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ABSTRACT
We present a newmethod for electrochemical sensing, which compensates the fouling effect of propo-
fol through machine learning (ML) model. Direct and continuous monitoring of propofol is crucial
in the development of automatic systems for control of drug infusion in anaesthesiology. The foul-
ing effect on electrodes discourages the possibility of continuous online monitoring of propofol since
polymerization of the surface produces sensor drift. Several approaches have been proposed to limit
the phenomenon at the biochemical interface; instead, here, we present a novel ML-based calibra-
tion procedure. In this paper, we analyze a dataset of 600 samples acquired through staircase cyclic
voltammetry (SCV), resembling the scenario of continuous monitoring of propofol, both in PBS and
in undiluted human serum, to demonstrate that ML-based model solves electrode fouling of anaes-
thetics. The proposed calibration approach is based on Gaussian radial basis function support vector
classifier (RBF-SVC) that achieves classification accuracy of 98.9% in PBS, and 100% in undiluted
human serum. The results prove the ability of the ML-based model to correctly classify propofol
concentration in the therapeutic range between 1 µM and 60 µM with levels of 10 µM, continuously
up to ten minutes, with one sample every 30 s.

1. Introduction

Continuous Therapeutic Drug Monitoring (TDM) is the clini-
cal practice of constantly measuring the drug concentration in the
effort of optimizing the drug dosage to each patient. Real-time
monitoring of sedative drug concentrations (such asmidazolam and
sufentanil) was proved to be beneficial to avoid inadequate sedation
and its complications in intensive care units for mechanically ven-
tilated patients (Nies et al., 2018). In general intravenous anaesthe-
sia, the optimal therapy requires the continuous monitoring of the
concentration of the anaesthetic to maintain a certain level of seda-
tion during the surgery, which is essential to avoid useless deep
states and prolonged chemical coma. Propofol (2,6-diisopropyl
phenol) is the most commonly used intravenous anaesthetic (Sahi-
novic et al., 2018). However, high concentrations of propofol are
dangerous: common side effects include irregular heart rate, low
blood pressure, addiction and stopping of breathing. In particu-
lar, propofol infusion syndrome is a rare complication of propo-
fol administration presenting a high death rate, requiring an accu-
rate prevention (Mirrakhimov et al., 2015). A real-time feedback-
controlled algorithm that uses as input the continuously monitored
concentration of propofol ensures both more precise and safer se-
dation than what is currently achieved without closed-loop sys-
tem (Simalatsar et al., 2018).

Biosensors are playing a relevant role in numerous fields of
application including healthcare, environment, and food indus-
tries (Kumar et al., 2019) and may be used for point-of-care di-
agnostics (Mahato et al., 2018). Electrochemical sensors have
taken high relevance for propofol monitoring (Kivlehan et al., 2015;
Stradolini et al., 2018a), especially, cyclic voltammetry (CV) tech-
niques (Aiassa et al., 2019a). With this approach, some electronic
systems were proposed for the monitoring of anaesthetics, e.g.,
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propofol and paracetamol (Stradolini et al., 2018c; Aiassa et al.,
2019b). The sensor is a three electrodes electrochemical cell con-
sisting of a reference electrode (RE), a counter electrode (CE) and
a working electrode (WE). A potentiostat applies a voltage sweep
to the electrochemical cell, and then it samples the current pro-
duced by the induced redox. By analyzing the shape of the so-called
voltammogram (current upon the voltage), it is possible to extract
the concentration of the drug in the sample.

Although numerous sensors have been proposed for detect-
ing and measuring propofol, achieving Limit Of Detection (LOD,
the minimum concentration detectable by the sensor) of 0.5 µM
(0.1 µg/ml) in only 25 s (Hong et al., 2016), most of those sensors
leverage on blood-spot sampling with disposable sensors, most of
the time single-use (Dincer et al., 2019), which cannot be used in
an automatic TDM closed-loop system.

