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Assessment of groundwater geochemistry and human health risk of an intensively cropped 
alluvial plain, NW Italy 
 
 
Abstract: 
Groundwater chemistry data play an essential role to identify the water quality status and assess 

the exposure to human health. Therefore, in the present research, combined approaches used to 

assess the geochemistry, sources of ions and human health risk in the groundwater of the 

Tronzano Vercellese. Moreover, a geographic information system (GIS) technique was applied 

to identify locations have the most risk to human health. The results of the present study show 

that the groundwater samples had sequence of Ca2+>Mg2+>Na+>K+ in cationic, HCO3
->SO4

2-

>NO3
->Cl->F- in anionic and Zn>Fe>Ba>Ni>Mn>Cu>Cr>As in metals abundance. The 

hydrogeochemical approaches indicate that the major ions chemistry was mainly controlled by 

the weathering of carbonate and silicate minerals, and ion-exchange reactions. Furthermore, 

statistical analysis reveals that the non-lithogenic origin was the primary sources of some 

elements (Mn, Zn, Ba, NO3
- and K+) in the water samples. The hazard quotient (HQ) and hazard 

index (HI) were estimated to assess the risk to human health using the United States 

Environmental Protection Agency (USEPA) methods. Estimated HQ and HI values were higher 

for the child as compared to the adult and suggesting that the elements posed little hazard 

individually in the case of the child.  

 

Keywords: Tronzano Vercellese, hydrogeochemistry, risk to human health, sources 

identification, GIS  
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Introduction  
A key objective of the European Directives 2000/60/EC and 2006/118/EC is to attain good 

ecological condition in water bodies. Likewise, in Italy, the legislation for water quality has been 

introduced a law (319/76) for the first-time emission standards for all discharges into 

watercourses and public sewers and introduced a law (D.Lgs 152/99) for the water protection 

plan. The Water Framework Directive (WFD) has been enforced in Italy through D.Lgs 152/06 

and its modifications (D.Lgs 4/08), which provide a comprehensive treatment of the whole 

subject concerning the legislation on environmental matters. The Legislative Decree No. 152/06 

is committed to the protection of waters against pollution and management of water resources. 

The Italian Legislative Decree 31/2001 has set 64 significance parameters of water for human 

consumption for all Italian reasons. Thus, to analysis and reporting of groundwater chemical data 

of Italian regions are very significant for the current and future groundwater resources 

management. 

Assessment groundwater geochemistry and human health risk due to the consumption of 

metals in the groundwater is essential for the people of any area in the world. In the recent era, 

groundwater depletion and contamination are the most serious issue to society due to several 

factors, such as climate change, rock-water interaction, urbanization, agricultural, seawater 

intrusion, industrialization etc (Giménez-Forcada et al., 2010; Aeschbach-Hertig and Gleeson, 

2012; Huang et al. 2013; Kløve et al., 2014; Singh et al., 2015; Wu and Sun, 2016; Morán-

Ramírez et al., 2016: Vengosh et al., 2016: Sar et al. 2017; Selvakumar et al., 2017;  Mukate et 

al., 2018; Abu-alnaeem et al., 2018; Enitan-Folami et al., 2019; Qiu and Gui, 2019; Subba Rao et al., 

2019; Ahamad et al., 2020). Weathering of rocks, seawater intrusion and anthropogenic activities 

are highly responsible factors for the deterioration of groundwater quality in Italy (Debernardi et 

al., 2008; Capri et al., 2009; Ghiglieri et al., 2009; Giménez-Forcada et al., 2010; Sappa et al., 

2014; Serio et al., 2018; Busico et al., 2018; Tiwari et al., 2019a). 

  Land use and land cover can affect the groundwater quality of any area (Singh et al., 

2010; Morgenstern and Daughney, 2012). Kulabako et al., (2007) studied the impact of land use 

on groundwater quality and observed that the informal settlements as solid waste dumps, animal 

rearing activities, excreta disposal systems and greywater are key factors for deterioration of 

groundwater quality at Kampala, Uganda. Aiuppa et al., (2003) stated that the natural and 

anthropogenic (agricultural and urban wastewaters) factors are responsible for the contamination 
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of the Etna aquifers, Italy. Cidu et al., (2009) assessed the impact of past mining activity on 

groundwater of SW Sardinia, Italy and found that a high concentration of Pb in drinking water in 

the area. Pisciotta et al., (2015) reported that the groundwater of several regions of Italy is 

contaminated with nitrate due to the use of large-scale manure and fertilizers for farming. 

Furthermore, several researchers have reported that the groundwater of different region of Italy is 

contaminated with As (Sappa et al., 2014), Hg (Grassi and Netti, 2002) and CrVI (Brunetti et al., 

2014; Lelli et al., 2014; Tiwari et al., 2019b).  

