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Abstract 

 

 The present contribution investigates size effects on Wöhler’s curve in accordance with 

dimensional analysis and intermediate asymptotics theory. These approaches provide a generalized 

equation able to interpret the specimen-size effects on Wöhler’s curve. Subsequently, using a different 

approach based on lacunar fractality concepts, analogous scaling laws are found for the coordinates 

of the limit-points of Wöhler’s curve, so that a theoretical explanation is provided to the decrement 

in fatigue resistance by increasing the specimen size. Eventually, the proposed models are compared 

to experimental data available in the Literature, which seem to confirm the advantage of applying 

Fractal Geometry to the problem. 

 

Keywords: Wöhler’s curve, Dimensional analysis, Intermediate asymptotics, Fractal geometry, Size-

scale effects, Fatigue limit 

 

Nomenclature 

 

∆𝜎  stress range 

∆𝜎∗ fractal stress range 



∆𝜎0  Basquin’s parameter  

∆𝜎𝑐𝑟 critical stress range 

∆𝜎𝑐𝑟
∗  fractal critical stress range  

∆𝜎𝑐𝑟
∞ asymptotic value of the critical stress range 

∆𝜎𝑓𝑙 fatigue limit 

∆𝜎𝑓𝑙
∗  fractal fatigue limit 

∆𝜎𝑓𝑙
∞ asymptotic value of the fatigue limit  

𝜎𝑢 ultimate tensile strength 

𝜎𝑢
∗ fractal ultimate tensile strength 

𝜎𝑢
∞ asymptotic value of the ultimate tensile strength 

𝑎𝑟𝑒𝑎 orthogonally projected area of the defect with respect to the applied stress range 

𝑏  specimen size  

𝑑𝜎 dimensional decrement of ligament area 

𝐻𝑉 Vickers hardness 

𝐾𝐼𝐶 fracture toughness 

𝑙𝑐ℎ characteristic material length 

𝑁 number of cycles 

𝑁𝑐𝑟 number of cycles below which tensile resistance is not decreasing 

𝑁𝑓𝑙 number of cycles beyond which fatigue resistance is not decreasing 

𝑛  exponent of Basquin’s law  

𝑅 loading ratio 

 

 



 

1 Introduction  

 

   Fatigue failure represents one of the most common causes of collapse of industrial and civil 

structures, where more than 90% of failures can be considered as the result of this phenomenon. The 

first research on the fatigue problem was carried out by Wöhler [1], who performed a series of 

experimental tests on unnotched steel specimens subjected to cyclic loading. This modus operandi 

permitted to determine the number of cycles to failure as a function of the applied stress range, ∆𝜎, 

which, through the best fitting of the experimental data, allowed to obtain the so-called Wöhler’s 

curve.  

 In this empirical S-N curve, it is possible to distinguish three different regions. In the first one, the 

failure occurs for low numbers of cycles with considerable plastic deformations, and the Coffin-

Manson relationship holds. On the other hand, in the high cycle fatigue region, plastic deformations 

become negligible and a power-law approximation can be used, i.e. the so-called Basquin’s law [2]: 

 

∆𝜎 =
∆𝜎0

𝑁1 𝑛⁄
                                                                         (1) 

 

The latter represents the equation of a straight line in the bi-logarithmic diagram, where 1/𝑛 is the 

slope, whereas ∆𝜎0 is the intercept. The transition between the LCF regime and the Basquin’s regime 

is defined by the limit-point A, which is the intersection between the horizontal line of stress range at 

static failure 𝛥𝜎𝑐𝑟, and the Basquin’s straight line in the bi-logarithmic diagram. The x-coordinate of 

the point A is equal to 𝑁𝑐𝑟, which ranges between 103-104 cycles [3]. Eventually, the third region 

corresponds to the so-called infinite-life region, where a constant fatigue limit, ∆𝜎𝑓𝑙, is attained. The 

existence and value of ∆𝜎𝑓𝑙 is still debated for different materials and applications. The transition 

between Basquin’s regime and infinite-life region is defined by point B. The x-coordinate of point B, 

(𝑁𝑓𝑙 in Fig.1), is conventionally assumed equal to 107 cycles. 