In continuous detection of propofol, when a difference of po-
tential is applied to trigger the direct oxidation, a propofol free rad-
ical is generated (Langmaier et al., 2011). Unfortunately, free rad-
icals react with O2 or they undergo polymerization, leading to the
formation of a polymeric film (Heyne et al., 2003; Stradolini et al.,
2018b). The polymeric thin film covering the electrodes may de-
grade the sensor signal leading to the fouling phenomenon (Yang
et al., 2013). The fouling film is robust, with low permeability, ther-
mally stable and chemically inert itself. Being composed of high
molecular weight species, it adheres tightly to the electrode. The
fouling is highly limiting the development of closed-loop systems
for monitoring of anaesthetics because continuous monitoring of
propofol requires high stability in time.

The literature presents a few attempts to solve the propofol foul-
ing problem. Good results were achieved by coating the electrode
with a PVC membrane (Kivlehan et al., 2015). Still, its low me-
chanical resistance constrains to carry out electrode cleaning in or-
der to ensure the long term performances (Stradolini et al., 2018b),
which, on the other hand, limits the final application since it re-
quires constant human intervention. Commercial pencils are suit-
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Figure 1: Proposedmachine-learning based approach for continuous monitoring of propofol: from left to right, the sample is analyzed through electrochem-
ical sensors and CV to extract relevant features to be fed a ML-based that determines the range of concentration of the propofol, compensating the fouling
effect.

able for propofol detection, and their composition balances the foul-
ing effect (Stradolini et al., 2018a). Nevertheless, sensor response
highly depends on the conformation of the sensor, where any small
change in geometry, size, and composition results in a drastic drop
in sensor performance.

In this work, we propose a novel machine learning (ML)-based
calibration procedure to compensate the fouling effect. Our ML
classifier is implemented to identify the correct concentration of
propofol in a given sample to contribute to the development of a
system for closed-loop controlled infusion of anaesthetic. Our clas-
sifier is designed, and its parameters are optimized using a large
dataset of 480 samples acquired in PBS background. Later, the
model is validated with a smaller, still representative, dataset of
120 samples for direct monitoring of propofol in undiluted human
serum.
2. Machine learning for continuous monitoring

Soft modelling techniques based on MLmodels are commonly
coupled to biosensors as tools for solving complex mathemati-
cal models related to biochemical processes (Esteban et al., 2006;
De Vito et al., 2018). Applications such as peak deconvolution, pH,
temperature and fouling compensation have been successfully ap-
plied to e-tongues and e-noses cyclic voltammograms by the aid of
ML models, such as support vector machines and artificial neural
networks (ANNs) (del Valle, 2017; DeVito et al., 2018;Wang et al.,
2019). Those systems extract relevant features from biochemical
analysis, and they provide them to ML-based algorithms to build
complex mathematical models. For ANN-based ML-based tech-
niques, key components to be extracted from a cyclic voltammo-
gram are the peak position, peak height, peak width half-height,
peak sum of derivatives, and charge (Asir et al., 2019).

The fouling phenomena in phenolic compounds are character-
ized by a strong non-linear response, limiting the application of pre-
established mathematical models. Chemometric techniques based
onML have been successfully applied to compensate for the lack of
theoretical models (Apetrei and Apetrei, 2013; Maleki et al., 2017;
Li et al., 2019; Sheng et al., 2019). To the best of our knowledge,
an ML algorithm specifically designed to balance the fouling of
propofol has never been proposed.

Recent works suggested that monitoring controlled-delivery
of anaesthetics may be achieved with a 10% accuracy around the
target concentration, and with one measurement every 30 s, con-
tinuously in time, while the therapeutic concentration of propofol
ranges between 0.25mg/l and 10mg/l (1 : 60 µM) (Simalatsar et al.,
2018). The goal of this work is to develop a technique suitable for
the continuous measurement of propofol concentration every half a
minute and able to discriminate the concentration level lower than
12 µM. Fig. 1 presents the proposed ML-based method. Through

an electrochemical sensor and CV technique, the redox of propofol
is analyzed. From the voltammogram, several peculiar features are
extracted and fed to the ML-based classifier. The classifier deter-
mines the concentration level of propofol in the sample in the form
of classes, compensating fouling of propofol. According to the re-
quirements, we subdivided the therapeutic range into classes repre-
senting concentration levels of 10 µM. The developedML classifier
provides the anesthesiologist with a tool for direct determination of
the concentration of propofol in human serum. The classifier, com-
pared to a regressor, directly provides the information required to
maintain the constant-dose in the range of interest.
3. Materials and methods

