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Flight Control System Rapid Prototyping for the Remotely-
Controlled Elettra-Twin-Flyer Airship 

M. Battipede*, P. Gili†, M. Lando‡ and P.Gunetti§ 
Aeronautical and Space Department, Politecnico di Torino – 10129 Torino, ITALY  

Nautilus S.p.A. is a small company investing in the design and development of a low-cost 
multipurpose multi-mission platform, known as Elettra-Twin-Flyer, which is a very 
innovative radio-controlled airship, equipped with high precision sensors and 
telecommunication devices. In the prototype phase, Nautilus policy is oriented towards a 
massive employment of external collaborators to reduce the development costs. The crucial 
problem of this kind of management is the harmonious integration of all the teams involved 
on the project. This paper describes the integration process of the PC-104 on-board 
computer with the avionic devices, which are electronic systems characterized by complex 
communication protocols. Attention is focused on the testing, verification, validation and 
final translation of the embedded control software into the on-board computer, through 
techniques derived from the automatic code generation, such as Rapid Prototyping and 
Hardware-In-the-Loop. 

Nomenclature 
CAS = Control Allocation System 
ETF = Elettra-Twin-Flyers 
FCC = Flight Control Computer 
HIL = Hardware-in-the-loop 
IMU = Inertial Measurement Unit 
OS = Operative System 
PIL = Processor-in-the-loop 
RP = Rapid Prototyping 
RPM = Rate Per Minute 
SIL = Software-in-the-loop 
WOW = Weight-On-Wheel 
R = Correlation function 
T = Thrust 
act = Actual signal 
com = Commanded signal 
δ = Propeller orientation angle 
δcomm = Lateral and directional combined command 
δdir = Directional joystick command 
δlat = Lateral joystick command 
δlon = Longitudinal joystick command 
δth = Throttle input 
τ = Correlation delay 
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I. Introduction 
n the last years, the interest of various market sectors, involving military, civil and private organizations (security, 
commercial, defense, prevention, etc…) has more and more focused on unmanned aerial vehicles able to perform 

extremely different tasks, such as monitoring, telecommunications, advertising and reconnaissance. In this context, 
Nautilus S.p.A. is investing in the design and development of a low-cost multipurpose multimission platform, 
known as Elettra-Twin-Flyers (ETF), which is a very innovative radio-controlled airship equipped with high 
precision sensors and telecommunication devices1,2. Therefore, this remotely-piloted lighter-than-air platform is 
particularly suitable for inland, border and maritime surveillance missions and for telecommunication coverage 
extensions, especially in those areas which are either inaccessible or without conventional airport facilities and 
where the environment impact is an essential concern. In order to offer an innovative product at competitive prices 
in the restricted airship market sector, the development costs have to be necessarily cut down or at least limited. For 
this reason, hence, Nautilus policy is oriented towards a massive employment of external collaborators instead of 
enrolling internal employees, at least in the actual phase of the project. In this context, Nautilus has a collaboration 
with the Aeronautical and Space department of the Polytechnic of Turin for the research, development and design 
aspects and claims the cooperation with several firms on technical aspects concerning the manufacturing of many 
subsystems of this new concept airship. The crucial problem of this kind of management is the harmonious 
integration, especially in the prototype phase, of the teams belonging to different companies, which operate on 
specific systems, such as the structure, the avionics, the command system, the energetic and pneumatic systems and 
so on. Therefore, it is essential to establish very clear procedures, which can guarantee rapid evaluation feedbacks, 
the subsystem compatibility and the hardware/software integration among the several teams involved in the Nautilus 
project. Due to the unconventional command system and architectural solution, the Nautilus airship presents many 
innovative features in various sectors of classical aircraft design, therefore, almost all the subsystems have been 
purposely designed, assembled and tested because never employed in any other aeronautical application. Hence, 
great emphasis has been given to the prototype phase3 in which the feasibility of this really innovative platform has 
to be proved. Concrete difficulties might rise in the avionics design, in which two different groups should proceed in 
parallel through an iterative procedure based on reciprocal feedbacks until the verification and validation of the final 
system is achieved. From one side there is the aeronautical engineer, who has the task of designing the flight control 
system using development tools such as Fortran, C/C++, Matlab/Simulink. From the other side there are the 
programmer and the electronic technician that translate the final code into the industrial programming language, i.e. 
ADA, of the on-board computer. These two groups pursue the same goal having to respect, however, different 
requirements, which might also be conflicting. If not automated, the entire process of iterative design and test 
induces high development times, which penalize enormously the airship costs. Nowadays, however, the availability 
of more and more powerful high-speed low-cost computers allows the implementation of new techniques of Real-
time Rapid Prototyping (RP) and Hardware In-the-Loop (HIL) simulation4 since the early stage of the development 
cycle, which is strategic to reduce the amount of time necessary to test the embedded control software and the 
hardware components. At present, the RP and HIL techniques are mainly adopted by the academic world. We 
reckon, however, that these tools could have a strong impact in the industrial reality, which is very sensitive in 
pursuing every means to shorten the new product development cycles. 