 

Figure 1: Wöhler's curve 

 

According to Harte [4], the first experimental detection of the size effects in fatigue dates back to 

1930. The first quantitative interpretation was obtained a decade later on the basis of statistical 

theories [5]. In the 1980’s some researchers provided alternative formulations exploiting intermediate 

asymptotics theory [6]. In addition, Murakami determined experimentally a relationship between the 

fatigue limit and the defect of maximum size, the so-called √𝑎𝑟𝑒𝑎 model [7-9]: 

 

∆𝜎𝑓𝑙 =
1.56(𝐻𝑉 + 120)

(√𝑎𝑟𝑒𝑎)
1/6

                                                             (2) 

 

where √𝑎𝑟𝑒𝑎 is the square root of the area of the defect of maximum size projected onto a plane 

orthogonal to the maximum tensile stress, and is measured in µm, HV being the Vickers hardness of 

the material. The maximum size of the inclusion, embedded in the risk volume, can be estimated by 

extreme value statistics [10], once that the distribution of defects in the standard inspection volume 

has been experimentally assessed. The risk volume is usually defined as the region where the stress 

is higher than the 90% of the peak value.  

Murakami et al. noted also that, when a specimen fails in ultralong life regime, the fatigue fracture 

does not originate from the surface but near an internal inclusion, which can be clearly identified by 

fractography, thanks to the so-called fish-eye morphology, and by the surrounding Optically Dark 

Area [11, 12]. 



Since the development of ultrasonic fatigue testing machines, working at a very high frequency and 

allowing for very high number of cycles tests in a relatively short time, the interest of the scientific 

community about the size effects on the fatigue limit has increased [13, 14]. Furuya [15] performed 

ultrasonic fatigue tests on a high-strength steel and assessed the size-effect on the fatigue limit 

according to Eq.(2), which states that the larger the risk volume, the lower the fatigue limit. 

 Paolino et al. [16, 17], and Tridello et al. [18-20], in order to investigate the statistical size effect 

on the fatigue strength, designed an innovative specimen shape with Gaussian profile, which can be 

used to enlarge the risk volume of the specimen. Therefore, they were able to test a high strength 

steel, AISI H13, and to analyse results from a wide range of different risk volumes. 

Decades ago, the concept of fractality was exploited by A. Carpinteri [21] to explain the size effect 

on LEFM parameters. In this framework, the material disorder due to the presence of a distribution 

of flaws, inclusions, and micro-cracks, is accounted for adopting a fractal, rather than Euclidean, 

geometrical model. In this way, the statistical population of defects is replaced by a fractal medium, 

which is populated of defects and lacunarities at each scale of observation. Following this approach, 

An. Carpinteri et al. [22] provided an expression for the experimentally observed specimen-size 

effects on Basquin’s law. 

Purpose of the present paper is to apply the concepts of dimensional analysis and incomplete self-

similarity to Wöhler’s curve, so that the different functional dependencies of the fatigue life can be 

considered through a power-law expression. Subsequently, by modelling the reacting section as a 

lacunar fractal domain with a non-integer dimension, which is lower than 2, it is possible to confirm 

the specimen-size dependence of Wöhler’s curve, which is experimentally found in the Literature. 

Moreover, in order to model the variation of the fatigue limit over a wide size range, a Multi-Fractal 

Scaling Law (MFSL) is proposed for this parameter.  Eventually, the proposed models are compared 

to experimental data available in the Literature, which seem to confirm the advantage of applying a 

fractal model to the specimen-size effect on Wöhler’s curve. 