In this work, chemicals, setup, and sensor (Section 3.1) are
defined leveraging of previous works that had been proven to be
suitable for the monitoring of anaesthetics (Stradolini et al., 2018a;
Tuoheti et al., 2020). Section 3.2 describes the procedure for ac-
quiring the samples, which resembles the real scenario of the target
application. The dataset elaboration is detailed in Section 3.3, and
used to train an ML-based algorithm, which is fully described in
Section 3.4.
3.1. Chemicals

A stock solution of 5.4mM propofol is prepared on the day of
use with 2,6-Diisopropylphenol (propofol) purchased from Tokyo
Chemical Industry Co., Ltd. and dissolved in 0.1M NaOH.
The samples are prepared with seven concentrations of propofol,
equally spaced in its therapeutic range: 10, 20, 30, 40, 50, and
60 µM. The samples for primary analysis, and the training and test-
ing sets for the ML classifiers are prepared in Phosphate Buffer
Saline (PBS, 10mM, pH7.4) from Sigma Aldrich®. The final test-
ing is done with real and undiluted human serum with the addition
of propofol in the therapeutic range at body temperature, which
artificially mimics the infusion of anaesthetic done in the clinical
environment. The samples for classification in human serum are
prepared in undiluted human serum, heat-inactivated from human
male AB plasma, from Sigma-Aldrich®, and they are continuously
kept at 37 ◦C by a hot plate stirrer from VWR®.

The sensor is a three-electrode electrochemical cell consisting
of two 0.5mm diameter HB mechanical pencil lead from Papete-
ria Migros, and one 0.3mm diameter platinum wire as shown in
Fig. 2. Similarly to what presented in (Tuoheti et al., 2020), the
WE consists of one pencil lead, exposed to the sample for 10mm
of its length, resulting in an active area of around 32mm2. The CE
is the other pencil lead exposed to the sample for 15mm to main-
tain a ratio between the area of WE and CE smaller than one. The
RE is the platinum wire exposed to the sample for 10mm. A sili-
con disk keeps the cell stable, and the electrodes are directly wired
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Figure 2: Proposed experimental setup: the three-electrode electrochemi-
cal cell consisting of two pencil lead (WE and CE) and a platinumwire (RE)
that are immersed in the sample containing propofol dissolved in ether PBS
or Human Serum. The wires are connected to the potentiostat to perform
CV.

on their top to the instrumentation. The design of the electrochem-
ical cell is the result of a long study performed through potassium
ferrocyanide to define the best geometry for a disposable andminia-
turized sensor. It is worth to be noticed that the platinum pseudo-
reference electrode utilized in this work did not show any visible
difference of stability when compared to silver reference electrodes
present on commercial screen-printed electrodes. The selectivity of
this type of pencil graphite sensors has been proven to be optimal
for the detection of propofol in human serum for the target appli-
cation through interference studies in previous works (Stradolini
et al., 2018b).
3.2. Data collection

According to the description in Section 2, the proposed sensor
is capable of compensating fouling in real-time, at a fixed concen-
tration of analyte in its therapeutic range. For this reason, all the
samples prepared according to Section 3.1 are measured twenty
consecutive times, with an interval time of 30 s, to be consistent
with the continuous monitoring target of this work.

The proposed sensor is connected to a commercial potentio-
stat, the Metrohm Autolab PGSTAT 302N, driven by the software
Nova 1.11. The analysis of the sample is performed via a staircase
cyclic voltammetry (SCV) procedure. The SCV is executed with a
scan rate of 0.1V/s, with a driving voltage ranging in – 0.8 : 0.7V,
with a step voltage height of 5mV, and a step time length of 30ms,
starting from 0V, reaching up to 0.7V, lowering down to – 0.8V,
and finally settling again at 0V. It is worth noticing that the pro-
cedure is not formally cyclic because the proposed method entails
that the fouling is limited to its minimum. Cycling the voltage scan
more than one time per measure would catastrophically reduce the
lifespan of the sensor.
3.3. Dataset

