoid and hyperbolic tangent function  
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dynamic range of the input and the desired accuracy decide N 
and ib, implying fb. The objective is to use the smallest N to 
lower power consumption. 

When deciding the fixed-point format for σ, the dimension 
for input x is driven by the need to cover the desired dynamic 
range of the function, as shown in Fig. 1. Since the input range 
exceeds ±1, the ib for the input variable x must be greater than 
1. Whereas, the dynamic range of the output of σ is bounded 
[0,1], and accuracy is the primary concern which is decided 
by fb. Based on these arguments, we next formalise how ib for 
the input variable x and fb for σ can be dimensioned to 
maximise the accuracy of output and cover the desired input 
range. Let Inmax be the largest positive number that the fixed-
point format for input needs to represent, Eq. 6 gives the 
maximum value that the σ can reach. 

𝜎 𝐼𝑛9:( =
1

1 + 𝑒';<=>?
, 𝐼𝑛9:( =2

ABCD − 2'EBCD 	 (6) 

Inmax should be large enough that 𝑒';<=>?  approaches 
zero, resulting in σ approaching 1. Inmax is also inherently 
related to the accuracy of σ represented by fb_out because any 
change in σ beyond σ(Inmax) should be so small that it is 
interpreted as zero. This can be formalised as 𝑒';<=>? <
	2'EB_IJK . If this condition is satisfied, the value of σ will 
saturate to 1. For any value beyond Inmax, the change in σ will 
be so small that it will be interpreted as zero change, thus 
satisfying the desired accuracy. This condition formalises the 
relationship between the desired input range and the resolution 
or accuracy of the output in Eq. 7. 

 

𝑒';<=>? < 2'EB_IJK		

⟹ −𝐼𝑛9:( < 𝑙𝑛	(2) ⋅ −𝑓P_QRS 	

⟹ 2ABCD − 2'EBCD > 𝑙𝑛	(2) ⋅ 𝑓P_QRS	

𝑏𝑒𝑐𝑎𝑢𝑠𝑒	 − 𝑓P = 𝑖P − 𝑁 + 1	

⟹ 	2ABCD 1 − 2['\CD > 𝑙𝑛(2) ⋅ 𝑓P_QRS	

𝑏𝑒𝑐𝑎𝑢𝑠𝑒	𝑓P = 𝑁 − 𝑖P − 1	

⟹ 2ABCD > 𝑙𝑛(2) ⋅
𝑁QRS − 𝑖P_QRS − 1
1 − 2 ['\CD

 

(7) 

Only fixed-point formats that satisfy Eq. 7 can fulfil the 
desired input range and output accuracy. The equation cannot 
be expressed in closed form, so it has to be solved case by 
case. This result provides a lower bound for input and output 
integer bits. In most cases it’s beneficial to have the same input 
and output format and implies ib_in=ib_out=ib, fb_in=fb_out=fb and 
Nin=Nout=N. The final choice on fixed-point format must be 
based on the general features of the target application, such as 
the maximum value a number can reach within the application 
and the desired precision. Here we present the limits of the σ 
fixed-point implementation for the general case, which will 
allow us to represent the full range of the output with the best 
accuracy for a given bit-width. 

Consider a case of 16-bit fixed-point number for both the 
input and the output. Using Eq. 7, we can calculate that to 
represent the full input range of σ, ib needs a minimum of 4 
bits, and the remaining 11 bits can be allocated as fractional 
bits to maximise the accuracy.  

IV. FUNCTION MODELS 
In the previous sections, we discussed the basic properties 

of the two functions and presented a systematic method to find 
the bounds on the fixed-point representation. In this section, 
we will see how we can use these properties as the basis for 
an efficient hardware model of a reconfigurable arithmetic 
unit to compute σ, tanh, and e functions. Where σ is used as 
the elementary function, and other functions are derived from 
it. We first express σ and tanh in terms of a unified equation 
with a set of coefficients deciding if it is σ or tanh that will be 
computed. Next, we show how e and by extension the softmax 
can be derived from the σ. We also show how the error 
propagation between σ and e can be modelled and also 
bounded, given the max input to e. 