 

 

 

 

 



2 Intermediate Asymptotics applied to Wöhler’s curve 

 

 In accordance with dimensional analysis, the following functional dependence can be considered 

for Wöhler’s curve [23, 24]: 

 

𝑁 = 𝛱(∆𝜎, 1 − 𝑅; 𝜎𝑢, 𝐾𝐼𝐶 , ∆𝜎𝑓𝑙; 𝑏)                                                         (3) 

 

where we assume that the number of cycles to failure, 𝑁,  is the parameter to be determined. The 

latter is a function of three different categories of variables: 

1. parameters that take into account the testing conditions, i.e. the stress range, ∆𝜎, and the 

loading ratio, 𝑅; 

2. parameters that take into account the static and cyclic material properties, such as the ultimate 

tensile stress, 𝜎𝑢, the fracture toughness, 𝐾𝐼𝐶, and the fatigue limit, ∆𝜎𝑓𝑙; 

3. the geometric parameter, i.e. the characteristic specimen size 𝑏. 

Actually, we are neglecting the dependence on the time, i.e. on the frequency. The dimensions of the 

parameters in Eq.(3) are expressed in the Length-Force-Time class: 

 

𝑁 = 1 − 𝑅 = [−],  𝐾𝐼𝐶 = [𝐹][𝐿]−3/2,  ∆𝜎 = ∆𝜎𝑓𝑙 = 𝜎𝑢 = [𝐹][𝐿]−2, 𝑏 = [𝐿]                        

 

 From dimensional analysis [25], since only two quantities are dimensionally independent, the 

number of parameters involved in the problem could be reduced from six to four, so that Eq.(3) 

becomes: 

 

𝑁 = 𝛱 (
∆𝜎

𝜎𝑢
, 1 − 𝑅;

∆𝜎𝑓𝑙

𝜎𝑢
;

𝜎𝑢
2

𝐾𝐼𝐶
2 𝑏)                                                         (4) 

 

where the following dimensionless parameters have been introduced: 

 



𝛱1 =
∆𝜎

𝜎𝑢
;  𝛱2 = 1 − 𝑅; 𝛱3 =

∆𝜎𝑓𝑙

𝜎𝑢
; 𝛱4 = (

𝜎𝑢

𝐾𝐼𝐶
)

2

𝑏 

 

 Let us observe that 𝛱4 is responsible for the specimen-size dependence of the fatigue behaviour. 

In fact, the latter is equal to the inverse of the square of the brittleness number, s [26]. 

 The intermediate asymptotics theory allows us to further reduce the number of quantities involved 

in Eq.(5) [27-30]. To this aim, let us assume an incomplete self-similarity in the dimensionless 

parameters 𝛱𝑖, so that a power-law dependence of the number of cycles, 𝑁, on 𝛱𝑖   can be obtained: 

 

𝑁 = (
∆𝜎

𝜎𝑢
)

𝛼1

(1 − 𝑅)𝛼2 (
∆𝜎𝑓𝑙

𝜎𝑢
)

𝛼3

(
𝜎𝑢

2

𝐾𝐼𝐶
2 𝑏)

𝛼4

                                           (5) 

 

Therefore, in Eq.(5) the main functional dependencies of 𝑁 have been considered, so that a 

generalized Wöhler’s relationship is obtained. For instance, the S-N curve can be approximated by 

the Basquin power-law for high-cycle fatigue: 

 

𝑁𝑐𝑟 × ∆𝜎𝑐𝑟
𝑛 = 𝑁 × ∆𝜎𝑛 = 1 × ∆𝜎0

𝑛 = constant                                         (6) 

  

Hence, by matching the left-hand side of Eq.(6) with the right-hand side, we can write the following 

power-law: 

 

𝑁 = 𝑁𝑐𝑟 (
∆𝜎𝑐𝑟

∆𝜎
)

𝑛

                                                                    (7) 

 

Furthermore, considering the relationship between ultimate tensile strength and loading ratio: 

 

∆𝜎𝑐𝑟 = (1 − 𝑅) 𝜎𝑢                                                                   (8) 

 

we obtain the expression that relates the number of cycles to failure to the stress range: 

 



𝑁 ∝
(1 − 𝑅)𝑛  𝜎𝑢

𝑛

∆𝜎𝑛
                                                                 (9) 

  

 Comparing the generalized expression of the S-N curve in Eq.(5) with the empirical one in Eq.(9), 

a perfect correspondence between them exists if: 

 

𝛼1 = −𝑛,          𝛼2 = −𝑛                                                          (10a) 

𝛼3 = 𝛼4 = 0                                                                   (10b) 

 

which implies an incomplete self-similarity in  𝛱1 and 𝛱2, and a complete self-similarity in 𝛱3 and 

𝛱4, i.e. Basquin’s law does not take into account the size effects. 