The dataset consists of m = 480 samples acquired from four
different sensors in PBS and m = 120 samples obtained in human
serum. The dataset in PBS has been extended with respect to the
human serum one in order to improve the optimization process of

the ML-based algorithm and its parameters. Each recorded sample
is a voltammogram relating the current measured in function of the
potential applied to the electrochemical cell. The voltammograms
acquired from propofol measurements at known concentrations are
analyzed in order to extract three relevant features the peak cur-
rent, the potential at peak current, and the total charge. The peak
Faradaic current ip is the current resulting from primary propofol
oxidation, with the removal of the baseline charging current. Ep isthe cell potential at which the peak current is achieved. ip and Epare the most relevant features for characterizing the electrochemi-
cal measurements (Carrara, 2012). Moreover, the integral of the
voltammogram in the window 0 : 0.7V is computed. The latter
is the total charge exchanged during primary propofol oxidation,
denoted as Q, that has been proved to be relevant in the determi-
nation of drugs (Aiassa et al., 2020). Lastly, the ordinal number
of measurements performed with the same sensor, nmeas, is addedto the feature list. The input features matrix X is first standard-
ized by removing column mean, and scaled to unit variance. This
is of paramount importance since the features have different unit
scales. The dataset is then split into a training and test set of ratio
80% / 20%.
3.4. Support vector classifier

Given the nonlinearity induced by the fouling on the sen-
sor response, non-linear classifiers are considered in this work.
Kernelized-SVCs are suitable for non-linear classification prob-
lems by constructing the optimal hyperplane in the features space
induced by a kernel function (Cortes and Vapnik, 1995). The
SVC predicts propofol concentration class of unknown samples
according to distance or similarity of the samples to the training
instances. All processing stages and algorithms are implemented
within a Python 3.7.4 environment, using NumPy and scikit-learn
libraries (Pedregosa et al., 2011).

Let X = {xi}i=1,⋯,m, with xi ∈ ℝn, denote the input tensor of
m samples and n features. Let y ∈ ℝm denote the vector labelling
the propofol concentration of each measurement, where each tar-
get concentration (10, 20, 30, 40, 50, and 60 µM) is encoded into
a categorical class with values from zero to five. The objective of
the six-class classifier is to construct a predictor based on the train-
ing set (Xtrain, ytrain) that is able to divide the input features space
into a collection of regions belonging to each class. The decision
boundaries are refined in the training process, for which the metric
used is the classification accuracy:

accuracy =
# correctly predicted test samples

# test samples
(1)

During inference, the predicted class indicates the range of concen-
tration of propofol in the sample. In kernelized-SVCs the optimiza-
tion objective is

min
�

1
2
�T ⋅M ⋅ � − eT ⋅ �

subject to yT ⋅ � = 0,
0 ≤ �i ≤ C, i = 1,⋯ , m,

(2)

whereM is an m by m positive semi-definite matrixMij = yi ⋅ yj ⋅
K(xi, xj), and K(xi, xj) ≡ �(xi)T ⋅ �(xj) is the equation defining
the SVC kernel. e is a vector of ones of length m. C is a regular-
ization hyper-parameter tuning the tolerance of margin violations.
Linear, polynomial, Gaussian radial basis function (RBF), and sig-
moid kernels are investigated. The training instances are shuffled,
and ten-splits cross-validation is performed, where the metric used
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is the prediction accuracy based on decision boundaries. The ten
splits are stratified to preserve the number of samples per class in
each training and validation split (80% / 20%). An analysis is car-
ried out to assess how the type of kernel, and the features to be con-
sidered in the dataset, influence SVC performance. Then, a cross-
validation grid-search on the kernelized-SVC hyper-parameters is
carried out to optimize the classifier. Finally, the classification per-
formance of the optimal SVC is evaluated on the test set. LIBSVM
library is used, where a one-versus-one scheme is adopted for the
multi-class classification (Chang and Lin, 2011).
4. Results

Section 4.1 presents the performance of the sensor for propo-
fol detection through standard metrics and shows the limitation of
a linear model in the given application. Several experiments and
analysis are carried out to implement the here proposed ML-based
algorithm. Namely, the optimal kernel is selected (Section 4.2),
the best set of features is defined (Section 4.3), and the parameters
of the classifier are optimized (Section 4.4). The previous experi-
ments are performed with the dataset obtained from the 480 sam-
ples in PBS background. Such a stable background may facilitate
the identification of the best ML model for the compensation of
propofol fouling. Finally, in Section 4.5, the proposed ML-based
SVM is validated on human serum.
4.1. Limits of standard linear model