A. A common mathematical basis for sigmoid and tanh  
Most of the state-of-the-art implementations of σ use 

polynomial approximation on a sub-portion of the input range, 
see section VI. Eq. 8 presents such a polynomial 
approximation with P representing the degree of the 
polynomial, m the coefficients for the non-zero powers of x, 
and q the constant bias. Eq. 8 can only be used for a positive 
input range of the σ. Using the symmetric property of σ, Eq. 8 
can be tweaked for the negative range. Eq. 9 uses the same 
coefficients as Eq. 8, and models the negative input range. 

𝜎 𝑥 ≈ 𝑚A𝑥A
`

Aa[
+ 𝑞	,			x ≥ 0 8

𝜎 x ≈ −𝑚A𝑥A
`

Aa[
+ 1 − 𝑞 ,			x < 0 (9)

 

The tanh function can be computed by substituting Eqs. 8 
and 9 in Eq. 3  to get Eqs 10 and 11. Notice that the two sets 
of equations have the same form, and the coefficients and bias 
constants differ only in their scaling factors. This forms the 
basis for the reconfigurable NACU. 

tanh 𝑥 ≈ 2Ah[𝑚A𝑥A
`

Aa[
+ 2𝑞 − 1 ,			x ≥ 0 10

tanh x ≈ −2Ah[𝑚A𝑥A
`

Aa[
+ 1 − 2𝑞 ,			x < 0 (11)

 

B. Exponential Function for Softmax 
Most DNNs classify the input in the last layer based on the 

softmax function. Softmax is a vector-valued function that 
takes a collection of inputs and normalises them into a 
probability distribution. Given a vector of N inputs X = [x1, x2, 
…, xN] the softmax will output a vector of probabilities SM = 
[sm1, sm2, …, smN]. Each probability smi ∈	SM is calculated 
according to Eq. 12, with xi ∈	X. 

𝑠𝑚A =
𝑒(C

𝑒(k\
la[

 12  𝑠𝑚A =
𝑒 (C'(=>?

𝑒 (k'(=>?\
la[

 13  

Softmax behaves like a “soft” maximum function, where 
the highest input tends to be 1 while all others get flattened out 
to 0. The softmax function, given in Eq. 12, suffers from 
numerical instability due to the saturation of exponentials. If 
more than one result saturates to the maximum value, multiple 
classes are simultaneously associated with the same input, 
invalidating the classification purpose of softmax. By 
normalising the numerator and denominator of the function to 
𝑒(=>?, the saturation problem is avoided, as shown in Eq. 13. 



The benefit of Eq. 13 is that the maximum value of the 
exponential will be equal to e0 = 1. This reduces the dynamic 
range of the ex function to [0, 1]. 

Using Eq. 1 as a starting point, we can derive the Eq. 14 
for e. Eq. 15 presents the propagation of uncertainty from σ to 
e, as described in [17]. In this paper, we refer to this as error 
propagation. Let δe and δσ be the uncertainty/error in e and σ, 
respectively. The error propagation coefficient [1/(1-σ)2] 
diverges, i.e., tends to infinity, as σ saturates to 1. 

𝑒( =
1

𝜎 −𝑥
− 1	 =

1
1 − 𝜎 𝑥

− 1 (14)

𝛿𝑒 =
𝜕𝑒
𝜕𝜎

𝛿𝜎 =
1

1 − 𝜎 p 𝛿𝜎		 (15)
 

Assuming that the range of input to e is known and if e is 
normalised to the maximum input value as shown in Eq. 13, 
the error propagation from σ to e can be bounded. The 
normalised input takes the form of 𝑥q = 𝑥 − 𝑥9:( , and the 
range of such inputs is 𝑥′ ∈ −2AB, 0 , consequently σ 𝑥 −
𝑥9:( ∈ 0,0.5 , as shown in Fig. 1. Using the above, we can 
bound the σmax to 0.5, and this bounds the error coefficient to 
4, as shown in Eq. 16 and has accuracy comparable to σ. 

𝜕𝑒
𝜕𝜎 9:(

=
1

1 − 𝜎9:( p =
1

1 − 0.5 p = 4	 (16) 

This method for bounding the error is predicated on a 
known range of input x. This condition is always fulfilled 
while computing softmax function in NNs using fixed-point 
representation. Using these arguments as the basis, we next 
elaborate the micro-architecture of the reconfigurable 
arithmetic unit that can compute σ, tanh, e, and softmax. 