The risk to human health assessment due to intake of metals contaminated groundwater 

has recently increased in significance across the globe. In case of Italy, recently some researchers 

have assessed the human health risk due to groundwater contamination in the urban and 

industrial sectors (D’Ippoliti et al., 2015; Paladino and Massabò, 2017; Tiwari and De Maio, 

2017; Riva et al., 2018). Furthermore, in agricultural areas of Italy, there is some information 

available on human health risk due to consumption of nitrate contaminated groundwater 

resources (Pisciotta et al., 2015; Paladino et al., 2018). However, there are not much data 

available on risk to human health due to the intake of metals in the groundwater resources of the 

agricultural areas of Italy. Therefore, the aims of the present research were: i) to assess the 

concentration of metals and major ions in the groundwater of an agricultural area; ii) to evaluate 

the hydrogeochemistry and sources of elements; iii) to calculate the health risk on adult and 

child; iv) identify the high-risk zones in the study area using a GIS technique.  The outcome of 

the present research could play the most vital role in taking quick groundwater management 

decisions by policymakers of the area. 

 

Materials and methods  

Study area 

Tronzano V.se is situated in the Po River plain in Piedmont region of Italy and has an area 

around 45 km2 with an elevation of 182m. The water consumption for the municipality is around 

196.000 m3 (2015, http://dati.istat.it/Index.aspx?QueryId=20138). Usually, drinking water comes 

from wells (415 Mm3) and then from springs (160 Mm3) and the remaining from lake river and 

artificial basin (88 Mm3) in Piedmont region. However, in Tronzano V.se population (3454, 

census 2019 https://www.tuttitalia.it/piemonte/85-tronzano-vercellese/statistiche/popolazione-

eta-sesso-stato-civile-2019/) use wells water for drinking, domestic and irrigation. The study area 
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climate is the continental Mediterranean and from 1994 to 2012, it has mean annual temperature 

of 12.7°C with a maximum monthly mean of 26.3°C in 2003 and a minimum of -0.9 °C in 2006. 

The mean annual rainfall from 1994 and 2012 is 878 mm with a maximum of 1197 mm in 2010 

and a minimum of 511 mm in 2001 (Zhao et al., 2013). The major portion of Tronzano V.se is 

an agricultural area with approximately 65% of the study area. Around 27% of the area covered 

by forest, fruit crops and lawn, and 8% by other lands (such as urban areas and water bodies). 

The municipality of Tronzano V.se has a total of  11 farms 

(https://www.impresaitalia.info/013/1/aziende-agricole/tronzano-vercellese.aspx) and these 

farms mainly produce corn and rice. The north part of the municipality has mainly corn 

production, while the south part of the municipality is producing different types of rice.  

The Tronzano V.se has "Fluvioglacial and Fluvial Riss" and "Fluvioglacial and Fluviale 

Würm" deposits (Fig. 1), which formed after the incision of the glacial apparatuses through 

various occurrences (Bonsignore et al., 1969).  

Fluvioglacial and Fluvial Riss: the sediments that give rise to this type of deposit refer to an 

interval of time that appears to be entirely included in the basal part of the Recent Pleistocene. 

These deposits are essentially made of clayey-sandy-gravelly materials and at their base, they 

present paleosols with a characteristic red-orange colour (Giraudi C., 2014; De Luca et al., 

2019).  

Würm Fluvioglacial and Fluvial: it is sedimentary, alluvial in nature, which, fundamentally, fall 

into the category of substances characterized by a gravel-sandy granulometry, to which is added 

the presence of soil with the typical brown colour that in some situations was found terraced. 

There are also some subordinate strips of soil that have a decidedly finer grain size, falling into 

the silty soils (De Luca et al., 2019). 

The Tronzano V.se has two key hydrogeological complexes: gravel complex and multi-

layered complex. The gravel complex consists of the alluvial mattress that contains the entire 

region, which is characterized by the alluvial fluvial and fluvioglacial alluvial successions. The 

gravel complex, mostly formed by sandy gravel, hosts a free aquifer located a few meters from 

the countryside and emerging in the area of the fountains. It is locally confined to areas where 

less permeable sediments form the roof of gravelly sequences. The permeability value of the 

gravel complex varied between 10-1 and 10-3 m/s (Civita et al., 1990). However, the multi-

layered complex consists of alternations of the gravel-sandy levels, with finer levels of the type 
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from clay-silt to sandy-clay, with the presence of numerous peaty levels that can be linked to 

fluvial-lacustrine environments and in some cases marginal marine; these lithologies belong to 

lands of the Villafranchian age (De Luca et al., 2019). The complex has good permeability due 

to the grain size of sediments and their porosity, except for silts and clays that exhibit 

impermeable or semipermeable hydrogeological behaviours (Bove et al., 2004). 

