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Abstract. Facial Emotion Recognition (FER) is the automatic process-
ing of human emotions by means of facial expression analysis [1]. The
most common approach exploits 3D Face Descriptors (3D-FD) [2], which
derive from depth maps [3] by using mathematical operators. In recent
years, Convolutional Neural Networks (CNNs) have been successfully
employed in a wide range of tasks including large-scale image classifica-
tion systems and to overcome the hurdles in facial expression classifica-
tion. Based on previous studies, the purpose of the present work is to
analyze and compare the abstraction level of 3D face descriptors with
abstraction in deep CNNs. Experimental results suggest that 3D face
descriptors have an abstraction level comparable with the features ex-
tracted in the fourth layer of CNN, the layer of the network having the
highest correlations with emotions.

Keywords: Abstraction, CNN, Deep Learning, Explainable AI, Facial
Emotion Recognition, FER

1 Introduction

1.1 Facial emotion recognition and deep learning

Facial Emotion Recognition (FER) is an active line of research in the human-
computer interaction domain, due to its potential in many real-time applica-
tions, such as surveillance, security and communication. Different architectures
of deep neural networks have been proposed, such as Convolutional Neural Net-
works (CNNs), which have been applied in several research fields, including
health care [4] and cybersecurity [5]. Most of the existing algorithms exploit
2D features extracted from images to predict emotions. Albeit computational
expensive, 3D feature-based approaches have produced more robust and accu-
rate models thanks to their information supplement [6]. In recent years, CNNs
have been successfully employed in large-scale image classification systems and
to overcome the hurdles in facial expression classification. The first studies on 3D
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FER have appeared only in the last decade, thanks to the publication of the first
public databases suitable for this objective [7]. In this research field, the state of
the art is currently represented by a few interesting neural-based approaches. In
[8], the authors presented a novel deep fusion CNN for subject-indipendent mul-
timodal 2D+3D FER. A 3D facial expression recognition algorithm using CNNs
and landmark features/masks, exploiting 3D geometrical facial models only, has
been proposed in [9]. Finally, a deep CNN model merging RGB and depth map
latent representation has been designed in [10] for facial expression learning.

1.2 Understanding abstraction in deep CNN

In mathematics, abstraction refers to the process of extracting the underlying
structure, properties or patterns from observations, removing case specific in-
formation, and building high-level concepts that can be profitably applied in
unseen but equivalent environments [11][12]. Similarly to animals and human
beings, deep neural networks process raw signals by building abstract represen-
tations that can be used to generalize to new data. The deeper the layer, the
higher the abstraction level. Such abstract representations are encoded in the
numeric values of the network weights. The cross-correlation operation [13][14]
used in convolutional layers of deep CNNs does not change the data type pro-
vided in input. Therefore, when deep CNNs are applied to images, the abstract
features extracted by the neural network can be visualized and manually ana-
lyzed by domain experts. Based on results and developments in previous studies,
the purpose of the present work is to analyze and compare the abstraction level
of 3D face descriptors with abstraction in deep CNNs.

2 Data

The data set used in this work was obtained from the Bosphorus 3D facial
database [15]. The database contained both 3D facial expression shapes and
2D facial textures up to 54 scans in various poses, expressions and occlusion
conditions. Such samples were obtained from 105 different subjects with different
racial ancestries and gender (for a total of 4666 face scans). In the following,
only two sets of expressions have been considered from the original database.
The expressions of the first set were based on Action Units (AU) of the Facial
Action Coding System (FACS) [16]. The second set, instead, was composed of
facial expressions corresponding to the 6 basic emotions (happiness, surprise,
fear, sadness, anger and disgust) plus the neutral expression. The resulting data
set was composed of 453 images. Among them, 299 were faces having a neutral
expression while the others were almost evenly split into the 6 universal emotions.

3 Methods

The CNN utilized in the following experiments was AlexNet [17]. The input layer
of the network requires RGB images having size 227×227. For such purpose,
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grayscale depth maps (see Fig. 2) extracted from the Bosphorus database have
been cropped, and converted to RGB images by replicating the grayscale channel.

3.1 3D face descriptors

One of the most common techniques for the analysis of human emotions using
facial expressions exploits 3D Face Descriptors (3D-FD). 3D-FDs can be gener-
ated from depth maps by means of mathematical operators. In this study, the
first principal curvature (k1), the shape index (S), the mean curvature (H), the
curvedness (C) and a second fundamental form coefficients (f) have been used
[18][2]. In Fig. 1 three geometrical 3D-FDs for happiness, sadness and surprise
emotions are shown.

Fig. 1. Geometrical 3D Face Descriptors: S (top left), k1 (top right), H (bottom
left), and f (bottom right).
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3.2 Transfer learning

When the sample size is small, training a deep CNN from scratch may be time
consuming as well as resulting in poor performances or overfitting. Better and
satisfying performances can be easily obtained through transfer learning ap-
proaches [19]. Given the small amount of samples in the Bosphorus data set, the
3D facial emotion recognition has been performed by using a pretrained AlexNet
model. The CNN was fine-tuned using the Bosphorus data set and trained for
classifying images into the 7 universal emotions.

3.3 Correlation analysis

The maximum activations of the fine-tuned network were calculated. The cor-
responding filters were manually visualized and analyzed by domain experts to
understand the abstraction process of the network. As expected [20], first layers
tend to detect simple patterns like edges, while channels in deeper layers tend to
focus on more complex and abstract features like nose and mouth. In order to
assess the abstraction level of 3D face descriptors the Pearson correlation coeffi-
cient ρ has been used [21]. Pearson’s ρ has been computed between each 3D face
descriptor and CNN filter activations using three different images representing
happy, sad and surprise emotions.

