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Abstract: Deep Neural Networks (DNNs) are nowadays a common practice in most of the Artificial
Intelligence (AI) applications. Their ability to go beyond human precision has made these networks a
milestone in the history of AI. However, while on the one hand they present cutting edge performance,
on the other hand they require enormous computing power. For this reason, numerous optimization
techniques at the hardware and software level, and specialized architectures, have been developed to
process these models with high performance and power/energy efficiency without affecting their
accuracy. In the past, multiple surveys have been reported to provide an overview of different
architectures and optimization techniques for efficient execution of Deep Learning (DL) algorithms.
This work aims at providing an up-to-date survey, especially covering the prominent works from
the last 3 years of the hardware architectures research for DNNs. In this paper, the reader will first
understand what a hardware accelerator is, and what are its main components, followed by the latest
techniques in the field of dataflow, reconfigurability, variable bit-width, and sparsity.

Keywords: machine learning; artificial intelligence; AI; deep learning; deep neural networks; DNNs;
convolutional neural networks; CNNs; VLSI; computer architecture; hardware accelerator; data flow;
optimization; efficiency; performance; power consumption; energy; area; latency

1. Introduction

In the era of Big Data and Internet-of-Things (IoT), Artificial Intelligence (AI) has found an
ideal environment and a continuous stream of data from which to learn and thrive. In recent
years, the research and development in AI, and more specifically its subset Machine Learning (ML),
has exponentially increased, spreading in several discipline fields, and covering many applications.
The ML consists of several algorithms and paradigms, in which the most impactful ones are the
brain-inspired techniques. Among these, one that is based on Artificial Neural Networks (ANNs) has
overcome the human accuracy, namely the Deep Learning (DL) [1], as shown in Figure 1a. Since its
recent appearance, the DL showed many advantages over previous techniques, on the ability to work
directly on raw data in large quantities combined with a very deep architecture. While the lack of
preprocessing makes the process more streamlined, the alternation of a large number of layers increases
the accuracy making the DL the technique par excellence.
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Figure 1. (a) How artificial intelligence has evolved over the years. (b) The processes of training and
inference in comparison.

These networks are called Deep Neural Networks (DNNs) and cover a wide range of applications,
for instance, business and finance [2–4], healthcare such as cancer detection [5–7], up to robotics [8,9],
and computer vision [10–12].

As mentioned above, these networks are very complex and computation/memory-hungry.
Therefore it is necessary to provide suitable/specialized hardware platforms for the execution of
such algorithms over a consistent data stream. The layers of DNNs can reach a considerable size
of up to hundreds of thousands of activations; consequently, the multiplication matrix vectors of
an entire network can reach up to require a few billion multiply-and-accumulate (MAC) operations.
As shown in Figure 1b, neural networks can pose processing requirements in two different ways,
i.e., training during the design phase, and inference during the deployment phase. The inference is
run in real-world applications, after the neural network has been trained, and is used to classify or
derive predictions from the given inputs in real-world scenarios. While in the inference, the network
only experiences the forward-pass, during the training, it experiences both the forward-pass and the
backward-pass. During the latter, the prediction is compared with the label, and the error is used to
update the weights through the backpropagation process. As a consequence, the training requires
a much more extensive computational effort compared to that for the inference. The recent trend in
these years have seen DL applications moving towards mobile platforms such as IoT/Edge nodes and
smart cyber-physical systems (CPS) devices [13–15]. Often these devices have stringent constraints in
terms of latency, power, and energy, for instance, due to their real-time and battery-powered nature.
Moreover, moving the computation from the cloud to the edge reduces the privacy and security
threats to which various DL systems are subjected, hence increasing the need for embedded DL [16,17].
In short, there is a growing demand for specialized hardware accelerators with optimized memory
hierarchies that can meet the enormous compute and memory requirements of different types of
complex DNNs, while maintaining a reduced power and energy envelope.

Over the past decade, several architectures have been proposed for the acceleration of DL
algorithms. Many papers and surveys on this topic have been produced [18–21]. However, due to
rapid developments of DNN hardware, these surveys have either become obsolete or do not represent
the emerging trends. Towards this, this paper aims to provide an up-to-date survey covering the
state-of-the-art of the last 3 years. The work is therefore not intended as a substitute for existing
surveys, but rather as an integral part that can be seen as a continuation of existing surveys. In the
following sections, we will deal with the latest architectures with the main focus on new types of
dataflow, reconfigurable architectures, variable precision, and sparsity. The reconfigurable architecture,
sometimes coupled with adaptable bitwidth, is a flexible solution to accommodate different types
of networks and is likely to become the standard in the future. In fact, researchers have shown that
networks can be compressed [22,23] and represented on a number of bits that are being reduced
over time as techniques are refined. Finally, the sparsity is a technique actively used to eliminate
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unnecessary operations and to further lower the power envelope of the accelerators, as well as making
them faster and more effective. This also instantiates the need for sparse DNN accelerators like [24–26].

This paper is organized as follows: Section 2 discusses the background related to DNNs, describing
the different models and their key features. Section 3 analyzes dataflows designed for energy-efficient
architectures. The discussion goes from temporal and spatial architectures to other important themes
such as sparsity, variable bit-width precision and reconfigurable architectures. Section 4 shows the
typical memory hierarchy used in accelerators and the methodologies to reduce the power consumed
by it. Finally, the paper provides the key takeaways in the conclusion. The acronyms used in this paper
are reported in Table A1.

2. Background: Deep Neural Networks

An Artificial Neural Network (ANN), henceforth called Neural Network (NN), is a mathematical
model inspired by the biological neural networks. However, the NN model is too simple to replicate
the behavior of its biological counterpart, faithfully. An NN is formed by interconnected nodes, as in
a graph, that are organized in layers (see Figure 2). A layer of input nodes receives signals from the
outside, which are then processed by some intermediate layers called hidden layers. The result is
finally obtained by the last layer, also called output layer. An NN with more than three hidden layers
is defined in literature as a Deep Neural Network (DNN) [27]. In short, the DNNs/NNs are mainly
black-box model representation of a given function. That is, the model and its parameters are learned
by finding the transfer function (composed of multiple layers of neurons, weights, and activation
functions) from input to output through an extensive training process.