 

 

3 Some remarks on the lacunar fractality and multi-fractality 

 

 In the last few decades, it has been widely recognised that the nominal tensile strength is not a 

material constant, but rather it depends on the structural size. As a matter of fact, the ultimate strength 

of a material decreases with the specimen size and this trend is more pronounced for more disordered 

materials [21]. In other words, the reacting section or ligament of a disordered material can be 

modelled as a fractal set, where its non-integer dimension lower than 2 is the way to quantify the 

disorder itself [31]. Thus, supposing that the total force is transmitted through a lacunar fractal 

ligament of dimension 𝛼 = 2 − 𝑑𝜎, with 1 ≤ 𝛼 ≤ 2, the following scaling law for nominal tensile 

strength can be proved [32-35]: 

  

𝜎𝑢 = 𝜎𝑢
∗ 𝑏−𝑑𝜎                                                                      (11) 

 

where 𝜎𝑢
∗ is the scale-invariant tensile strength with non-integer physical dimensions[F][L]−(2−𝑑𝜎), 

whereas 𝑑𝜎 is the dimensional decrement of the ligament due to the presence of cracks and voids 

distributions [21, 32]. Eventually, Eq.(11) can be written as: 

 



log 𝜎𝑢 = log 𝜎𝑢
∗ − 𝑑𝜎 log 𝑏                                                            (12) 

 

which represents the equation of a straight line in the bi-logarithmic diagram. Notice that the fractal 

dimension in Eq.(11) is constant, so that we should talk about fractal scaling law. On the other hand, 

if we consider specimens with a very wide size range, the experimental results point out that a fractal 

scaling approach is valid only within a limited scale range, such that the fractal dimension can be 

really considered constant. This implies that, as the specimen size increases, the concept of 

geometrical multi-fractality should be put forward, i.e. a change of 𝑑𝜎 with the scale of observation 

[36-38]. 

 This can be explained by recalling that the microstructure of a disordered material remains the 

same independently of the scale of observation. As a result, the influence of disorder on mechanical 

properties depends on the ratio between a characteristic material length, 𝑙𝑐ℎ, and the characteristic 

size of the specimen, 𝑏. Hence, the effect of disordered nature on the mechanical parameters of the 

material turns out gradually less important for larger scales of observation and, eventually, the 

fractality vanishes for 𝑏 tending to infinity.  

 This transition from a disordered regime for smaller scales, where the fractal scaling exponent is 

equal to 1/2 due to a self-similar distribution of cracks, to an ordered regime for larger scales can, 

therefore, be considered for any mechanical quantity [36]. The analytical expression of the Multi-

Fractal Scaling Law (MFSL) for tensile strength is the following (Fig.2) [39-41]: 

 

𝜎𝑢(𝑏) = 𝜎𝑢
∞ (1 +

𝑙𝑐ℎ

𝑏
)

1/2

                                                          (13) 

 



 

Figure 2: Size effect on ultimate tensile strength 

 

This scaling law represents a two-parameter best-fitting, where the asymptotic value of the ultimate 

strength, 𝜎𝑢
∞, corresponding to its lowest value, is reached only in the limit case of infinite specimen 

sizes. Furthermore, the variable influence of disorder on tensile strength is represented by the 

dimensionless term within round brackets, which depends on the characteristic length 𝑙𝑐ℎ. In other 

words, in the bi-logarithmic diagram, the transition from the fractal regime to the Euclidian one is 

represented by the point of asymptotes’ intersection of abscissa log 𝑙𝑐ℎ, which is a function of the 

microstructure of the material [42-44]. The characteristic material length 𝑙𝑐ℎ is a material property 

that can be proportional to the average defect size, or to the grain size, or to the inclusion size, 

depending on the mechanism responsible for fracture nucleation.  