V. HARDWARE ARCHITECTURE 
The micro-architecture of the morphable Non-linear 

Arithmetic Computation Unit (NACU)1 is shown in Fig. 2. 
The design has two main parts. The first part computes the 
coefficient and the bias in Eqs. 8-11. The second part 
implements the Eqs. 8-11 to compute σ and tanh and Eqs. 13 
and 14 to compute e and softmax functions. The next two sub-
sections elaborate these two parts of NACU. 

A. Sigmoid and Tanh coefficient and bias calculation 
The first step is obtaining coefficients and bias for the 

positive range of the σ as per Eq. 8. In the implementation 
reported in this paper, this is realised as a piecewise linear 
approximation (PWL) using 1st order polynomial. The 
coefficient m1 and the bias q for the σ are stored in a LUT. 
Each element of LUT provides m1 and q for each linear 
segment in the PWL model. The remaining micro-architecture 
is agnostic to how m1 and q for σ are calculated. The 
coefficient and bias for the positive range of σ are then used to 
calculate the coefficients and biases for a) negative range of σ, 
b) positive, and c) negative ranges of tanh. These three 
computations require only simple shift and twos complement 
operations that we explain next. 

The range of q (Eqs. 8-11) for all three cases is in the 
interval [σ(0),1]=[0.5,1]. This range is based on the 
centrosymmetric nature of the functions, as argued in section 
II. Besides the limited range, the operations that act on q are 
also restricted to 1−2q, 2q−1 and 1−q. Based on these facts, 

                                                             
1 The RTL HDL design of NACU, test-bench, reference model in Matlab can be found on a publicly available repository https://github.com/silagokth/NACU 

we can use the properties of fixed-point numbers to design 
specialised units that are simpler than the general 
adders/subtractors, Fig. 3. We next elaborate on the design of 
the simplified circuitry to compute coefficients and biases for 
the three cases. We adopt a common convention for all three 
units and denote the output of the three units as r and the bits 
of the input as aj that can be q or 2q. 

Coefficient and Bias for the negative range of σ: The 
interval q ∈	[0.5,1] is split into two ranges: q ∈	[0.5, 1) and 
q=1 to compute the result r = 1-q. For the first range, 1-q will 
result in integer bits being zero and the fractional bits being 
negated. The negation is implemented by taking 2’s 
complement, as shown in Fig. 3a. For the second range (q=1), 
both the integer and the fractional bits are zero, and the 
implementation shown in Fig. 3a is still valid. 

Coefficient and Bias for the positive range of tanh: We 
again split the range 2q ∈	[1, 2] into two intervals: 2q ∈ [1, 2) 
and 2q = 2 to compute the result r = 2q-1. For both intervals, 
since we subtract integer 1, the fractional bits are unaffected 
and passed on as it is, as shown in Fig. 3b. The integer bits for 
the first interval 2q ∈ [1, 2) are a1a0=01, and when 1 is 
subtracted they become a1a0=00. For the second interval 
2q=2, the integer bits are a1a0=10, subtracting 1 makes them 
a1a0=01. We can avoid subtraction by propagating a1 as a0 to 
cover both intervals, as shown in Fig. 3b. 

Coefficient and Bias for a negative range of tanh: Once 
again, we split the range -2q ∈ [-2,-1] into two intervals: 2q 
∈ [-2, -1) and 2q=1 to compute the result r = 1-2q. As argued 
in the previous case, the fractional bits remain unaffected, as 
shown in Fig. 3c. When 2q is in the first interval [-2, -1), the 
integer bits of r will be 1-2 = -1, i.e., all bits will be 1. In the 
second interval, where 2q=1, the integer bits of r will be all 0 
since 1-1=0. We can avoid subtraction with an observation 
that for the first interval, a0=0 and the second interval a0=1. 