The graphs of NNs are direct, i.e., the connections are oriented, and can be acyclic or cyclic.
If the NN is acyclic, it is called feedforward, and the output depends only on the current input.
If instead, the NN is cyclic, it is defined recurrent, and the output also depends on the previous inputs.
Recurrent NNs are, therefore, models with state/memory.

The nodes of NNs are the neurons, graphically and mathematically described in Figure 3 and
Equation (1). A neuron receives n inputs (x1, x2, . . . , xn) and returns a scalar output y. For a given
neuron, the inputs are multiplied with the weights (w1, w2, . . . , wn) and summed together with a
bias term b. A non-linear function σ(·), called activation function, is then applied to determine the
output of the neuron. Common activation functions are Rectified Linear Unit (ReLU), Sigmoid or
Hyperbolic tangent.

y(x) = σ

( N−1

∑
n=0

x[n]w[n] + b
)

(1)

in
pu
t

ou
tp
ut

neuron
Figure 2. An abstract example of a neural network.
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Figure 3. A graphical model of the neuron.

2.1. Training and Inference

NNs learn to achieve the desired results by modifying their internal parameters, i.e., weights and
biases. The phase in which the network learns is called training. Once the network has been trained,
it can be used to solve unknown problems during the inference phase when deployed in real-world.

One of the most used learning paradigms is supervised learning, thanks to the large amount of
(labeled) data that has become available in the so-called big-data era. Supervised learning requires
labeled data, i.e., input-output pairs, where the output is the result that the network should obtain
from the related input. Supervised learning consists of three steps repeated until convergence:

1. Forward pass: the input is fed into the network that produces an output.
2. Backward pass: a loss L is computed comparing the produced output and the desired output.

The loss L is then used for the backpropagation algorithm [28], that applying the chain rule of
calculus computes the gradient ∂L

∂w for each weight (and bias) of the network.
3. Parameters update: each weight and bias is updated by an amount proportional to its gradient.

All the gradients can be multiplied by the same factor, defined learning rate, or more complex
optimization algorithms can be used, such as Gradient Descent with Momentum [29] or
Adam [30].

Other learning paradigms are unsupervised learning and reinforcement learning.
Unsupervised learning works with unlabeled data and consists of finding common patterns
and structures that data may have in common. Reinforcement learning involves the network (agent)
interacting in an environment. An interpreter assesses the correctness of the interactions and returns a
reward or punishment to the agent, who aims to maximize the reward.

2.2. Layers

As described in the previous paragraphs, neurons are organized in layers that can have different
shapes and characteristics. This section presents a short overview of different layers that are most
commonly used in NNs.

Fully Connected (FC) Layers. In FC layers, the neurons are arranged in the shape of a vector
(see Figure 4). Considering a layer with Co neurons and Ci inputs, each neuron co receives all the Ci
inputs (Equation (2)). Therefore, each neuron has Ci weights and the total number of weights of the
layer is Ci × Co.

O[co] =
Ci−1

∑
ci=0

W[co, ci]I[ci] + b[co]

0 ≤ co < Co, 0 ≤ ci < Ci

(2)

The number of inputs and outputs of an FC layer can be high. Consequently, also the weight
matrix can have a significant size, making it a critical element, especially on hardware platforms with
limited memory. However, it is not always necessary for each neuron to analyze the totality of the
inputs, and convolutional layers have been introduced to solve this problem.
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Figure 4. A fully connected layer with Ci = 5 and Co = 4.

Convolutional (Conv) Layers. The inputs and outputs of a Conv layer are organized in 2D grids,
defined as feature maps (FM). Multiple feature maps can form each input/output: the number of
input/output feature maps is referred to as the number of input/output channels. The neurons of
the Conv layer, rather than analyzing the whole input, receive only a sub-grid of dimension Hk × Wk
(Ci × Hk × Wk if there are multiple input channels). Horizontally adjacent neurons process grids of
adjacent inputs separated by S positions, where S is a parameter known as stride. As shown in Figure 5,
neurons that produce values belonging to the same output feature map (OFM) usually share the same
kernel of weights. Therefore, each neuron of OFM co has a kernel of Ci × Hk × Wk weights, and the
total number of weights is Co × Ci × Hk × Wk. Equation (3) describes the operations performed in the
Conv layer.

Ofm[co, ho, wo] =
Ci−1

∑
ci=0

Hk−1

∑
hk=0

Wk−1

∑
wk=0

W[ci, co, hk, wk]Ifm[ci, Sho + hk, Swo + wk] + b[co]

0 ≤ co < Co, 0 ≤ ho < Ho, 0 ≤ wo < Wo

0 ≤ hk < Hk, 0 ≤ wk < Wk

(3)

Hi

Wi

Ci

Ho

Wo

Co

Figure 5. A convolutional layer with Ci = 4, Hi = Wi = 3, Co = Ho = Wo = 2, Hk = Wk = 2.

Normalization Layers. Batch Normalization (BN) layers are often inserted at various points in the
neural networks after Conv or FC layers. As can be seen from Equation (4) describing the BN layers,
the values are processed so that their mean is zero, and the variance is 1. γ and β are two trainable
parameters inserted to integrate normalization in the training phase.

y =
x − E[x]

Var[x] + ε
· γ + β (4)

The BN layers have two primary purposes. They contribute to accelerating the convergence of
the training phase. Since the values always maintain a constant distribution, the network does not
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have to adapt to different ranges at each training step. Moreover, they avoid value saturation of the
values inside the network. Since saturating non-linear functions, such as Sigmoid, Tanh, or Softmax,
are often used, having values with zero mean and variance 1 prevents too many values from being
saturated, which would cause a considerable loss of information and slow down the training process.
Pooling Layers. The main purpose of the pooling layers is to shrink the size of the feature maps within
the network, to decrease the number of parameters and the number of operations to be performed.
In the pooling layers, different sub-grids of the input feature maps are selected. For each sub-grid,
a single value is calculated, which is a statistical metric of the group, e.g., the maximum value
(MaxPooling) or the average value (AvgPooling). The sub-grids are usually selected of equal size,
adjacent and non-overlapping.