 
Fig.1 Geology and sampling location map of the Tronzano Vercellese 

 

Sampling and analysis 

Twenty-eight (n=28) groundwater samples were collected from the 28 wells of the Tronzano 

V.se area during the month of July 2011. The wells are actively used for the drinking and 

irrigation uses in the area, except three monitoring wells (10, 11 and 12). The average depth of 

wells was around 20 meters in the study area. Water samples were collected in 500ml 

polyethylene bottles (high-density) for major ion analysis and in 250ml bottles for metals 

analysis (Fig. 1). Before the sampling stage, the wells were subjected to pumping for adequate 

time to drag the water from the aquifer. Electrical conductivity (EC) and pH values of the 

groundwater samples were monitored with a Hanna instrument (HI 9828) at the sampling 
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location. In the research laboratory, collected groundwater samples were filtered through 

Millipore membrane filters paper (pore size 0.45 μm) to separate suspended particles. 

Bicarbonate concentration was analysed by acid titration method. To analyses of concentrations 

of major anions (F-, Cl-, SO4
2-

, and NO3
-) an ion chromatography (Metrohm 883 Basic IC Plus) 

and for major cations (Ca2+, Mg2+, Na+, and K+) atomic absorption spectrophotometry (AAS-

Shimadzu AA6800) were used. Metals (As, Ba, Cr, Cu, Fe, Ni, Mn, and Zn) were analysed by an 

inductively coupled plasma mass spectrometry (ICP-MS-Thermo Fisher Scientific X Series II).  

Quality control 

Proper quality assurance procedures and precautions were taken during the groundwater 

sampling and analysis to certify reliability and avoid contamination. Milli Q water (throughout 

the study), properly cleaned glassware and analytical grade reagents were used during the 

analysis processes. Moreover, reagent blank determinations were used to correct the instruments 

readings and the instruments were recalibrated after 15 samples. Certified Merck reference 

materials were used during the analysis of water samples. Furthermore, during the analysis of major 

cations using AAS, the RSD (relative standard deviation) value was obtained < 10% for the 

entire samples. Moreover, the RSD value was obtained below 5% during the analysis of metals 

using ICP-MS. Anionic and cationic charge balance was found to be < 5% during the study. 

Hydrogeochemical and statistical 

In the current research, significant hydrogeochemical approaches (Gibbs diagram, Piper diagram, 

saturation index (SI), Schoeller diagram, box diagram, scatter plots and ion exchange reactions) 

were used to evaluate the groundwater geochemistry of the area. Moreover, multivariate 

statistical analysis was applied to estimate the source of elements present in the groundwater.  

Pollution index 

Heavy metal pollution index (HPI) is a technique that rates the cumulative effect of individual 

heavy metal on the overall quality of water and is valuable in receiving a composite influence 

of all the metals on total pollution (Giri and Singh, 2014). Prasad and Bose (2001) considered 

unit weightage (Wi) to compute the HPI. This value is inversely proportional to the 

recommended standard (Si) of the corresponding parameter proposed by Reddy (1995). The 

critical pollution index of HPI value for drinking water as given by Prasad and Bose (2001) is 

100.  
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For the present study, the concentration limits [i.e. highest permissive value for drinking 

water (Si) and maximum desirable value (Ii)] for each parameter were obtained from the World 

Health Organization (WHO, 2017) drinking water specifications. The Si refers to the maximum 

acceptable concentration in drinking water in the absence of any alternate water source. 

Moreover, the Ii specifies the standard limits for the same parameters in drinking water. The 

HPI values of the groundwater water samples were computed as per Eq. (1), which was 

provided by Mohan et al. (1996). In the present study, the HPI value has calculated for each 

sampling location. The specimen calculation for the HPI using the mean value of metals is 

presented in Supplementary Table 1. 

HPI ൌ
∑ 𝑊𝑖 𝑄𝑖

𝑛
𝑖ൌ1

∑ 𝑊𝑖
𝑛
𝑖ൌ1

                                                                             ሺ1ሻ

 

where, Qi is the sub-index of the ith parameter. Wi is the unit weightage of ith parameter, and n is 

the number of parameters considered.  