 
Fig. 2. Hardware architecture of the arithmetic unit 

 
Fig. 3. Proposed design for replacing subtractors for calculation of bias 

O
ut

pu
t

ac
t

M
AC

ac
t

M
AC

bias

co
ef

.

ta
nh
(x
),	
x
<0

ta
nh
(x
),	
x³
0

σ(
x)
,	x
<0σ(

x)
,	x
³0

[L
U

T]

x0

÷

𝑒

SM

𝑒

SMx0

1

SMin

MACout

SM
M
AC
/σ
/t
an
h

x1

M
AC

ou
t

-1

Calculation of Bias and coefficient

{m1,q}

{c
oe
f.,
bi
as

}

Calculation of Equation

x

x

x

x
{-22m1,1-2q}

{22m1,2q-1}

{-m1,1-q}

x0

× +

MAC

(a)σ(x),	x<0

⋯

𝑎+,-𝑎+.0

⋯

⋯ ⋯

⋯

20𝑠
compliment

⋯00

r	=1-q

q

ib fb

(b) tanh(x),	x³0
r	=2q-1

2q

⋯

𝑎+,-𝑎+.𝑎;𝑎.
⋯

𝑎<-

⋯⋯
00

⋯

⋯

⋯
ib fb

(c) tanh(x),	x <0
r	=1-2q

2q

⋯

𝑎+,-𝑎+.𝑎;𝑎.
⋯

𝑎<-

⋯⋯

⋯ ⋯
ib fb



This allows us to feed the inversion of a0 to all integer bits of 
r to cover both intervals as shown in Fig. 3c. 

B. Sigmoid, Tanh, Exponential and Softmax Computation 
Once the coefficients and biases for σ and tanh are 

computed as explained above, the computation of σ and tanh 
are straightforward using a multiply and add unit, as shown in 
the top-right corner of Fig. 2. The multiply and add unit is also 
shown to have a feedback path to accumulate the sum to 
function as a typical MAC unit. This MAC unit serves two 
purposes. The first is to accumulate a convolution sum that is 
common in ANNs before the non-linearity is applied. The 
second is to compute the normalisation factor for softmax 
function, the denominator in Eq. 13. 

To compute ex, we implement Eq.14; we first compute 
σ(−x), as explained above. The result is then fed to a divider 
followed by a decrementor, as shown in Fig. 2. The 
decrementor can be optimised, as explained next. Due to the 
normalisation of the first term, the range of 𝜎q of Eq. 14 is 
bounded: 𝜎q = [

t (=>?'(
∈ 1,2 . The interval of the term 

𝜎qis the same as the that of 2q in subsection V.A, so 𝜎q − 1 
can be implemented using the circuit in Fig. 3c. 

Finally, to compute the softmax function, we need to first 
compute the common normalising factor, the denominator in 
Eq 13, using the circuitry described above. Next, for each 
input, the e(xi−xmax) is computed and scaled with the 
normalising factor to compute the softmax function. 

VI. RELATED WORK 
This section presents an overview of the most widely used 

architectural alternatives for the σ, tanh, and e and by 
implication also softmax. We first categorise the landscape of 
architectural alternatives in generic dimensions and compare 
them qualitatively in a normalised manner. This is followed 
by reviewing specific related work by different research 
groups and NACU and classifying them into one of the 
discussed categories. We defer the quantitative results of 
NACU and a best-effort comparison with the related work to 
section VII. 

There are three broad categories of implementation 
alternatives to compute the non-linear functions. In all three 
categories, the range of the function is uniformly or non-
uniformly divided into segments. Each segment approximates 
the function of the range it represents. The approximation can 
be a constant, a straight line, or a higher-order polynomial. All 
other things being equal, non-uniform segments can achieve 
better accuracy because, by definition, non-linear functions 
have non-uniform gradients, and we can better approximate 
the function by having smaller segments in regions with a high 
degree of non-uniformity and vice-versa. 

All three alternatives can be implemented by look-up 
tables (LUTs) for uniform segments and RALUTs (Range 
Addressable LUTs) for non-uniform segments. Depending on 
how the segment is approximated, each entry in LUT/RALUT 
would be a constant or a list of polynomial coefficients. When 
segments are approximated by a straight line, the alternative 
is commonly called piecewise linear model (PWL), and when 
the segment is non-uniform, the alternative is called NUPWL. 
There is no widely accepted acronym when segments are 
approximated by higher-order functions. 