2.3. DNN Models

Since their origin, DNNs have been developed in a large number and a very diverse types of
models in order to achieve high accuracy. The first DNN model to become famous was LeNet [28],
a Convolutional Neural Network (CNN) that was used to recognize handwritten digits. The real boom
for CNNs, which are the most widely used for object detection and recognition, came in 2012 when
AlexNet [31] won the ILSVRC competition [32] by outperforming the earlier methods. Since then,
also thanks to the increased availability of computational hardware and memory resources, the DNN
models have become more and more complex and precise. Table 1 outlines a timeline of the models
that have become more popular, describing the innovations introduced compared to previous models.

Table 1. Comparison of the most popular models in the history of DNNs.

Model Year Contribution # Param Depth Top-5 Acc
ImageNet (%)

LeNet [28] 1998 First popular CNN 60 k 5 -

AlexNet [31] 2012
- First CNN to win ILSVRC
- ReLUintroduction 60 M 8 79.06

VGG16 [33] 2014 Smaller kernel sizes 138 M 16 90.37

GoogLeNet [34] 2015 Inception block 4 M 22 87.52

Inception v3 [35] 2015 Factorized convolutions 24 M 48 93.59
v4 [36] 2016 Simplified inception blocks 43 M 77 95.30

ResNet [37] 50 2016 - Skip connections
- Residual learning

26 M 50 92.93
152 60 M 152 93.98

Xception [38] 2017
Depthwise and pointwise
convolutions 23 M 38 94.50

ResNetXt-
101_64x4d [39] 2017 Grouped convolution 83 M 101 94.70

DenseNet161 [40] 2017
- Regular structure
- Information flow across layers 28 M 161 93.60

SeNet154 [41] 2018
Exploit dependencies between
feature maps 115 M 154 95.53

NasNet-A [42] 2018
- Neural Architecture Search
- Transfer learning 89 M 29 96.16

BERT-L [43] 2019
Transformer network for Natural
Language Processing (NLP) 332 M 24 -

Megatron [44] 2019
Model parallel transformer
for NLP 3.9 B 48 -
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3. Energy-Efficient Architectures

The panorama of hardware solutions for the development and deployment of DNNs is vast,
ranging from general-purpose solutions (CPUs and GPUs) and programmable solutions (FPGAs),
to special-purpose ASICs. It is not straightforward to define which of these is the best solution, as it is
strictly dependent on the application and the corresponding design constraints including even the
time-to-market. For example, an edge IoT chip will require a small area, energy-efficient solution,
while a cloud computing server for ML will demand a lot of flexibility. Moreover, a time-to-market
may impose usage of GPUs or embedded GPUs as the only feasible platform option.

In the following subsections, the pros and cons of each solution will be discussed in detail,
making a clear distinction between temporal and spatial architectures (see Figure 6). These two
architectures have a similar computational structure, consisting of a set of multiple processing
units. However, while the units of the spatial architectures can have internal control, in temporal
architectures, the control is centralized. An analogous distinction can be made for the memory:
in spatial architectures, the units can have a register file (RF) to store data, while in temporal
architectures, the units have no memory capacity. Moreover, in spatial architectures, the units can also
be interconnected to exchange data. Summarizing, the computational units of temporal architectures
are typically ALUs, while that of spatial architectures are complex Processing Elements (PEs) that can
potentially support articulated data movement patterns.

ALU
Computation

Memory Hierarchy

Control

Computation
Control

RF

PE

Memory Hierarchy

Control

Temporal Architecture Spatial Architecture

Figure 6. Comparison between the temporal and spatial architectures.

3.1. Temporal Architectures

CPUs and GPUs belong to the category of spatial architectures. Vector CPUs have multiple ALUs
that can process multiple data in parallel. Most of them adopt the Single-Instruction Multiple-Data
(SIMD) execution model, which applies a single instruction to different data simultaneously. Similarly,
GPUs are formed by many processing cores, and they use the Single-Instruction Multiple-Threads
(SIMT) execution model. CPUs and GPUs are general-purpose chips that must be able to support
an extensive range of applications. For this reason, it is infrequent to find hardware optimizations
specific for ML and DNNs. An approach commonly adopted is the attempt to better adapting the
application to the chosen hardware platform. For example, the convolutional layer, using sub-grids
of the original feature maps, requires discontinuous accesses to the memory. In [45], it is shown
how to optimize the storage of feature maps to decrease the number of discontinuous accesses to the
memory. Since the libraries for Basic Linear Algebra Subroutines (BLAS) are highly optimized, it is
also possible to perform convolution lowering [46,47] to transform the convolution into a General
Matrix Multiplication (GeMM), or to move in the frequency domain through Fast Fourier Transform
(FFT) [48] and perform a point-wise multiplication of matrices.