The sub-index (Qi) of the parameter is calculated by Eq. (2) 

𝑄𝑖 ൌ ෍
ሼ𝑀𝑖 ሺെሻ𝐼𝑖 ሽ
ሺ𝑆𝑖 െ 𝐼𝑖 ሻ

𝑛

𝑖ൌ1

 ൈ 100                                                                ሺ2ሻ

 

where Mi is the monitored value of the heavy metal of the ith parameter, Ii is the ideal value 

(maximum desirable value for drinking water) of the ith parameter and Si is the standard value 

(highest permissive value for drinking water) of the ith parameter. The sign (−) indicates the 

numerical difference between the two values, ignoring the algebraic sign. 

Health risk assessment 

Ingestion is the most significant source of exposure of humans to metals for drinking water 

(USEPA, 2004; Miguel et al., 2007; Wu et al., 2009; Giri and Singh, 2015). The dose received 

through ingestion was determined using Eq. (3) from the US Environmental Protection Agency 

(USEPA, 1989). In the present study, the average daily dose (ADD) value has calculated for each 

sampling location. The specimen calculation for the ADD using the mean value of metals is 

presented in Supplementary Table 1. 

ADD ൌ ሺCw  ൈ  IR ൈ EF ൈ EDሻ/ ሺBW ൈ ATሻ                          ሺ3ሻ  

where, ADD represents the average daily dose (µg/kg/day), Cw is the concentration of metals in 

water (µg/L), IR is the ingestion rate (L/day), EF is the exposure frequency (days/year), ED is 
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the exposure duration (years), BW is the body weight (kg), and AT is the averaging time (days). 

In the present study, EF of 350 days and ED of 6 and 30 years for child and adult respectively 

were used for the calculations. The AT was calculated by multiplying ED by 365 days. The IR 

of 1 L/day and body weight of 15 kg was used for the child. However, bodyweight of 70 kg and 

water consumption of 2 L/day was used for the calculations for the adult (USEPA, 1989; 2004). 

In the present study, non-cancer health risk, reflected by the hazard quotient (HQ) was 

calculated. 

 HQ = ADD / RfD                                                                                                                 (4) 

where, RfD is the reference dose according to the USEPA risk-based concentration table 

(USEPA-IRIS, 2011)  

For the risk assessment of multiple metals in the drinking water, a hazard index (HI) was 

employed by summing all the calculated HQ values of metals as described in Eq. (5). HI>1 

indicated the potential for an adverse effect on human health and the necessity for further study 

(USEPA, 1989; 2004). 

HI = ∑ HQi
𝑛
𝑖ൌ1                                                    (5) 

where, HQi is the hazard quotient of an individual metal, HI is the hazard index for all the eight 

metals studied in the present study and n is 08. 

Geographic information system (GIS)  

GIS is a valuable software for storing, handling and demonstrating spatial environmental data, 

including water  (Clarke, 1995; Nas and Berktay, 2010; Tiwari et al., 2019b). In water quality 

mapping and water resources management, the role of GIS is constantly on the rise (Tsihrintzis 

et al., 1996). In the present study, the average distance between sampling points was 4.5km. The 

inverse distance weighted (IDW) interpolation technique of ArcGIS 10.7 software was used for 

the spatial distribution analysis of the analysed and calculated indices of the groundwater 

samples. 

Result and Discussion 

Groundwater chemistry  

The analysed groundwater samples had pH from 6.9 to 8.6 and indicate near neutral to slightly 

alkaline in nature. Groundwater samples had electrical conductivity (EC) from 190 to 442 µS 

cm-1 and had the highest 335 mg/L total dissolved solids (TDS) value in the study area (Table 1). 
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In the case of major ion chemistry, HCO3
- (54%), Ca2+ (16%), SO4

2- (11%), NO3
- (8%), and 

Mg2+ (5%) were dominant dissolved ions and the major contributor to the TDS in the 

groundwater of the area. However, Cl- (4%) and Na+ (2%) were a minor contribution to 

the TDS. Potassium and fluoride contributed very little towards the TDS solute load. 

Calcium and magnesium were the dominant ions and majorly contributed to the 

total cation equivalent concentrations (TZ+) as compared to the sodium and potassium 

ion in the study area (Fig. 2a). However, bicarbonate and sulphate were dominant ions 

and majorly contributed to the total anion equivalent concentrations (TZ-). Nitrate and 

chloride were fewer dominant ions and contributor to TZ- (Fig. 2b). Moreover, fluoride 

ion was a very little contributor to TZ-. In the study area groundwater, Ca2+>Mg2+> 

Na+>K+ and HCO3
->SO4

2->NO3
->Cl->F- sequence was found in the cationic and anionic 

abundance, respectively. 