 

 

4 Fractal and multi-fractal approach to Wöhler’s curve  

 

 As mentioned in the Introduction, experimental evidences have pointed out a size effect on fatigue 

strength, which generally decreases with the specimen size. Although in the Literature have been 

proposed different interpretations able to give an explanation to the problem, such as Murakami’s 

model, these consider only the maximum size defect, so neglecting the microstructural disorder of 



the material. Thus, by exploiting the renormalized quantities related to a lacunar fractal cross-section, 

the following scaling law for the stress range can be written [22, 45]: 

 

∆𝜎 = ∆𝜎∗ 𝑏−𝑑𝜎                                                                     (14) 

 

where the fractal stress range ∆𝜎∗, with physical dimensions given by [F][L]−(2−𝑑𝜎), is considered 

invariant with respect to the scale of observation. Furthermore, since 0 ≤ 𝑑𝜎 ≤ 1, Eq.(14) predicts a 

decrement in the number of cycles to failure with the specimen size. On the other hand, considering 

the stress range as a function of 𝑁, Eq.(14) predicts a decrease in ∆𝜎 with the specimen size, 𝑁 being 

the same. Thus, Eq.(14) allows us to demonstrate that the fatigue strength undergoes size effects. It 

is worth noting that the assumption of the ligament lacunar fractality can be comprised in the 

intermediate asymtotics framework, when the dimensionless parameter 𝑏 𝜎𝑢
2 𝐾𝐼𝐶

2⁄  is provided with 

the non-integer exponent 𝛼4 = −𝑑𝜎𝑛. 

 Similarly, the fractal approach can be used to explain the specimen-size effects on fatigue limit. In 

fact, since the fatigue limit is experimentally determined for a conventional very high number of 

cycles, Eq.(14) can be evaluated in correspondence to the right knee-point of Wöhler’s curve, i.e. 

 𝑁 = 𝑁𝑓𝑙, so that the following scaling law for the fatigue limit is obtained: 

 

 

∆𝜎𝑓𝑙 = ∆𝜎𝑓𝑙
∗ 𝑏−𝑑𝜎                                                                    (15) 

 

where ∆𝜎𝑓𝑙
∗  is the fractal fatigue limit, which is a material property with anomalous physical 

dimensions. Hence, Eq.(16) provides the specimen-size effect on the fatigue limit. Indeed, in 

agreement with the concept of lacunar fractal set, we obtain a negative slope for the fatigue limit by 

varying the specimen size, i.e. Eq.(16) provides a decrement in ∆𝜎𝑓𝑙 with the specimen size. 

Eventually, Eq.(29.b) can be written in the following form:  

 

log ∆𝜎𝑓𝑙 = log ∆𝜎𝑓𝑙
∗ − 𝑑𝜎 log 𝑏                                                     (16) 

 

which represents the equation of a straight line with slope equal to −𝑑𝜎 in a bi-logarithmic diagram.  

Analogously, it is possible to define the specimen-size effect on the left knee-point of Wöhler’s curve, 



i.e. for  𝑁 = 𝑁𝑐𝑟. Thus, evaluating Eq.(15) in correspondence of it, we obtain the following scaling 

law for the ordinate of the critical point: 

 

 

∆𝜎𝑐𝑟 = ∆𝜎𝑐𝑟
∗ 𝑏−𝑑𝜎 = (1 − 𝑅) 𝜎𝑢

∗ 𝑏−𝑑𝜎                                                   (17) 

 

Figure 3: Specimen-size effects on fatigue limit in a bi-logarithmic diagram 

 

Thus, Eqns. (15) and (17) yield a vertical downward translation of Wöhler’s curve increasing the 

specimen size, i.e. the larger the specimen dimension, the lower the fatigue strength. Thus, it is worth 

to note that, being 𝑁𝑐𝑟 and 𝑁𝑓𝑙 dimensionless parameters, only the vertical translation is expected 

(Fig.4), excluding the horizontal one [46]. On the other hand, substituting the nominal stress range 

with the corresponding fractal parameter, a fractal coordinate system is obtained and a collapse of the 

set of specimen-size dependent Wöhler’s curves onto a single specimen-size independent Wöhler’s 

curve is expected (Fig.5). 