Among the different available technologies, CPU cores are the least used for DNNs inference
and training. CPUs have the advantage of being easily programmable to perform any kind of task.
Still, their throughput is limited by the small number of cores and, therefore, by the small number of
operations executable in parallel. Figure 7 compares the number of cores of CPUs and GPUs. The Intel
Xeon Platinum 9222, a high-end processor used in servers with price over USD 10,000, has a number of
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floating-point operations per second per Watt (FLOPS/W) similar to the FLOPS/W of the 2014 Nvidia
GT 740 GPU with price below USD 100 (∼12GFLOPS/W). High-end GPUs, with FLOPS/W in the
order of TERAs, significantly surpass any CPU. However, some attempts have been recently made to
accelerate DNNs deployment (inference in particular) on CPUs. At instruction level, Intel introduced
DL Boost, a set of features that include AVX-512 Vector Neural Network Instructions (AVX-512-VNNI),
part of AVX-512 Instructions [49], to accelerate CNNs algorithms, and Brain floating-point format
(bfloat16) [50]. Brain floating-point format is a 16-bit format that uses a floating radix point and has a
dynamic range similar to that of the 32-bit IEEE 754 single-precision floating-point format. bfloat16 is
also supported by ARMv8.6-A and is included in AMD’s ROCm libraries. For what concerns the
ML libraries, Intel has created BigDL [51], a distributed deep learning library for DNNs algorithms
acceleration on CPU clusters. There is also an Intel distribution of Caffe [52], a popular deep learning
framework, targeting Intel Xeon processors.

Intel Core
I7, 10th gen

Intel Core
I9, 10th gen

AMD Ryzen
9

Intel Xeon
Platinum, 

I gen

AMD Ryzen
Threadripper

Intel Xeon
Platinum, 
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Nvidia
GT 740

Nvidia 
RTX 2080 Ti

Nvidia
V100
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Figure 7. Comparison of the number of CPU cores and GPUs. CPUs and GPUs models have been
selected for different targets, e.g., personal computers or servers, and different price ranges. For the
CPUs, the gray and black lines correspond to the minimum and the maximum cores of a family,
respectively. For the GPUs, the black lines represent the number of CUDA cores, and the gray line
represents the Tensor cores present in the Nvidia Tesla V100 only.

GPUs are the current workhorses for DNNs’ inference and especially training. They contain
up to thousands of cores (see Figure 7) to work efficiently on highly-parallel algorithms.
Matrix multiplications, the core operations of DNNs, belong to this class of parallel algorithms.
Among the GPUs’ producers, Nvidia can be considered the winner of the AI challenge. In fact, the most
popular DL frameworks, such as TensorFlow [53], PyTorch [54], or Caffe [52], support execution on
Nvidia GPUs through the Nvidia cuDNN library [55], a GPU-accelerated library of primitives for
DNNs with highly-optimized implementations of standard layers. DL frameworks allow to describe
very complex neural networks in a few lines of code and run them on GPUs without needing to know
GPU programming. cuDNN is part of CUDA-X AI [56], a collection of Nvidia’s GPU acceleration
libraries that accelerate DL and ML.

At the hardware level, Nvidia has combined Tensor cores [57] with traditional CUDA cores in
some of its platforms. Tensor cores are a new structure designed to accelerate large matrix operations
and perform mixed-precision Matrix Multiply-and-Accumulate (MMAC) calculations in a single
operation. The recently announced Nvidia Ampere A100 supports a new numerical format called
Tensor Format (TF32) that has the range of 32-bit floating point (FP32) numbers and the precision
of 16-bit floating point numbers, using a 19-bit representation. TF32 format on A100 architecture
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provides a 10x performance increase compared to FP32 format on V100 architecture [58]. Moreover,
the Tensor cores in A100 architecture are optimized to exploit sparsity for an additional boost (2x) of
the performances (see Section 3.2.1 for an insight of sparsity in NNs).

3.2. Spatial Architectures: Fpgas and Asics

DNNs accelerators implemented on FPGAs (Field-Programmable-Gate-Arrays) and ASICs
(Application-Specific-Integrated-Circuit) usually fall into the category of spatial architectures.
FPGAs and ASICs differ substantially. The primary purpose of FPGAs is programmability to
implement any possible design. They are relatively cost-effective with short time-to-market, and the
design flow is simple. However, FPGAs can not be optimized for the various requirements of different
applications, are less energy-efficient, and have lower performances than ASICs. On the contrary,
ASICs need to be designed and produced for a specific application that cannot be changed over time.
The design flow is consequently more complex, and the production cost is higher, but the resulting
chip is highly-optimized and energy-efficient. In this section, however, no distinction will be made
between ASIC and FPGA based implementations. FPGAs are, in fact, often used to prototype what
will then be developed on ASICs.

A hardware accelerator for DNNs (implemented on ASIC or FPGA) typically consists of an array
of PEs for computation (see Figure 8). The PEs are interconnected by a Network-on-Chip (NoC)
designed to achieve the desired data movement scheme. The three levels of the memory hierarchy
are the Register Files (RFs) in the PEs, that store data for inter-PE movements or accumulations,
the Global Buffers (GBs), that stores enough values to feed the PEs, and the off-chip memory,
usually a DRAM. As seen in the Background Section, the operations in DNNs are mostly simple
Multiply-and-Accumulate (MAC) but need to be performed on a considerable amount of data. The real
bottleneck in DDNs computation is memory accesses. Therefore, one of the key design issues for
memory hierarchy is to reduce the DRAM accesses, since they have a high latency and energy cost.
The reuse of the data stored in smaller, faster, and low-energy memories (GLB and RFs) is favored.
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Figure 8. Typical design of an hardware accelerator for DNNs.

Given the memory problem, during the development of the first accelerators for DNNs, the focus
was placed on investigating efficient dataflows, i.e., spatial and temporal mapping of operations on
PEs, which would reduce the number of off-chip memory accesses by reusing the data already stored
in GB and RF, as much as possible. Moreover, operations and data movement must be orchestrated to
have good throughput performance as well. From these studies, various accelerators were born that
exploit the different possibilities of data reuse offered by DNNs, CNNs in particular. Three kinds of
data reuse are identified in Conv layers:

• Weight reuse: a kernel of weights is reused HoxWo times for each sub-grid of the input
feature maps;

• Input reuse: the input feature maps are reused Co times to compute each output feature map.
• Convolutional reuse: when the weight kernel slides through the input feature maps, the sub-grids

used for computation usually overlap. The input values that fall in the overlapping region are
reused to compute two or more output values.
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For what concerns FC layers, there is an input reuse opportunity since all input values are reused
to calculate the output of each neuron.