 
Fig. 2 a, b Box diagram of major cations and major anions 

 

Hydrogeochemical facies and water type 

The Piper (1944) trilinear diagram help to assess the geochemical relationship among different 

dissolved ions and evaluate the dominant water type. Around 86% groundwater samples plot in 

the Ca2+ dominance zone, 10% in the Mg+ dominance zone and 100% in the HCO3
- dominance 

zone, respectively. The Piper diagram shows that the groundwater samples 1 to 4 (inside a blue colour 

box) had high dominance of bicarbonate (HCO3
-) and samples 13, 23, 25 and 28 (inside a yellow colour 

box) had high dominance of Mg in the area. The diamond-shaped diagram demonstrates that the 

study area groundwater had Ca-Mg-HCO3 type water (Fig. 3). Moreover, the Schoeller diagram 

used to understand the chemical composition of different groundwater samples. The Schoeller 



10 

 

diagram is graphically characterized major ions of numerous water samples, which is significant 

to easily identify the chemical composition/water type of any area. Schoeller diagrams show four 

significant chemical composition of the groundwater, such as HCO3-Ca, HCO3-Ca-Mg, Ca- 

HCO3 and HCO3-Mg-Ca in the study area (Supplementary Fig. 1). In this study, 39.3% of 

groundwater samples was HCO3-Ca type, 25% of HCO3-Ca-Mg type, 21.4% of Ca-HCO3 type 

and 14.3% of HCO3-Mg-Ca type, respectively (Fig. 5). The Piper and  Schoeller diagram 

suggested that the weathering of minerals was the main sources of these ions in water.  

 

 

 

 

Zones Characteristics of water 
1 Alkaline earth (Ca+Mg) exceed alkalies (Na+K) 
2 Alkalies exceed alkaline earth 
3 Weak acids (CO3+ HCO3) exceed strong acids (SO4+ Cl) 
4 Strong acids exceed weak acid 
5 Carbonate hardness (secondary alkalinity) exceeds 50% 
6 Non-carbonate hardness (secondary salinity) exceeds 50% 
7 Non-carbonate alkali (primary salinity) exceeds 50% 
8 Carbonate alkali (primary alkalinity) exceeds 50% 
9 No one cation-anion pair exceeds 50% 

 

 
Fig. 3 Piper’s trilinear diagram showing the relationship between dissolved ions and water type 
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Mechanisms controlling groundwater chemistry 

Gibbs diagrams (1970) are usually applied to calculate the efficient sources of dissolved ions in 

water, such as evaporation, weathering of rocks and precipitation occurrence. The Gibbs 

diagrams represent the Cl- + NO3
-/(Cl- + NO3

- + HCO3
-) and Na+ + K+/(Na+ + K+ + Ca2+) ratio as a 

function of TDS values. The plot of proper geochemical data on Gibbs diagrams indicates that 

the weathering of rocks was controlling the chemistry of groundwater in the study area (Fig. 4 a, 

b). 

   
Fig. 4 Gibbs diagram representing the ratio of a Na+ + K+/ (Na+ + K+ + Ca2+) and b Cl- + NO3

-/ 
(Cl- + NO3

- + HCO3
-) as a function of TDS 

 
On the plot of (Ca2+ + Mg2+) versus (HCO3

- + SO4
2-), samples fall close to 1:1 line if the 

dissolution of calcite, dolomite and gypsum are the dominant reactions in a system. However, 

fall above the equiline probably due to excess of Ca2+ + Mg2+ ions in water and these ions can be 

potential release by the silicate weathering (e.g. CaMgSiO6 + 4H+ = Ca2+ + Mg2+ + 2SiO2 + 

2H2O) or possibly by the reverse ion exchange processes. Moreover, fall below the aquiline, 

indicate the significant contribution from non-carbonate source (Cerling et al., 1989; Fisher and 

Mullican, 1997; Rajmohan and Elango, 2004, Tiwari et al., 2019b). In the present case, the 

scatter plot of Ca2+ + Mg2+ versus HCO3
- + SO4

2- (Fig.5a) shows that the groundwater chemistry 

of the area was mainly controlled by the weathering of carbonate and silicate minerals, as well as 

reverse ion exchange processes. Poor correlation (0.22) between Ca2+ and SO4
2- (Table 2) 

suggested that the gypsum dissolution could not be the major contributor of Ca2+ in the present 
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case. The molar ratio of Ca/Mg = 1 if the dissolution of dolomite, while if the ratio between 1 to 

2, indicate calcite dissolution (Maya and Loucks, 1995; Singh et al., 2011). Furthermore, if ratio 

>2, suggest the dissolution of silicate minerals, which contribute calcium and magnesium to 

groundwater (Katz et al., 1997). The plot of Ca/Mg ratio reveals that the 14.3% and 39.3% of the 

samples had dominance dolomite and calcite dissolution, while 46.4% of the water samples had 

dominance of silicate weathering in the study area (Fig.5b). Similarly, the plot of Mg/Na versus 

Ca/Na support that the carbonate and silicate minerals weathering were the controlling factors of 

the groundwater chemistry in the area (Fig. 5c). Positive correlation of HCO3
- with Na+ (0.55) 

and Ca2+ (0.53) (Table 2) were verified the above observation. 