Fig. 3 presents the resulting voltammogram obtained by repeti-
tively acquiring the Faradaic current in a sample of 60 µMof propo-
fol, considering PBS (Fig. 3a), and human serum (Fig. 3b) as back-
ground. Even though both the sensor and the concentration of
propofol are not varying, the curves are radically varying. Fig. 3a
illustrates fouling on the carbon surface of the electrode in PBS.
Namely, every new measurement the fouling layer increases on the
interface, reducing the height of the primary oxidation peak (A),
and shifting the peak itself to the right. Peak B and C are substan-
tially changing in time, similarly to A, presenting fouling as well. In
this work, the analysis focuses on the primary peak A, which is the
best candidate to determine the concentration of propofol, due to
higher magnitude which improves sensitivity, and higher distance
from other peaks, which enhances selectivity.

Fig. 3b shows a detail of peak A in the undiluted human serum,
obtained by baseline subtraction and filtering. The human serum
contains proteins completely absent in PBS, which embed and ad-
sorb the propofol. For this reason, the free propofol detectable in
serum is lower than in PBS, resulting in reduced Faradaic current,
signal strength, and reduced sensitivity (Stradolini et al., 2018c).
As expected, the current peak is lower (one fifth), and the passiva-
tion due to fouling is again visible.

The full dataset acquired is elaborated to extract the sensor cal-
ibration according to the linear model commonly used in electro-
chemical sensors (Aiassa et al., 2019a) to evaluate the limitation
introduced by the fouling phenomenon. The calibration relates lin-
early the primary oxidation current peak and the propofol concen-
tration recalling the Randles-Ševćik equation (Carrara, 2012). The
calibration is performed using 80% of the samples, to be consis-
tent with the ML-based method. The linear calibration procedures
resulted in a sensor with a sensitivity of 162.9± 10.3 nA/µM and a
LOD of 2.4± 0.1 µM with PBS as background. In human serum,
the sensor presented a sensitivity of 28.8± 7.7 nA/µM and LOD of
4.9± 1.3 µM. The sensitivity has been calculated as the coefficient
of regression through linear regression fit, while LOD has been

Figure 3: Voltammogram from propofol detection in time at fixed 60 µM in
PBS (a), and in human serum (b). In human serum, the peak is graphically
highlighted by baseline subtraction, and filtering since the lower free con-
centration of propofol reduces its visibility. In both cases, the peak A lowers
in current after each new measurement due to the fouling phenomenon.

computed as three times the standard deviation of the blank signal
around the peak, over the sensitivity (Stradolini et al., 2018a). Both
sensitivity and LOD variations are computed with the residual sum
of squares of three times standard deviation of each observation.

Despite being promising, the two extracted linear calibrations
present their limits only when considering the measurements in
time. Reporting the linear model to a six-classes classifier, as the
ML-based model will do in this work, the classification accuracy
tested on the remaining 20% of the samples are 69.8% and 33.3%
in PBS and human serum, respectively. This analysis proves that
it is not possible to develop a system for continuous monitoring of
propofol concentration without compensating the non-linear foul-
ing effect with a non-linear model.
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Table 1
Selection of the appropriate kernel for propofol classification: comparison among different kernelized-SVCs
in ip − Ep features space with their default hyper-parameters. The best results are achieved with RBF-SVC.

Kernel type Linear Polynomial RBF Sigmoid

Kernel function K(xi, xj) xTi ⋅ xj ( ⋅ xTi ⋅ xj + r)
d exp (−‖xi − xj‖2) tanℎ( ⋅ xTi ⋅ xj + r)

Kernel hyper-parameters -  = 1∕m, r = 0, d = 3  = 1∕m  = 1∕m, r = 0
Soft-margin penalty parameter C = 10 C = 10 C = 10 C = 10
Classi�cation accuracy 43.8% 86.5% 90.6% 33.3%

Figure 4: Cross-validation classification accuracy of RBF-SVC trained
with four combinations of input features. The box plots extend from lower
to upper quartile values of cross-validation accuracy, with median (dotted
blue line) and average (red line), and whiskers show the range of classifi-
cation accuracy. The complete set of feature ({ip, Ep, nmeas, Q}) showsvisibly an higher accuracy, that cannot be reached with less features.