The first accelerators developed were traditionally classified according to the type of data reuse
used. In particular, accelerators are classified as follows:

• Weight Stationary (WS): the weights are stored in the RFs of the PEs and kept fixed, while the
inputs are distributed coordinated with the movement of the partial sums between the PEs
to obtain the correct results. These accelerators exploit weight reuse and convolutional reuse.
Popular WS accelerators are [59,60].

• Output Stationary (OS): each partial sum is kept fixed in a PE, and accumulation is performed
until the final sum is reached, while the weights and inputs are distributed in various ways to the
PEs. These accelerators can exploit convolutional reuse. Popular OS accelerators are [61,62].

• Row Stationary (RS): this dataflow jointly maximizes the reuse of all data, i.e., inputs, weights,
and partial sums. In this dataflow, the operations of a row of the convolution are mapped to the
same PE. The weights are kept stationary in the PEs. For instance, Eyeriss [63] is an RS accelerator.

• No Local Reuse (NLR): This dataflow reduces the accelerator area by eliminating the RFs from the
PEs and reading data only from GBs. There is no data reuse. DianNao [64] is an NLR accelerator.

In recent years, to further improve the performance and energy efficiency of accelerators,
attention has been focused on new strategies. In this survey, those that have led to better results and on
which the research has invested more will be discussed, namely sparsity exploitation, variable bitwidth
accelerators, and reconfigurable accelerators.

3.2.1. Accelerators with Sparsity Exploitation

The exploitation of sparsity involves taking advantage of the high number of zeros present in
the matrices of weights and activations, which are therefore scattered matrices. Sparsity is mainly
due to two factors: given the redundancy of the weights in an NN, it is usually possible to prune,
i.e., put many values to zero [65–67]. The frequent use of the ReLU function as the activation function
resets all the negative values in the matrices of the activations to zero. The number of non-zero values
can be reduced to 20–80% and 50–70% for weights and activations, respectively. This factor can be
used to avoid multiplication, as the result of zero multiplication is known in advance, and to compress
the data when stored in memory. Among the best-known sparsity compression methods, the most
used are: Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), Compressed Image Size
(CIS), and Run Length Coding (RLC), as depicted in Figure 9. These techniques provide effective and
minimal overhead when implemented in hardware. CSR and CSC compress the sparse matrix into
three different arrays. The first one represents the non-zero values, the second contains the column
index and row index respectively for CSR and CSC, while the third shows the number of non-null
elements in the matrix. CIS is composed of an array of non-zero values and a matrix of the same
size as the original one. This matrix represents the position of the values contained in the array.
This representation is the most hardware friendly since it often does not require any decompression
mechanism. Finally, RLC compresses the original data indicating for each value how many times it
is repeated.

Accelerators that exploit sparsity have different architectures that allow adapting the computation
to the sparse matrices (see Table 2 for a comparison). Cnvlutin [68] uses the CSR scheme to compress
the activations but does not consider the sparsity of the weights. In Cambricon-X [69] the PEs store the
compressed weights for asynchronous computation, but do not exploit activations sparsity. SCNN [24]
uses the CSC scheme for both weights and activations. The values are delivered to an array of
multipliers, and the resulting scattered products are summed using a dedicated interconnection mesh.
Sparten [70] is based on SCNN architecture, but it improves the distribution of the operations to the
multipliers to reduce the overhead. EIE [71] compresses the weights with the CSC scheme and has
zero-skipping ability for null activations. Moreover, high energy savings are obtained by avoiding
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the use of DRAM. Similarly, NullHop [26] applies the CIS scheme to the weights and skips the null
activations. ZeNA [72] is the first zero-aware accelerator that can skip the operations with null results
induced by both null weights and activations. SqueezeFlow [25] has a mathematical approach to the
sparsity problem and introduces the concise convolution rules to avoid the operations with a null
result. The RLC scheme is applied to the weights. SqueezeFlow supports sparse and dense models
as well. Eyeriss v2 [73] also supports both sparse and dense models. It utilizes the CSC scheme to
weights and activations, which are kept compressed both in the memory and computation domain.
For higher flexibility, a hierarchical mesh is used for the PEs interconnections. Unique Weight CNN
(UCNN) accelerator [74] proposes a generalization of the sparsity problem. Rather than exploiting only
the repetition of weights with zero value, it uses the repetition of weights with any value by reusing
CNN sub-computations and reducing the model size in memory.

Uncompressed
Data

a) CSR b) CSC

c) CIS

Original Data

0 5 8 0

0 0 0 1

3 3 0 0

0 0 0 2

Non-zero array

Column indices

Row pointer

0 2 3 5 6

5 8 1 3 3 2

1 2 3 0 1 3

Column pointer

Row indices

Non-zero array

3 5 3 8 1 2

2 0 2 0 1 3

0 1 3 4 6

Non-zero array

Sparsity Map

5 8 1 3 3 2

0 1 1 0

0 0 0 1

1 1 0 0

0 0 0 1

Compressed Data

0 1 5 1 8 1 0 4 1 1 3 2 0 5 2

Value Repeat Count

1

d) RLC

Figure 9. Comparison among different compression techniques: (a) Compressed Sparse Row (CSR),
(b) Compressed Sparse Column (CSC), (c) Compressed Image Size (CIS), and (d) Run Length
Coding (RLC).

Table 2. Comparison of accelerators that exploit sparsity.