Moreover, notice that, for 𝑑𝜎 → 1/2, we obtain ∆𝜎𝑓𝑙 ∝  𝑏−1/2, so that the fractal fatigue limit 

assumes the physical dimensions of a stress-intensity factor, i.e. [F][L]−3/2.This observation implies 

that a value higher than 1/2 is not possible. In fact, this condition is obtained assuming a self-similar 

statistical size distribution such that the defect of maximum size is proportional to the structural size. 

As a result, this statement implies that the defect size distribution of self-similarity corresponds to the 

condition of maximum disorder. Hence, since the assumption of a self-similar statistical size 



distribution implies a value of the scaling exponent of strength vs. structural size equal to 1/2, it 

follows that the maximum possible value for 𝑑𝜎 is 1/2 [32].  

 

Figure 4: Specimen-size effects on Wöhler's curve 

 

 

Figure 5: Fractal (specimen-size independent) Wöhler's curve 

 

The next step concerns the introduction of the concept of self-affinity. In fact, although the 

decrease in fatigue limit by increasing the structural size can be obtained considering just the fractal 



approach, a Multi-Fractal Scaling Law for the fatigue limit should be put forward to capture the 

transition from the fractal regime to the Euclidian one: 

∆𝜎𝑓𝑙 = ∆𝜎𝑓𝑙
∞ (1 +

𝑙𝑐ℎ

𝑏
)

1 2⁄

                                                           (18) 

 

Thus, since for very large structural sizes a transition from disorder to the Euclidian order is expected, 

the fractal decrement, 𝑑𝜎, tends to zero. Consequently, the specimen-size dependence of fatigue limit 

disappears and we obtain its asymptotic value, ∆𝜎𝑓𝑙
∞, which can be considered as a material constant. 

Vice-versa, for very small specimens, the influence of the material disorder becomes progressively 

more important and the fatigue limit increases as the specimen size decreases (see Fig.6). In other 

words, Eq.(18) provides a decrement in the fatigue limit with the specimen size according to the 

assumption of a lacunar fractal ligament.  

The exponent of the term within round brackets represents the slope of the oblique asymptote in the 

bi-logarithmic diagram ∆𝜎𝑓𝑙 vs. 𝑏, which is always lower than 1/2, as above mentioned. Furthermore, 

according to Eq.(17), a Multi-Fractal Scaling Law for ∆𝜎𝑐𝑟 can be put forward to capture the transition 

from the fractal regime to the Euclidian one: 

∆𝜎𝑐𝑟 = ∆𝜎𝑐𝑟
∞ (1 +

𝑙𝑐ℎ

𝑏
)

1 2⁄

                                                           (19) 

 

 

Figure 6: Multi-Fractal Scaling Law for fatigue limit 



 

 

where ∆𝜎𝑐𝑟
∞ is the lowest value of ∆𝜎𝑐𝑟, which is reached for very large specimen sizes. Thus, since 

for 𝑏 → +∞ the specimen-size dependence disappears, ∆𝜎𝑐𝑟
∞ represents a material constant.  

 

 

5   Experimental assessment of the scaling law for fatigue limit 

 

In this section, some experimental results on aluminium alloy flat hourglass samples [47] are 

considered, although geometrical self-similarity of the specimens should be required for proper 

comparison among specimens with the same stress concentration. Different Wöhler’s curves in the 

power-law regime are obtained for different specimen sizes, as shown in Fig.7. When the 

experimental results are reported in the fractal Wöhler's diagram, they collapse onto a single straight 

line in the power-law regime, independently of the specimen size. The renormalization of the 

Wöhler’s diagram yields to a scale-invariant curve.  

Best-fitting of experimental data, in order to collapse them onto a single curve, provides the 

dimensional decrement 𝑑𝜎, which is equal to 0.13 in the case of the data collected in [47]. Eventually, 

the fractal stress-range will show the anomalous physical dimensions [F][L]−(1.87) (see Fig.8). 