4.2. Kernel selection

The selection of the most appropriate kernel for the classifi-
cation of propofol is exploited implementing linear, polynomial,
RBF, and sigmoid SVCs with their default hyper-parameters. The
classifiers decision boundaries are constructed from the training set
in the space built by the combination of standardized peak current
and standardized potential at peak current (ip − Ep space). The
latter are the main features to characterize propofol electrochem-
ical measurements. The different classifiers are trained with ten-
splits cross-validation on the training set and evaluated on the test
set. The four different kernel function, the kernel hyper-parameters,
and their classification performance are reported in Table 1. The
decision boundaries of each kernelized-SVC are visualized in Sup-
plementary Material, Fig. S3. Linear and sigmoid kernels are not
suitable for detection of propofol (see Table 1). Meanwhile, non-
linear kernels enable computing the decision hyperplanes in the
space of higher dimension. Polynomial and RBF are the most accu-
rate kernels, and the decision boundaries are smoothly separating
the classes. RBF kernel is chosen for the subsequent experiments
since it yields the higher classification accuracy of 90.6% on the
test set.
4.3. Features selection

Different combinations of input features are evaluated on the
RBF-SVC. This optimization will help to understand the effect of
the different features extracted from the voltammograms on the

classification accuracy of the ML model. The possible combina-
tions of features considered are {ip, Ep}, {ip, Ep, nmeas}, {ip, Ep,
Q}, and {ip, Ep, nmeas, Q}. All the different input sets are fed to
the classifier, and a ten-splits cross-validation is performed on the
training set. The cross-validation accuracies are presented in Fig. 4
with a whisker plot. It highlights that classification accuracy scales
with the amount of features included in the dataset. Indeed, it could
be noticed from Supplementary Material, Fig.S3, that samples be-
longing to classes two and three are mis-classified in features space
ip − Ep, since the samples are intermingled. Besides, for the set
of features {ip, Ep, Q}, classification accuracy is more dispersed,
and it is lower than using nmeas instead of Q. There is a high cor-
relation between the charge exchanged during propofol oxidation
and the peak oxidation current. When the training set contains all
four features, significant improvement in cross-validation accuracy
is observed, and the latter reaches 0.970 ± 0.020.
4.4. Hyper-parameters optimization

RBF-SVChyper-parameters are tuned through cross-validation
grid-search in order to optimize the hyper-parameters of our pro-
posedMLmodel. The non-linear coefficient  is swept from 10−9 to
103, while the soft margin penalty parameter C is swept from 10−2
to 1010. Both sweeps are performed in logarithmic scale, train-
ing 169 SVC models. The training set (Xtrain, ytrain) comprising
the four features is shuffled, and ten-splits cross-validations are im-
plemented. The training and validation accuracies are computed
for each split. Their average value is retained for classifier com-
parison. Supplementary Material, Fig. S2, displays the heatmap
of the cross-validation accuracy on hyper-parameters, highlighting
the hyper-parameter space yielding themost accurate classifier. It is
observed that for large values of  , the support vectors are not able
to separate the samples. They influence very few training instances.
Conversely, a low value of  over-constrains the classifier model,
that ends up behaving like a linear classifier. The classifier does not
capture the complexity of the non-linear dataset. As for the soft-
margin penalty parameter C , a lower value is preferred to reduce
over-fitting trading-off accuracy. Larger values for C tend to gen-
eralize better, but maximum accuracy is reached for C = 104, and
it does not improve beyond. RBF-SVC models with C lower than
104, and yielding cross-validation accuracy above 97.5% are eval-
uated on the test set. RBF-SVC with parameters {C = 100,  = 1}
yields classification accuracy of 98.9%.
4.5. Validation in human serum