 

 
Fig. 5 a) Plot of (Ca2+ + Mg2+) versus (HCO3

- + SO4
2-), b) Ca/Mg ratio, c) Mg2+/Na+ versus 

Ca2+/Na+ relating carbonate and silicate end members (mM) 
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The chloro-alkaline indices (CAI-I and CAI-II) provide significant evidence concerning 

the ion exchange reactions among the aquifer materials and groundwater of any area. The chloro-

alkaline indices were proposed by Schoeller (1977) and expressed as: 

CAI - I = Cl- -  (Na+ + K+) /Cl-                                                 (6) 

CAI - II = Cl- -  (Na+ + K+) / SO4
2- + HCO3

- + NO3
-                                                (7) 

The chloro-alkaline indices could be either negative or positive. When Na+ and K+ ions in water 

are exchanged with Mg2+ and Ca2+, the value of CAI will be positive, and it shows a reverse ion 

exchange reaction (Zaidi et al., 2015). However, low salt waters give negative value indicating 

chloro-alkaline disequilibrium, and it shows a cation-anion exchange phenomenon 

(Srinivasamoorthy et al., 2014). In the study area, the CAI-I and CAI-II show that 71% of 

samples had positive values and suggested a reverse ion-exchange reaction. Moreover, the rest of 

the water samples had negative values of the CAI-I and CAI-II, revealing chloro-alkaline 

disequilibrium, and it is a cation-anion exchange reaction. 

4.4 Metal distribution and sources  

Table 1 shows the statistical results of the analysed metals (As, Ba, Cr, Cu, Fe, Mn, Ni and Zn) 

in the groundwater samples and compared with the World Health Organization (WHO, 2017) 

drinking water guideline. The results, as shown in Table 1, the concentrations of metals in water 

samples were within the drinking water limits established by the WHO (2017). Concentrations of 

analysed metals have followed the sequence of Zn>Fe>Ba>Ni>Mn>Cu>Cr>As in the study area.  

The principal component analysis (PCA) of analysed metals confirm that the lithogenic 

origin were the main sources of metals in the first factor. The second factor of PCA shows high 

loading of Mn and Zn and probably it was due to the non-lithogenic origin (Table 3). In the study 

area, around 65% of the area is occupied by the agricultural field and support this observation. A 

similar observation has been reported by the Rajmohan and Elango (2015) in groundwater of the 

Cheyyar river basins, South India. They have reported that the leaching of agricultural fertilizers 

was the major source of high concentration of these metals in groundwater of the area. The third 

factor of PCA had high loading of Ba and possibly it was due to the vehicular pollution. Hopke et 

al., (1980) and Kennedy and Gadd (2000) have reported that the Ba element is present in fuel 

additives, as well as in filters, which are utilized in the brake linings (barite form) and tires of 

vehicles. 
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Water suitability for drinking and domestic uses 

The pH values of the groundwater samples in the study area were within the World Health 

Organization (WHO, 2017) drinking water guideline, except one location. As per the WHO, 

2017 drinking water guidelines, TDS value of <600 mg/L is good for drinking uses, and 

increasingly unpalatable at >1000 mg/L. In the present case, groundwater samples had a 

maximum TDS value of 335 mg/L (Supplementary Fig. 2; Table 1). There are no health-based 

guideline values for SO4
2-, Ca2+, Mg2+ and total hardness (TH) in the WHO (2017) guidelines. 

Concentrations of F-, Cl−, and Na+ in the groundwater samples were within the recommended 

drinking water limit of 1.5 mg/L, 250 mg/L, and 200 mg/L by the WHO (2017). The 

concentration of NO3
− ranged from 1.2 mg/L to 36.1 mg/L in the water samples and below the 

WHO guidelines of NO3
− (50 mg/L) ion. The sample number one had the lowest NO3

− value and 

sample number 22 had highest NO3
− concentration in the area (Fig. 6). Furthermore, some 

samples (7, 8, 10, 11, 12, 22 and 23) had a moderate contamination (>30 mg/L) in the study area 

(Fig. 6). The concentration of nitrate in the groundwater at farming region depends on the type of 

crop, type and control of surface manure loadings, soil nitrate levels etc. (Di and Cameron, 

2002). In the present study, nitrate concentrations were varied from a low level to a moderate 

level and this probably due to modulated fertilizers used by the farmers to produce the different 

variety of crop in the area (Zavattaro et al., 2006). 