Accelerator Ref. Contribution Target Year

Cnvlutin [68] CSR for activations ASIC 2016

Cambricon-x [69] CIS for the weights ASIC 2016

SCNN [24] CSC for weights and activations ASIC 2017

Sparten [70] Improvement of SCNN ASIC 2019

EIE [71]
CSC for the weights,
zero-skip for activations ASIC 2016

NullHop [26]
CIS for the weights,
zero-skip for activations FPGA 2018

ZeNA [72] Zero-skip of weights and activations ASIC 2017

SqueezeFlow [25]
RLC for the weights,
concise convolution rules ASIC 2019

Eyeriss v2 [73]
CSC for weights and activations,
data are kept compressed
during computation

ASIC 2019

UCNN [74] Generalizes sparsity to non-null weights ASIC 2018
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3.2.2. Variable Bitwidth Accelerators

A DNN can have over a hundred million parameters. Therefore, the memory required to store the
data during computation is huge. One of the main techniques used to reduce the memory constraints
is bitwidth reduction. Rather than expressing the numbers in IEEE 754 32-bit floating-point format,
it is possible to represent them in fixed-point format [75], reducing the bitwidth as much as possible
without affecting the accuracy significantly. This strategy allows not only to reduce the occupied
memory but also to decrease the power consumption associated with computation [76,77]. It has
been demonstrated that most DNNs can be inferred using 8-bit fixed-point values without accuracy
degradation [78,79]. However, several studies [80,81] have shown that each layer of a DNN has a
different impact on the accuracy, and it is, therefore, possible to use a fine-grained quantization where
the bitwidth of the weights and activations is different in each layer.

To exploit not only the memory gain deriving from the bitwidth reduction but also the lower
power consumption, hardware accelerators with flexible-bitwidth arithmetic have been developed
(see Table 3 for a comparison). Stripes [82] implements variable bitwidth with bit-serial computation.
The latency increases linearly with the bitwidth, but this increment can be compensated by heavier
exploitation of the inherent parallelism of DNNs. Besides, multipliers, which are one of the most
considerable sources of energy consumption excluding memory accesses, are no longer necessary.
The bit-serial computation engine consists, in fact, of AND gates and adders only. Stripes is a hybrid
architecture that fixes the bitwidth of the weights and provides flexibility for the activations. UNPU [83]
has a very similar bit-serial computation engine, but the bitwidth of the activations is fixed to 16-bit
while the weights have 1-bit to 16-bit flexibility. Loom [84] architecture is fully temporal since both
weights and activations have variable bitwidth and are processed serially. To achieve this flexibility,
Loom adopts bit-serial multiplication, that, however, requires the transposition of the inputs. For a
more efficient implementation, Loom transposes the outputs rather than the inputs, but the overhead
is not negligible. Bit Fusion [85] implements the flexible bitwidth spatially, with an array of PEs that
are combined differently depending on the required bitwidth. In detail, the overall computation is
partitioned in 2-bit × 2-bit multiplications, followed by shifted additions. BitBlade [86] is based on the
Bit Fusion accelerator, but it further optimizes the architecture eliminating the shift-add logic using
bitwise summation.

Table 3. Comparison of accelerators that support variable bitwidth operations.

Accelerator Ref. Weight Bits Activation Bits Features Target Year

Stripes [82] 16-bit 1-bit to 16-bit Bit-serial ASIC 2016

UNPU [83] 1-bit to 16-bit 16-bit Bit-serial ASIC 2019

Loom [84] 1-bit to 16-bit 1-bit to 16-bit Bit-serial ASIC 2018

Bit Fusion [85] 1,2,4,8,16-bit 1,2,4,8,16-bit Spatial combination ASIC 2018

BitBlade [86] 1,2,4,8,16-bit 1,2,4,8,16-bit Spatial combination ASIC 2019

3.2.3. Reconfigurable Accelerators

Given the increasing interest in deep learning, a wide variety of models with very different
features and layers have emerged, as seen in Section 2.3. However, the majority of ASIC/FPGA
accelerators for DNNs are designed and optimized to support only one type of dataflow. It can be
complex to map different layers on these accelerators equally efficiently. To allow for more widespread
and mass deployment of ASIC/FPGA accelerators, flexible and easily reconfigurable designs are
required to support different types of layers and models.

FlexFlow [87] and DNA [88] are two accelerators that support a flexible dataflow to exploit the
different types of reuse and parallelism of Conv layers. However, they only target CNNs. On the
other hand, MPNA [89] supports dedicated PE array units for Conv and FC layers. In [90], an ASIC
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reconfigurable processor targeting hybrid NNs, i.e., networks with different layers, is presented.
The PEs are organized into two 16x16 arrays, and they are divided into general PEs and super PEs.
The former supports Conv and FC layers, while the latter supports Pooling layers, RNN layers,
and non-linear activation functions. Each PE has two 8-bit multipliers that can be used separately
or jointly to form a 16-bit multiplier, allowing for a variable bitwidth. The arrays can be arbitrarily
partitioned into sub-arrays to process multiple layers or networks in parallel. Project Brainwave [91]
is an FPGA platform used in Microsoft servers for real-time AI. The core of Project Brainwave is
the NPU, a spatially distributed microarchitecture with up to 96 thousand MACs. The architecture
achieves flexibility working with vectors and matrices as data-types, using efficient matrix-vector
multipliers and multifunction units that can be programmed to implement a function chosen in a
broad set. For easy programming, the architecture has a custom SIMD Instruction Set. MAERI [92]
has a set of PEs, each containing a Register File and a multiplier. The reconfigurability is obtained
with the interconnections. The activations and weight are delivered to the PEs with a distribution
tree fully configurable. Similarly, the outputs of the multipliers are collected by a configurable adder
tree. SIGMA [93] introduces the Flexible Dot Product Engine (Flex-DPE), which has a structure similar
to MAERI. In the Flex-DPE, the multipliers are in fact arranged in a 1D structure. Thanks to highly
flexible distribution and reduction networks, multiple variable-sized dot-products can be performed
in parallel. Thanks to the flexible distribution network, SIGMA also supports the acceleration of sparse
networks. To maximize energy efficiency, DNPU [94] proposes a heterogeneous architecture with two
processors, one optimized for Conv layers and CNNs, the other targeting FC layers and Recurrent
Neural Networks. Cerebras has recently announced the Cerebras Wafer Scale Engine (WSE), the largest
chip ever built and specialized for DL computing only. The WSE has a huge numbers of flexible cores
that support general operations (e.g., arithmetic, logical, load/store operations) but are optimized in
particular for tensor operations. The memory, in the order of gygabytes, is on-chip and distributed.