After the selection of the best ML-based model for propofol
fouling compensation in PBS buffer, the proposed RBF-SVC clas-
sifier is validated in undiluted human serum at the body temper-
ature (37 ◦C). The CV dataset from propofol measurement in hu-
man serum is pre-processed as the dataset from PBS. The column
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Figure 5: Results of validation in undiluted human serum: the confusion
matrices show the difference between real concentration (true class) and the
concentration estimated (predicted class). While the standard linear model
(a) leads to wrong estimation 33% of the time, the proposed ML-based
model (b) always outputs a correct result.

mean-centering and standardization to unit-variance are applied,
and the dataset is split into training/test set of ratio (80% / 20%).
All four features {ip, Ep, nmeas, Q} are sent to the classifier and
a cross-validation grid-search is carried out for the optimization
of the hyper-parameters C and  . The RBF-SVC models yield-
ing cross-validation accuracy superior to 94.0% are selected, and
evaluated on the test set. The same RBF-SVC which obtained the
higher performance in PBS (with {C = 100,  = 1}), yields the
best results also in human serum. The maximum classification ac-
curacy achieved by our model, in human serum, is 100%, with a
null generalization error. The lower error and higher gain achieved
by the classifier in serum with respect to the PBS is justified by the
smaller dataset, 120 samples for human serum and 480 samples for
PBS.

Fig. 5 displays the results of the validation carried directly
in undiluted human serum, in the form of confusion matrices,
which presents the prediction accuracy graphically. As visible in
Fig. 5a the standard linear model features a classification accuracy
of 33.3%, leading to a wrong estimation of the concentration in
66% of the cases. Meanwhile, the proposed ML-based model with
the RBF-SVC classifier (Fig. 5b) compensates the fouling resulting
in an accuracy of 100%. With this result, we prove that our sen-
sor is suitable for continuous monitoring of propofol for up to ten
minutes, with one sample every 30 s, discriminating concentration
levels of 10 µM.

5. Discussion

Previous works had proven that it is possible to detect propofol
with small LOD with inexpensive and disposable sensors (Hong
et al., 2016). At the same time, Simalatsar et al. (2018) opened the
need for sensors for continuous monitoring of anaesthetics for im-
proved TDM-assisted anaesthesiology practice. With this goal in
mind, Kivlehan et al. (2015) and Stradolini et al. (2018a) faced the
problems of fouling and electrode-passivation in continuous mea-
surement of propofol using newmaterials and newmechanical pro-
cedures. In this work, we demonstrated, on one hand, the difficul-
ties of using standard linear models in continuous measuring of
propofol, on the other hand, we proposed a novel soft-modelling
based solution to compensate via ML-based method the problem
of fouling.

The proposed sensor itself features LOD of 4.9± 1.3 µM in
real undiluted human serum, which is ten times more than the
LOD reached by (Hong et al., 2016), but still below the minimum
concentration of interest (10 µM). More comparisons on the LOD
with respect to the state-of-the-art are available on Supplementary
Material, Table S1. The kernelized-SVM has been proven to be
optimal for compensating the problem of fouling since it reaches
100% of accuracy in real undiluted human serum at steady 37 ◦C
in discriminating 10 µM of propofol. Moreover, extensive experi-
ment and optimization have demonstrated that the best kernel for
SVM in this application is RBF, with the best parameter set to
{C = 100,  = 1}, considering as input feature the Faradaic pri-
mary current peak (ip), the potential at the current peak (Ep), thetotal charge exchanged during Faradaic process (Q), and the ordi-
nal number of measurements performed with a given sensor since
it was new (nmeas).
6. Conclusion

We developed a novel ML-assisted method to compensate the
fouling effect of propofol on electrochemical sensors to improve the
anaesthesiology practices. Through extensive analysis, we demon-
strate that the proposed model based on Gaussian RBF-SVC helps
to obtain high classification accuracy (higher than 98.9%) both in
PBS and in human serum. Our ML-based model discriminates
10 µM concentration with 100% classification accuracy, directly
in undiluted human serum at body temperature, and continuously
up to ten minutes to meet the requirement for the development of a
system for closed-loop controlled-infusion of anaesthetics. Future
work will include the implementation of the proposed model in a
portable electronic device for continuous monitoring of anaesthet-
ics and its test with clinical samples.
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