Xue et al. [48] performed fatigue tests on Al-Si-Cu cast alloy specimens beyond 109 cycles with an 

ultrasonic fatigue testing machine operating at 20 kHz and 𝑅 = −1. They considered hourglass 

specimens with 3 and 6 mm in diameter at the middle cross-section. The experimental data show that, 

for a certain number of cycles, the larger the diameter of the ligament, the lower the fatigue strength. 

As a consequence, in the Wöhler’s diagram of Fig.9, two different curves are obtained depending on 

the specimen-size. On the contrary, if the fractal Wöhler’s diagram of Fig.10 is adopted, all the data 

collapse onto a single straight line. The physical dimensions of the fractal stress range Δ𝜎∗, equal to 

[F][L]−(1.81), are obtained by best-fitting of experimental data. 



 

Figure 7: Experimental specimen-size dependent Wöhler's curves in the power-law regime for EN 

AW-6063 [47] 

 

Figure 8: Experimental fractal Wöhler's curve in the power-law regime for EN AW-6063 

 

 

 



 

Figure 9: Experimental specimen-size dependent Wöhler's curves for Al-Si-Cu alloy [48] 

 

 

Figure 10: Experimental fractal Wöhler's curve for Al-Si-Cu alloy  

 

 

 In addition, in the present section the experimental data available in the Literature are fitted with 

Eq.(16). 

Hatanaka et al. performed a set of fatigue tests to investigate the specimen-size effects on Wöhler’s 



curve [49]. Considering two different materials and dog-bone specimens of 8, 20, 30, and 40 mm of 

diameter, tests were carried out through a rotating bending machine. More specifically, the two 

materials used are a cast steel, JIS SCMn 2A, and a forget steel, JIS SF 50. From the test results and 

for both the materials, it was highlighted a decrease in the fatigue strength with the specimen size. In 

particular, it was observed that, in accordance with Fractal Geometry, the decrement in fatigue 

strength was more pronounced for the material with a less homogenous microstructure, i.e. JIS SCMn 

2A.  

Thus, by focusing our attention on the fatigue limit, a linear regression provides the best-fitting 

parameters entering Eq.(16) for the two steel alloys. Considering SF50 steel, we obtain the following 

equation for the fatigue limit: 

 

log ∆𝜎𝑓𝑙 = −0.08 log 𝑏 + 2.74                                                     (20) 

 

which implies that the fractal dimension decrement is equal to 0.08, thus revealing a dimension of 

material ligament equal to 1.92, whereas the fractal fatigue limit, which represents the true material 

constant, is 279 N mm−1.92 (see Fig.11). On the other hand, considering SCMn 2A steel, we have the 

following expression for the fatigue limit: 

 

log ∆𝜎𝑓𝑙 = −0.16  log 𝑏 + 2.80                                                      (21) 

 

which provides a value of  the fractal dimension decrement equal to 0.16, whereas the fractal fatigue 

limit is 318 N mm−1.84 (Fig.12).   

Notice that the obtained values for the fractal decrement 𝑑𝜎 are consistent. The more ordered the 

material, the closer the material ligament to a two-dimensional Euclidian surface. In fact, for the SF50 

steel, which is the more ordered material, the dimensional decrement of the fractal domain is smaller 

than that obtained for SCMn 2A [50]. Eventually, it is interesting to point out that the values obtained 

are always lower than 1/2, in accordance with the hypothesis of statistical crack-size distribution of 

self-similarity [51]. 

 As a third example, we consider the experiments carried out by Furuya on specimens made up of 

high-strength steel, i.e. JIS-SCM440 low-alloy steel, by means of an ultrasonic fatigue testing 

machine [52]. The experimental evidence shows that the fatigue failure, for this kind of steels, is 



mainly caused by fish-eye fracture, i.e. an internal penny-shaped crack which is originated mostly 

from an inclusion [20].  

These ultrasonic fatigue tests were conducted at 20 kHz, with a stress ratio 𝑅 = −1. Furthermore, 

these tests were carried out using a dog-bone specimen of 8 mm in diameter and hourglass-shaped 

specimens of 7 mm and 3 mm in diameter. 