The four alternatives discussed above - LUT/RALUT or 
PWL/NUPWL – lend themselves well for implementing σ and 
tanh because they have bounded range [0, 1]. e, on the other 
hand, can be derived from σ as we proposed in subsection 

IV.B, or it can be approximated by a higher-order polynomial 
where the entire desired range is treated as a single segment.  

We next analyse the trade-offs between the four most 
widely used alternatives for implementing σ and tanh – 
LUT/RALUT, PWL, NUPWL. A common rule that applies to 
all four alternatives is that accuracy is improved at the expense 
of increasing their implementation cost: more fractional bits 
and more entries. Fig. 4a compares the four alternatives and 
shows how the implementation cost increases to achieve the 
same level of accuracy, e.g., with 10 fractional bits, 
PWL/NUPWL alternative achieves the same level of accuracy 
with just ~50 entries compared to 668 and 1026 entries for 
RALUT and LUT alternatives. Fig. 4b presents the scaling of 
the maximum error depending on the number of entries. It can 
be seen that PWL and NUPWL have better scaling than 
LUT\RALUT, and the error improvement flattens out after a 
certain point. Even if the NUPWL allows for better error with 
fewer entries, the improvement is minimal since it occurs after 
the knee of the curve. For the implementations presented in 
Fig. 4, all possible interval sizes, ranges and fixed-point 
formats were explored, and the one with the best accuracy was 
selected. 

Based on the above primer on the landscape of 
implementation alternatives and their trade-offs, we review 
the reported related work. A RALUT implementation of tanh 
is reported in [4]. This work divides the input into three 
regions, a pass region where tanh(x) ≈ x, an elaboration region 
where the input is covered by a RALUT, and a saturation 
region where the output is constant. This leads to a reduced 
number of entries for the RALUT. The work also provides an 
analysis of the interval boundaries and number of LUT entries 
needed to achieve maximum accuracy. [5] gives an overview 
of such a table-based implementation of the tanh. 

An implementation of σ is presented in [6] using a 4-
interval NUPWL. In contrast, [7] reports a PWL 
implementation where they used a recursive approach to 
progressively refine and dimension the number of segments to 
achieve the desired level of accuracy. In [8], a hybrid approach 
is proposed, where a PWL gives a coarse approximation, and 
then a RALUT refines the tanh curve. 

Using polynomials of higher degree can provide sufficient 
accuracy, without the need for partitioning the input. Works 
reported in [6, 9] use parabolic curves to model the σ and tanh 
functions, with reasonable accuracy up to the saturation 
region. We note that all the works mentioned above use 
coefficients that are powers of two, to enable using shift 
operations for multiplication. A 2nd order Taylor series based 
implementation is reported in [10]. For it to achieve the same 
level of accuracy, the input needs to be partitioned in multiple 
intervals. A very different approach is taken by [11], where 

 
Fig. 4. Graph presenting (a) LUT entries depending on fractional bits and 
(b) Maximum error depending on number of entries for 11 fractional bits 
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they compute σ in terms of e as defined in Eq. 1. This work 
implements e based on [12] and increments it by 1. The work 
also implements tanh in terms of σ as defined in as Eq. 3. 

Implementation of e is considered a more significant 
challenge as it requires higher order polynomials to achieve 
sufficient accuracy. The work in [13] makes use of a 6th order 
Taylor expansion to describe the whole exponential curve, 
compared to the 2nd order used for σ or tanh. A parabolic 
synthesis approach is presented in [14] that obtains the e by 
the multiplication of several parabolic curves. Also, [14] 
introduces and compares with a CORDIC based 
implementation that is also used in [15] to implement e. A 
different approach is taken in [12], by exploiting the 
exponential change of base to express e as a power of 2. It 
splits the calculation between the fractional and integer bits. 
The fractional part is approximated as the line 1+x, and the 2nd 
power of the integer part is implemented using bit shifts. 

VII. RESULTS AND COMPARISON 
In this section, we report the implementation results of 

NACU and make a best-effort comparison with the state-of-
the-art. We mainly compare accuracy, both max and average 
error. Where possible, we also compare the area. NACU has 
been implemented as an ASIC macro in 28 nm node and can 
operate at 267 MHz. Fig. 5 presents the area break down, 
power consumption, and latency for different functions. All 
results are based on post-layout data, including simulation for 
power numbers, with all the parasitic and actual wire delay 
and capacitances of the entire design. 