4. Memory

Optimizing the hardware integration of basic operations is certainly promising from an energy
point of view, but it should be considered that inefficient memory management could nullify all this
for two main reasons. First, each DNN is composed of billions of multiply and accumulate (MAC)
operations between activations and weights. Thus each MAC requires three memory accesses: two for
the factors and one for the writeback of the product. Second, off-chip DRAM access is three orders of
magnitude larger than a simple floating-point adder [71]. Therefore, these two reasons become even
more marked considering the current DNN trend, which goes towards increasingly complex models,
where the size is scaled up for better accuracy. In this scenario, the reuse of data through an efficient
dataflow and conscious use of memory are the basis of the co-design of efficient architectures.

Generally, a hardware accelerator for DNN presents a hierarchical memory structure composed
of a few levels as shown in Figure 10. The outer one is typically represented by a DRAM in which
all network weights and activations of the current layer are saved. Part of these data is periodically
moved to a lower level, close to processing elements. This intermediate layer consists of three SRAM
buffers: one for the input activations, one for the weights, and one for the output activations. Typically,
the activation and weight buffers are separated since several different bit widths could be used.
The lowest level instead, is represented by elements of local memory as registers located within the PEs.
These are responsible for the data reuse chosen by the dataflow policy. Moreover, additional memory
elements can be inserted depending on the specific design and data flow. Exploiting the memory
hierarchy, there is no direct communication between the accelerator and the CPU. The CPU loads
the data into the DRAM and, when present, programs the register file. Each location of the register
file corresponds to a specific parameter of a DNN layer, i.e., input size, output size, number of filters,
filter size. The control unit that drives the accelerator, relies on the data contained in the register file to
organize the loops related to the dataflow and to generate memory addresses to move the data from
the DRAM to the buffers.



Future Internet 2020, 12, 113 14 of 22

DRAM
Register
File

A
ct

iv
at

io
n 

B
uf

fe
r

Weight Buffer

O
ut

pu
t B

uf
fe

r

PE

Local
Register

Figure 10. Generic memory hierarchy for a DNN accelerator.

Since the DRAM is the most power-hungry element of the hierarchy, many different techniques
have been proposed to reduce the number of DRAM accesses. For example, Stoutchinin et al. [95]
proposed an analytical model for the optimization of the memory bandwidth in CNN loop-nest. They
showed that with minor interface changes, it is possible to reduce the memory bandwidth of a factor
14×. Li et al. [96] instead, proposed an adaptive layer tiling able to minimize the off-chip DRAM
accesses called SmartShuttle. This model can exploit different data reuse paradigms, switching from
one to the other in order to better fit tiling over several layer sizes. Although the previous works reduce
the memory accesses, they do not consider both the latency and energy per access. Putra et al. [97]
tried to optimize these two factors for further performance enhancement.

The memory hierarchy described above is a generic structure used by most parts of the accelerators.
However, in other circumstances, specific designs, optimized for the target application, have been
opted for, where hardware key elements have been removed. This is the case of ShiDianNo [61],
where the whole accelerator has been embedded inside a phone camera sensor by eliminating the
need for an intermediate DRAM to store the pictures data. The absence of the memory coupled with
an efficient data pattern access leads to a 60× energy saving compared to the previous architecture
DianNao [64].

It is therefore clear that memory is one of the most sensitive points of the entire architecture and
that for a low-power system, its size and bandwidth must be correctly sized. Wei et al. [98] proposed a
framework for FPGA able to allocate efficiently the on-chip memory exploiting the layer diversity and
the lifespan of the intermediate buffers.

Although sparsity and sparse models were primarily designed to avoid unnecessary operations
between null activations and weights, they indirectly reduce both the memory accesses and the
memory size. Model pruning, coupled with the Rectified Linear Unit (ReLU), produces respectively
null weights and null activation. The sparse matrices can be compressed, requiring less memory.
Moreover, removing the useless operations (multiply by zero value) sharply reduces the memory
bandwidth required, speeding up the execution of the DNN, as mentioned in Section 3.2.1.

Logic-in-memory (LIM) is another method of reducing or even eliminate access to memory.
This technique involves the integration of part of the computational logic directly into the memory to
work on the data without having to extract them as in the case proposed by Khwa et al. [99]. However,
this approach can be implemented only in some cases (for example binary networks) and is not feasible
with complex state-of-the-art networks [100–102].



Future Internet 2020, 12, 113 15 of 22

5. Hardware Metrics and Comparison

Comparisons between different hardware platforms or accelerators are not always straightforward
as designers often present performance depending on the target application. For example, a GPU for
server applications is difficult to compare with an accelerator based on ASIC or FPGA for embedded
applications. In fact, the power envelopes and the amount of data to process will be the opposite.
However, there are some standard metrics that researchers rely on to define the performance of the
hardware that refers mainly to the area, power consumption, and the number of operations per second.

Area. The area, generally expressed in squared millimeters or squared micrometers, represents the
portion of silicon required to contain all the necessary logic. It strictly depends on the technological
node used during the hardware synthesis process and the size of the on-chip memory.

Power. The power consumption comes from the device’s power envelope and the application for
which it was designed. Battery-powered devices, for example, require extremely efficient accelerators
that can overcome the pj per MAC barrier. This latter is a metric widely used to express the efficiency of
the computational side of architecture. However, power consumption must also include that resulting
from both on-chip and off-chip memories as they are the primary source.