Heavy metal pollution index (HPI)  

The HPI was calculated to evaluate the extent of pollution and suitability of the groundwater for 

drinking uses. The concentration of the analysed metals (As, Ba, Cr, Cu, Fe, Mn, Ni and Zn) 

were considered during the calculation of HPI values. The HPI values ranged from 2.7 to 12.6 

(mean 5.9) in the groundwater of the study area. The highest HPI values were found in location 

1, 10, 11 and 12 in the study area (Fig. 7). As per Prasad and Bose (2001), 100 is the critical 

pollution index of HPI value for drinking water. Moreover, Edet and Offiong (2002) suggested a 

modified scale using three classes based on HPI values, such as low, medium and high for HPI 

values<15, 15–30 and>30, respectively. In the present study, the HPI values in the water samples 

were below the critical HPI value and belonged to low class and indicate suitable for drinking 

uses.  
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Fig. 6 Spatial distribution map of NO3

− in the area 
 

 
Fig. 7 Heavy metal pollution index map of the study area 
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Health risk assessment 

The hazard quotient (HQ) and hazard index (HI) level for the oral pathway relating to adult and 

child of the study area were estimated. The HQ values for the adult varied from 3.91E-06 to 

2.33E-01 (mean 1.38E-02) and for the child ranged from 9.1E-06 to 5.4E-01 (mean 3.2E-02) in 

the study area (Fig. 8). However, in the case of the HI values, the groundwater samples had a 

minimum of 0.05 and maximum of 0.28 with an average 0.11 for the adult (Fig. 9a) and 0.11 to 

0.65 (avg. 0.26) for the child (Fig. 9b) in the water samples, respectively. In the study area, the 

sample 19 had the highest HQ and HI values for the adult and child and followed by the samples 

4, 1, 11, 12 and 10, respectively (Fig. 9a, b). We observed that the HQ and HI values were higher 

for the child as compared to the adult case in the groundwater of the area. The HQ and HI values 

were below the <1 for both adult and child in the study area. The water samples had maximum 

HQ value of 0.23 and 0.54 and the HI value of 0.28 and 0.65 for the adult and child, suggesting 

that these elements posed little hazard individually in the case of the child as compared to the 

adult in the study area, respectively. 

 

Fig. 8 Box diagram of the hazard quotient for the adult and child 
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Fig. 9 a, b HI oral index for the adult and child in the study area  
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Conclusion 

The groundwater of the Tronzano V.se.  was near neutral to slightly alkaline and had HCO3-Ca, 

HCO3-Ca-Mg, Ca- HCO3 and HCO3-Mg-Ca types water. The analysed parameters were below 

the drinking water guidelines established by the WHO 2017 in the study area. Furthermore, the 

HPI values were within the critical pollution index limit and suggested that water was suitable 

for drinking and domestic uses. Estimated HQ and HI values were below the <1 for both adult 

and child in the groundwater samples of the area. The HQ and HI values were higher for the 

child as compared to the adult and suggesting that the elements posed little hazard individually in 

the case of the child. Lithology was the primary sources of most of the analysed parameters in 

the groundwater samples. Weathering and dissolution of carbonate and silicate minerals and 

reverse ion-exchange reaction were the main controlling factor of the groundwater chemistry in 

the study area. Furthermore, anthropogenic activities were responsible for contribution in 

concentrations of some elements (Zn, Mn, Ba, NO3
- and K+) in the groundwater of the study 

area. Though, the used of modulated fertilizers by the farmers helped to protect the aquifer to 

high contamination of nitrate in the area.  

From the environmental degradation and groundwater management point of view: a) 

there was no contaminant observed in the groundwater of the area that would have a detrimental 

effect on the environment;  b) the outcome of the present research suggests that the combined 

approach of hydrogeochemical, statistical, human health risk and GIS provided a significant 

knowledge to the management of current and future groundwater resources of the area; c) this 

kind of combined approach research could be important for agricultural areas of other similar 

regions; d) our research recommends that the monitoring of groundwater program is required in 

future to assess the variations in the concentration of elements and their impact on human health 

in the area. 
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Table 1 Summary statistics of the analytical data of the groundwater samples and compared with the WHO drinking 

water guidelines. 