The area of NACU is dominated by a pipelined divider. It 
is possible to reduce the area by adopting a sequential divider, 
as reported in [11]. We note that the cost of the pipelined 
divider is justified since it is shared between the e and softmax 
functions and gives us a higher throughput. The coefficient 
calculation area includes the LUTs for the PWL approximation 
and the dedicated units, as described in section V. The rest of 
the units are shared between the σ, tanh, e, and MAC 

functions. We note here that the area of the coefficient and 
bias calculation is comparable to that of the adder, as 
illustrated in Fig. 5. Adopting dedicated LUTs for the tanh or 
even using a generic adder to derive slope and bias from the σ 
LUTs would have nearly doubled the area. 

We compare NACU with the state-of-the-art in three 
dimensions. The first dimension is its reconfigurability. 
NACU is designed to be used as part of coarse grain 
reconfigurable architectures (CGRAs) that can be 
dynamically configured for any mix of ANNs and SNNs 
(spiking neural networks) in the same fabric instance. Such a 
CGRA needs these varieties of non-linearity available in the 
same unit. Table I shows that this has not been the objective 
of the reported implementations. The other two dimensions 
are related to the accuracy and the implementation costs. 

The results of comparing NACU’s accuracy with those of 
the related work are plotted in Fig. 6. All comparisons are 
normalised to the 16-bit NACU. The left column shows the 
max error for σ, tanh, and e. The right column shows the 
average error for σ and tanh, where it is available. For e, none 
of the related work reports average error. In Fig. 6c, d, and e 
we also report the accuracy results of the NACU using 
different bit-widths. The selected bit-widths match the ones 
used in the related work and allow for better comparison. 
Table I summarises the implementation costs for the reported 
related-work, against whom we compare. The reported 
metrics in Table I are not scaled to NACU’s technology, but 
they are reported as in the original work. Area comparison 
with the σ and tanh implementation is difficult, due to very old 
technology used [4,5,8] and FPGA implementations [6,11]. 

A. Comparison of the σ function 
The NUPWL approximation of [6] avoids multipliers 

using power of two shifts and for this reason, has 10X worse 
max error compared to NACU. The same group also reports 
two implementations of 2nd order Taylor expansions in [6]. 
However, the use of a multiplier in the Taylor series does not 
result in any accuracy improvement. The work reported in 
[10] splits σ into 102 segments to achieve 10X better accuracy 
compared to NACU. The large number of segments implies 
large LUTs, but these are not reported in the paper. A 2nd order 
Taylor series implementation with fewer segments is also 
reported in [10]. This gives comparable accuracy but, as 
expected, with increased latency – 7 cycles as opposed to 4 
cycles for the 1st order. The average error for [6] is comparable 
to its max error, [10] does not report average error. The σ 
implementation reported in [11] is based on first 

TABLE I.  RELATED WORK 

 [6]  [6] [6] [10]  [10]  [11] [4] [5] [8] [13] [14]  [14]  NACU 

Implem. NUPWL 2nd order 
Taylor 

2nd order 
Taylor opt 

1st order 
Taylor 

2nd order 
Taylor 

Based on 
ex RALUT RALUT PWL & 

RALUT 
6th order 
Taylor CORDIC Parabolic PWL 

Area [µm2] Not 
applicable 

Not  
applicable 

Not  
applicable 

Not 
reported 

Not 
reported 

Not  
applicable 1280.66 11871.53 5130.78 20700 19150 26400 9671 

Logic 
Elem. 