3.4 Symbolic regression

In order to extend the correlation analysis to more complex models, symbolic
regression [22][23] has been exploited. Symbolic regression is a multi-objective
regression analysis for exploring the space of mathematical expressions to find
optimal models in terms of accuracy and simplicity. In this experimental set-
ting, symbolic regression was used to assess the abstraction level of 3D face
descriptors. Symbolic regression has the advantage of returning human-readable
models, that can later be interpreted and explained. For this task, the commer-
cial evolutionary-based software Eureqa Formulize3 was employed. The software
has been used to find mathematical expressions involving CNN filter activations
(obtained from images representing happy, sad and surprise emotions) which
were highly correlated with 3D face descriptors.

4 Experiments

Given the small number of samples, the data set has been augmented using
geometric transformations, such as random reflection in the left-right direction,
uniform scaling, and vertical and horizontal translation [24]. In order to assess
the network performance, a cross-validation procedure has been applied to the
fine-tuning process [25] and a random set of images were selected for the final
blind test. The network reached a validation accuracy of 82.67% and a blind test
accuracy of 82.09%.

3 Eureqa Formulize is developed by Nutonian, Inc. https://www.nutonian.com/

products/eureqa/

https://www.nutonian.com/products/eureqa/
https://www.nutonian.com/products/eureqa/
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Fig. 2. Grayscale depth maps: neutral expression (top left), happiness (top right),
sadness (bottom left), and surprise (bottom right) emotions.
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4.1 Correlations between filter activations and emotions

Having trained the network for emotion classification, the CNN has been fed
with three images representing happy, sad and surprise emotions. The resulting
activations of the convolutional layers have been statistically analyzed. Fig. 3
shows the filter with the maximum activation in the fourth (conv4 ) and fifth
(conv5 ) convolutional layers for sad and surprise emotions. The selected filter
of the fifth layer highlights image areas having strong correlations with emotion
patterns, like the mouth and the wrinkles under the eyes. Besides, the most active
filter of the fourth layer does not seem to detect human-recognizable patterns.
Table 1 shows the highest correlations found in the last two convolutional layers
between single filters and emotion images. Analogous results using symbolic
regression are presented in Table 2. As expected, symbolic regression generated
models having higher correlations with emotions by merging and weighting the
contribute of different filters.

Table 1. Highest correlations between single filters and emotions.

Descriptor Conv4 Conv5
Happy Sadness Surprise Happy Sadness Surprise

C 0.7482 0,7223 -0,7008 -0,5322 0,5205 0,4722

f 0,7430 0,7313 -0,7007 0,5507 0,5301 0,4754

H 0,7464 0,7355 -0,7027 0,5773 0,5311 0,4929

k1 0,7450 0,7338 -0,7030 0,5724 0,5333 0,4906

S -0,5229 -0,5283 -0,4863 0,4538 0,3642 0,3896

Table 2. Highest correlations between Conv4 filters and emotions using symbolic re-
gression.

Descriptor Happy Sadness Surprise

C 0.8327 0,8149 -0,7958

f 0,8222 0,8201 -0,8077

H 0,8406 0,8265 -0,8184

k1 0,8498 0,8329 -0,8078

S -0,6578 -0,6329 -0,6307

4.2 Correlations between filter activations and 3D face descriptors

A similar correlation analysis has been performed between filter activations and
3D face descriptors. Pearson’s ρ increased from the input to the output layer
of the CNN culminating in the fourth convolutional layer (see Fig. 4). On the
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Fig. 3. Channel with the largest activation: conv4 (middle) and conv5 (bottom),
compared to the original image (top).
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contrary, in the fifth layer correlations between filter activations and descrip-
tors dropped 4. This result suggests that 3D face descriptors correspond to an
abstraction level comparable with the fourth layer of the network.

4.3 Abstraction level of 3D face descriptors

The fourth layer of the network was the one having the highest correlations
with emotions. Besides, the above experiments show how 3D face descriptors
correspond to a similar abstraction level. However, both for the CNN and from
a human point of view the fifth layer is the most useful for emotion classification
(compare filters in Fig. 3). These results support the hypothesis that CNNs have
a superior level of abstraction with respect to 3D face descriptors. Such superior
level may play a key role in transforming features that are highly correlated with
emotions (as conv4 filters and descriptors) into useful classification patterns.

5 Conclusions

The main purpose of this work was to analyze the differences between the ab-
straction level of 3D face descriptors with abstraction in deep CNNs. For this
purpose a pre-trained deep CNN was fine-tuned on the Bosphorus data set.
Correlation analyzes have been performed both between filter activations and
universal emotions, and between filter activations and 3D face descriptors. Ex-
perimental results suggested that 3D face descriptors correspond to an abstrac-
tion level comparable with the features extracted in fourth layer of the CNN.
However, both for the network and from a human point of view the most useful
features for emotion recognition correspond to the fifth layer activations. Such
features may play a key role in transforming features that are highly correlated
with emotions into useful classification patterns. Future steps consist of contin-
uing and deepening the activation and correlation analyses to better understand
abstraction in deep CNN.
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Fig. 4. Relationship between filter activations and correlation values in conv4 (top)
and conv5 (bottom). Correlation analysis has been performed between filter activa-
tions and descriptors.
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