 

 

Figure 11: Experimental assessment of fatigue limit for SF50 steel [49] 

 

As in the previous case, a linear regression permits us to obtain the following relationship for the 

fatigue limit: 

 

log ∆𝜎𝑓𝑙 = −0.16 log 𝑏 + 3.26                                                            (22) 

 

which provides the values of the best-fitting parameters. Thus, considering Eq.(22), a value of the 

fractal dimension decrement equal to 0.16 is expected, whereas the fractal fatigue limit is 1820 N 

mm−1.84 (Fig.13). 



 

Figure 12: Experimental assessment of fatigue limit for SCMn 2A steel [49] 

 

 

 

Figure 13: Experimental assessment of fatigue limit for JIS-SCM440 low-alloy steel [52] 

 

In addition, the experimental data by Pegues et al. [53] on additively manufactured Ti-6Al-4V 

titanium alloy samples are analysed. In order to investigate the sensitivity of the titanium alloy to the 

specimen size, the Authors carried out fatigue tests on dog-bone samples of 3.25, 4.90, and 7.30 mm 

in diameter, with traditional MTS testing machine under fully reversed, 𝑅 = −1, force control 



conditions, up to 107 cycles. The fatigue limit decreases with the specimen size, as shown in Fig. 14. 

In order to perform the best-fitting with Eq.(16), the experimental values of the fatigue limit can be 

plotted versus the specimen size in a bi-logarithmic diagram, which provides: 

 

log ∆𝜎𝑓𝑙 = −0.41 log 𝑏 + 2.85                                                    (23) 

 

It is interesting to note that a rather high value of the fractal decrement 𝑑𝜎 is obtained, which is 

consistent with the augmented disorder of the microstructure of the considered material. In fact, 

according to Li et al. [54], AM titanium alloys are characterised by a high quantity of internal defects 

in the form of porosity and lack of fusion defects containing un-melted particles. Fatemi et al. [55] 

reported that the additive manufactured (AM) samples contained many circular pores, with 

dimensions ranging from 5 to 80 µm, and irregularly shaped voids with size of up to 500 µm due to 

the lack of fusion [56]. As a consequence, AM can significantly reduce the fatigue strength of 

components [57]. Anyway, a dimensional decrement 𝑑𝜎 equal to 0.41 is less than the maximum 

theoretical allowed value of 0.50.  

 

 

Figure 14: Experimental assessment of fatigue limit for AM Ti-6Al-4V [53] 

 

 

 



Eventually, the experimental data set obtained by Kelly et al. [58] are analysed. In this 

experimental campaign, rotating bending fatigue tests were carried out on two sets of mild steel dog-

bone specimens, covering a size range from 1.27 to 40.64 mm. The fitting with the MFSL of Eq.(24) 

provides the asymptotic value of the fatigue limit, ∆𝜎𝑓𝑙
∞, and the material characteristic length of the 

material, 𝑙𝑐ℎ (see Fig. 15). It is worth noting that the MFSL for the fatigue limit can properly 

interpolate the results obtained from a much wider scale range, and that very high cycle fatigue test 

results could be obtained as well. 

 

 

Figure 15: MFSL experimental assessment of the fatigue limit for a carbon steel (polished and 

finally relieved) [58] 

 

 

6 Conclusions 

 

 When stress-life (S-N) approach was introduced in the nineteenth century, size effects were not 

yet known. In fact, the role of specimen size on the fatigue behaviour has been investigated only in 

recent times and many efforts have been made to interpret the phenomenon, which have led to the 

use of empirical relationships, such as the √𝑎𝑟𝑒𝑎 model proposed by Murakami or other statistical 

approaches. 

 In this paper, dimensional analysis and intermediate asymptotics are used to find a generalized 



formulation for Wöhler’s curve. Furthermore, by proposing a model based on the concept of lacunar 

fractality, the specimen-size dependence of Wöhler’s curve is explained. The proposed models were 

compared to experimental data available in the Literature from which it follows that the fractal 

approach is able to explain the size effects on Wöhler’s curve. Eventually, with the aim to provide a 

more accurate modelling, a multi-fractal approach is put forward both for fatigue limit and critical 

stress range. 
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