Throughput. Throughput defines how often an accelerator can accomplish a complete
convolution, or rather a complete inference. Throughput and latency are derived from the device’s
operating frequency coupled with the memory bandwidth. Usually, this metric is expressed as billions
of operations per second (Gop/s) or as billions of Macs per second (GMAC/s). Considering that a
MAC consists of two operations (multiplication and sum), the ratio between Gop/s and GMAC/s is 2
to 1.

There are other metrics that best define an accelerator, such as its flexibility and scalability
to new network models or variable bitwidth. As mentioned above, accelerators tend to be very
application-dependent, so very often, comparisons between them are complicated and should be
evaluated based on datasets or common models.

A comparison between many of the aforementioned models is provided in Table 4, where different
hardware platforms and different accelerator models are presented. As expected, general purpose
architectures have greater area and power consumption than special purpose architectures, as they are
not optimized for a specific application. For each architecture, the main hardware metrics discussed
above are reported.

Table 4. Comparison between accelerations implemented on different hardware platforms.

Name Platform Reference Technology (nm) Area (mm2) Power (mW) Gop/s

Cambricon-X ASIC [69] 65 6.38 954 544

SCNN ASIC [24] 16 7.9 - 2000

EIE ASIC [71] 45 40 600 3000

NullHop ASIC [26] 28 8.1 155 450

NullHop
FPGA

Xilinx Zynq 7100 [26] 28 - 2300 17.2

SqueezeFlow ASIC [25] 65 4.80 536 -

UNPU ASIC [83] 65 16 297 345–7000

FlexFlow ASIC [87] 65 3.89 1000 420

DNA ASIC [88] 65 16 479 194

SIGMA ASIC [93] 28 65.10 22,300 10,800

DNPU ASIC [94] 65 16 279 300–1200

Nvidia V100 GPU [57] 12 815 250,000 31,400

Nvidia A100 GPU [58] 7 826 400,000 78,000

Intel Xeon
Platinum 9282 CPU - 14 - 400,000 3200

AMD Ryzen
Threadripper 3970x CPU - 7 - 280,000 1859
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6. Conclusions

The importance and use of Deep Learning have grown dramatically over the past decade.
These algorithms have been able to go beyond human accuracy in a short time. Besides, thanks to
their versatility, they can be used in many applications, always with cutting edge results. However,
their high effectiveness comes from a tremendous algorithmic complexity that results in a need
for computational power. In this scenario, researchers have developed hardware platforms for the
acceleration of such algorithms. Considering the usual trend of electronics moving towards mobile
devices and IoT nodes, these hardware platforms will have to follow a low-power approach with an
efficiency-oriented design.

Therefore, it is essential to consider critical parts of the system, such as memory and accesses to it,
from the initial stages of design. As a result, many dataflows and techniques have been developed to
optimize all critical aspects of accelerators. For example, to reduce the impact of memory on power
consumption, it is better to use spatial architectures that distribute part of the store elements directly
in the processing elements to enable data reuse.

All these paradigms have been refined over the years. With their progress, several surveys
have also been produced to collect and explain all the techniques, providing a tutorial for designers.
This paper aims to provide an up-to-date survey by mainly focusing on state-of-the-art architectures
of the last three years. The contribution of this work is the collection and comparison of the latest
architectures that have not been covered in prior surveys.

Appendix A

Table A1. List of Acronyms.

AI Artificial Intelligence GPU Graphic Processing Unit
ALU Arithmetic Logic Unit IFM Input Feature Map
ANN Artificial Neural Network IoT Internet of Things
ASIC Application Specific Integrated Circuit LIM Logic in Memory
BLAS Basic Linear Algebra Subroutines MAC Multiply-and-Accumulate
BN Batch Normalization ML Machine Learning
CIS Compressed Image Size MMAC Matrix Multiply-and-Accumulate
CNN Convolution Neural Networks NLP Natural Language Processing
Conv Convolutional NLR No Local Reuse
CPU Central Processing Unit NN Neural Network
CSC Compressed Sparse Column OFM Output Feature Map
CSR Compressed Sparse Row OS Output Stationary
DL Deep Learning PE Processing Element
DNN Deep Neural Network ReLU Rectified Linear Unit
DRAM Dynamic Random Access Memory RF Register File
FC Fully Connected RLC Run Length Coding
FFT Fast Fourier Transform RS Row Stationary
FM Feature Map SIMD Single-Instruction Multiple-Data
FPGA Field Programmable Gate Array SIMT Single-Instruction Multiple-Threads
GB Global Buffer VLSI Very Large Scale Integration
GeMM General Matrix Multiplication WS Weight Stationary

Author Contributions: Investigation, M.C. and B.B.; resources, M.C. and B.B.; writing–original draft preparation,
M.C. and B.B.; writing–review and editing, M.C. and B.B.; visualization, A.M.; supervision, M.S., G.M. and M.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work has been partially supported by the Doctoral College Resilient Embedded Systems
which is run jointly by TU Wien’s Faculty of Informatics and FH-Technikum Wien.



Future Internet 2020, 12, 113 17 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References

1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444, doi:10.1038/nature14539.
2. Zanc, R.; Cioara, T.; Anghel, I. Forecasting Financial Markets using Deep Learning. In Proceedings of the

2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 5–7 September 2019; pp. 459–466.

3. Ying, J.J.; Huang, P.; Chang, C.; Yang, D. A preliminary study on deep learning for predicting social insurance
payment behavior. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston,
MA, USA, 11–14 December 2017; pp. 1866–1875.

4. Ha, V.; Lu, D.; Choi, G.S.; Nguyen, H.; Yoon, B. Improving Credit Risk Prediction in Online Peer-to-Peer
(P2P) Lending Using Feature selection with Deep learning. In Proceedings of the 2019 21st International
Conference on Advanced Communication Technology (ICACT), PyeongChang Kwangwoon_Do, Korea,
17–20 February 2019; pp. 511–515.
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