246/ 
15408 

368/ 
15408 167/15408 Not 

reported 
Not 

reported 
287, 372/ 

16416 
Not  

applicable 
Not  

applicable 
Not  

applicable 
Not  

applicable 
1837/ 
18752 

481/ 
18752 

Not  
applicable 

Tech. 
Node [nm] 65 65 65 40 40 90 180 180 180 65 65 ASIC, 

90 FPGA 
65 ASIC, 
90 FPGA  28 

LUT 
entries 7 4 4 102a 28a Not 

applicable 14 127 Not 
reported 

Not 
applicable 

Not 
applicable 

Not 
applicable 53 

Nr. of Bits 16 16 16 16 16 6 to 14 9 in, 6 out 10 10 18b 21 18 16 
Clock 

Period [ns] 10 10 10 2.677 2.677 2.605, 
2.294 2.12 2.12 2.8 40.3 86, 

140.74 
20.8, 
70.41 3.75 

Latency 
[Cycles] 2 2 3 4 7 4, 5 1 1 1 1 1 1 3, 3, 8 

Functions σ σ σ σ σ σ, tanh tanh tanh tanh e e e σ, tanh, e, 
softmax 

a Number of intervals, the authors do not report the LUT entries                    b Fractional bits 

 
Fig. 5. Experimental results and area breakdown of NACU  
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implementing e and using Eqs. 1. We argue that NACU is 
more efficient because it relies on division, only for the 
e/softmax function, which is only required in the last layer. 
Whereas [11] would need division in all layers for the σ /tanh 
activation functions. The work in [11] reports RMSE of 
9.1×10-3 with 0.998 correlation for the σ. In comparison, 
NACU achieves 2.07×10-4 RMSE with 0.999 correlation. 

B. Comparison of the tanh function 
The tanh implementation reported in [11] is also based on 

first implementing e and calculating tanh base on Eq. 3. The 
design in [11] reports RMSE of 1.77×10-2 with 0.999 
correlation for the tanh function., compared to NACU’s 
2.09×10-4 RMSE and 0.999 correlation. The other solutions 
for tanh reported in [4,5,8] are all based on RALUT. 
Comparing tanh LUTs to our work leads again to a trade-off 
between area and accuracy, the lower error of PWL in NACU 
provides 10X accuracy but comes at the expense of higher bit-
width and an extra multiplier and an adder. As noted by [10], 
the multiply and add unit can also be used as a MAC for 
computing the linear computation as well. For this reason, we 
claim that a PWL approach for non-linear activators is the 
most natural fit for ANN hardware implementation.  

C. Comparison of the e function 
The max error comparison of e shows that NACU is 10X 

worse. This is explained by the fact that [13,14] uses 18 to 21 
bits as opposed to NACU's 16 bits. NACU implementations 
that use larger bit-widths can reach accuracies closer to the 
related work. The use of higher-order function allows for 
better accuracy but increases the complexity of the design. 
The area of [14] scaled to 28nm node is ~5800µm2 for the 
smallest CORDIC implementation. In comparison, NACU 
takes ~9600 µm2 but implements not just e but also σ, tanh, 
and softmax. Further, note that [14] is a sequential design that 
would take 42 ns scaled to 28 nm node using data from [16]. 
In contrast, NACU, with its pipelined design, takes 90 ns for 
filling the pipeline and 3.75ns for computing each consecutive 
e. For comparison, the 6th order Taylor implementation [13] 
scaled down to 28nm [16] will have an area of ~6200µm2 and 
period of 20ns, and the parabolic implementation [14] will 
have an area of ~8000µm2 and a period of 10ns. 

The e design in [12] looks promising due to its potentially 
low hardware cost and reasonable precision. However, we 

cannot quantify area comparison as none is reported. Overall, 
NACU provides a good balance between versatility, accuracy, 
area, and latency compared to the related work. 

VIII. CONCLUSION 
In this work, we presented a common mathematical basis 

for implementing the three most common non-linear functions 
of NNs, σ, tanh, and e. We also presented a formal method to 
find the best fixed-point representation. We propose a novel 
architecture that can be dynamically configured to calculate 
the three different functions together with the softmax 
function and the MAC operation. The numerical properties of 
the functions are exploited to derive a more efficient 
architecture. The design provides accuracy comparable with 
the state-of-the-art and is proven to be more cost-efficient than 
the other implementations. The proposed architecture’s 
versatility targets reconfigurable neural network architectures 
to fulfil their diverse non-linear activation needs. In the future, 
we plan to optimise out the conventional divider with an 
approximate one. This will allow us to significantly lower the 
area cost with a small reduction in overall accuracy.  
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Fig. 6. Error plots comparing with state-of-the-art, (a)-(c) Maximum error, 
(d) & (e) Average error normalised to the proposed architecture (lower is 
better) 
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