Parameters Minimum Maximum Mean Std. deviation WHO, 2017 

pH 6.9 8.6 7.7 0.5 6.5-8.5 

EC 190 442 296.9 49.9 - 

TDS 186.1 355 273.4 42.7 600 

F- 0.0 0.1 0.04 0.01 1.5 

Cl- 1.3 18.4 9.9 4.7 250 

HCO3
- 109 195.1 147.9 26 - 

SO4
2- 3.5 53.3 28.7 11.4 250 

NO3
- 1.2 36.1 22.6 9.9 50 

TH 4.7 72.8 51.3 19 100 

Ca2+ 27.9 62.3 42.8 10.3 - 

Mg2+ 8.3 33.5 14.6 5.1 - 

Na+ 3.1 8.4 5.1 1.4 200 

K+ 1.0 4.0 1.6 0.7 - 

As  0.1 1.3 0.4 0.4 10 

Ba 8.9 29.5 16.5 4.0 1300 

Cr  0.1 9.1 2.6 2.2 50 

Cu  0.5 30.0 3.9 5.7 2000 

Fe  0.1 134.2 16.8 28.8 300 

Mn  0.1 63.8 4.0 11.9 100 

Ni  0.1 47.6 14.1 12.9 70 

Zn  1.9 2547 200.8 502.1 4000 

                              Unit: mg/L, except pH, EC (μS cm−1), and metals (µg/L) 

 

 

Table 2 Inter-elemental correlation matrix of dissolved ions (n = 28)  

 pH EC TDS F- Cl- HCO3
- 

SO4
2- NO3

- Ca2+ Mg2+ Na+ K+ 

pH 1.00 -0.27 -0.01 -0.05 -0.49 0.47 -0.63 -0.38 0.23 -0.40 0.18 -0.23 

EC  1.00 0.75 -0.08 0.55 0.44 0.50 0.43 0.64 0.17 0.42 0.41 

TDS   1.00 -0.29 0.70 0.70 0.53 0.47 0.76 0.36 0.56 0.13 

F-    1.00 -0.33 0.09 -0.34 -0.53 -0.47 0.17 0.08 -0.16 

Cl-     1.00 0.06 0.88 0.69 0.36 0.54 0.42 0.06 

HCO3
-      1.00 -0.14 -0.20 0.55 0.14 0.54 0.03 

SO4
2-       1.00 0.58 0.22 0.56 0.07 -0.05 

NO3
-        1.00 0.47 0.09 0.11 0.30 

Ca2+         1.00 -0.31 0.36 0.20 

Mg2+          1.00 0.13 -0.16 

Na+           1.00 0.23 

K+            1.00 
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Table 3 Principal component loadings (varimax normalized) of the groundwater samples (n = 28). 

Elements Factor_1 Factor_2 Factor_3 

As -0.81 -0.33 0.29 

Ba 0.09 0.26 0.84 

Cr -0.59 -0.30 -0.57 

Cu 0.64 -0.27 0.01 

Fe 0.07 0.20 -0.77 

Mn 0.04 0.95 0.03 

Ni 0.85 -0.01 0.22 

Zn -0.03 0.89 0.05 

Eigenvalues 2.2 2.1 1.8 

%Total variance 27 26 22 

Cumulative variance 27 53 75 
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Supplementary Fig. 1 Schoeller diagram showing the chemical composition of the groundwater 
samples 
 



 
Supplementary Fig. 2 Spatial distribution map of TDS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 1 Specimen calculation for the HPI and ADD using the mean value of metals in the study area  

Input parameters to calculate the HPI value 
Metals Mean value 

of n=28 
samples in 
µg/L (Mi) 

Standard value 
in µg/L (Si) 

Unit 
Weightage 
(Wi) 

Sub-index (Qi) WiQi  

As 0.4 10 0.1000 4.41 0.441  
Ba 16.5 1300 0.0008 1.27 0.001  
Cr 2.6 50 0.0200 5.18 0.104  
Cu 3.9 2000 0.0005 0.20 0.000  
Fe 16.8 300 0.0033 5.58 0.019  
Mn 4.0 100 0.0100 4.01 0.040  
Ni 14.1 70 0.0143 20.16 0.288  
Zn 200.8 4000 0.0003 5.02 0.001  
Input parameters to calculate the ADD value 
Metals Mean value 

of n=28 
samples (Cw) 
in µg/L  

Ingestion rate 
(IR) in L/day 
Adult and 
Child 

Exposure 
frequency 
(EF) in 
days/year 

Exposure 
duration (ED) in 
years Adult and 
Child 

Average time 
(AT) in (days) 
Adult and Child 

Bodyweight × AT 
(BW × AT) 
Adult and Child 

As 0.4 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Ba 16.5 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Cr 2.6 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Cu 3.9 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Fe 16.8 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Mn 4.0 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Ni 14.1 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
Zn 200.8 2 and 1 350 30 and 6 10950 and 2190 766500 and 32850 
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