For the above mentioned reasons, Nautilus invested the early stage of the project in the development of a 
complete and refined Flight Simulator5-7, which proved to be essential for supporting the whole design process of 
this non conventional unmanned airship. In particular, the flight simulator provides also an effective tool for the 
design and test of the innovative flight control system and its following integration in the platform on-board 
computer. However, as the airship dynamic system simulation in the Matlab/Simulink environment is a non-real-
time application and it has to be interfaced with an embedded real-time control system through I/O interfaces, it is 
necessary to convert the Simulink dynamic model into a real-time simulation. This operation is carried out by using 
an automatic code generator, such as the RT-LAB™ software package8, which generates C code from Simulink 
block diagrams through Real-Time Worshop, compiles the C code in the QNX operative system and executes it on 
two PC processors running in parallel, which represent the Targets. The ETF Simulator, hence, is organized in four 
separate entities: the airship dynamics Target, the Flight Control Computer (FCC) Target, the ground station and the 
data-link device (receiver and transmitter).  

RP and HIL techniques together with the ETF Simulator are both used for the testing, verification, validation and 
final translation of the embedded control software into the on-board computer. In addition, the most critical 
hardware components and interfaces are real-time tested through the embedded control software. This paper is 
focused on the application of these low-cost procedures, which facilitate the real-time interface between the software 
and hardware devices, used to accomplish ground and in-flight tests in the prototyping phase9.  
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II. Beyond the Simulation  
 Simulating a model enables the designers to check that the system behavior satisfies the requirements well 
before the construction of the first prototype. Nowadays, this concept is deeply established among engineers, who 
are all more or less familiar with the standard simulation techniques. The development of a complete and refined 
Flight Simulator for the Elettra-Twin-Flyers has been essential to support the whole design process of this 
innovative unmanned airship. In particular, the ETF Simulator was implemented for the following reasons: 
— to assist the airship design process from the early stages, in which it was necessary to evaluate the global 

dynamic behavior of the vehicle, up to the more advanced phases, in which the single components and 
subsystems of the airship had to be correctly analyzed, dimensioned and integrated in the final product; 

— to support the design and test phases of a completely new flight control system; 
— to supply a powerful tool for the pilot during the training phase, when the pilot was expected to acquire the 

ability to fly this non conventional remotely-piloted airship. In fact, even though the piloting has been thought 
to emulate as much as possible the helicopter concept, a short training phase is necessary in order to get used to 
the airship response and to obtain the best performance from its great capabilities; 

— to support the design of the ground station, which has been realized as close as possible to the Flight Simulator 
in order to maintain the same operational environment used by the pilot during the training phase; 

— to provide an expository platform to effectively highlight the peculiar characteristics and performance of this 
new concept unmanned airship during marketing operations. 

 
Efforts and costs associated to 

the modeling and simulation 
activities, however, are still very 
high, even when low-cost hardware 
components and on-the-shelf visual 
systems are employed. For this 
reason, software engineers are 
extensively working on tools, which allow the exploitation of the simulation codes well beyond the early designing 
phases. All these tools are based on the automatic code generation technique and the development of software 
drivers, which enable the integration of standard PC-based hardware components with a very wide range of I/O 
devices. Beyond the simulation, the potentialities of these tools are incredible and it is almost impossible to list all 
the developments and test activities for which an automatically generated code can be effectively used. The key is to 
assume that each component of the system sketched in Figure 1 can manifest itself and connect to other components 
as software, hardware, or simply remain a model. Some applications are very well known among researchers but just 
a few are established and commonly employed in the aerospace industry. Some of them are briefly reviewed in the 
following subsections. 

A. Simulation Acceleration 
Assuming that the system is reduced in the generic form of Figure 1, code can be generated and compiled for 

both the plant and controller models. It executes on the host computer and runs much faster than interpretive 
simulation. This is a popular way to do statistical analysis and parameter studies, such as those involving Monte 
Carlo methods.  

B. Rapid Prototyping (RP) 
RP is a very popular technique to develop interactive 

prototypes, which can be quickly replaced or changed in line 
with design feedback. This feedback may be derived from 
colleagues or users as they work with the prototype to 
accomplish set tasks. Thus, it can be used to adjust and tune 
the designer requirements. Code is generated just for the 
controller model. The code is then cross-compiled and 
downloaded to a high-speed, floating-point, rapid-prototyping 
computer, where it executes in real time. Prototypes created by 
this method usually have a high fidelity with the final product 
and give users and designers a tangible demonstration of the 
control system performance. The controller parameters can be 

 

CONTROLLER PLANT
INPUT OUTPUT

Σ CONTROLLER PLANT
INPUT OUTPUT

Σ

 
Figure 1. Control system block diagram.  

Figure 2. Rapid Prototyping scheme.  
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tuned "on-line" during tests involving the actual plant. The use 
of a commercial computer as a target platform allows the 
designers to test the software well before the hardware of the 
on board computer is actually available. 

C. On–Target Rapid Prototyping 
As with RP, code is generated just for the controller 

model. However, the code is then cross-compiled and 
downloaded to the embedded microprocessor used in 
production, or perhaps to a close cousin of it, which is 
configured with a little more memory and the necessary 
Input/Output boards. As for the rapid prototyping  the 
controller parameters can be tuned "on-line" during tests involving the actual plant. The on-target rapid prototyping 
can be seen as the last stage of the prototype development, when the software is almost definite, apart from 
adjustments or problems that might arise from the interaction with the computer hardware. 

D. Production Code Generation 
No simulation or development activity is associated with this application. Code is generated for the detailed 

controller model and downloaded to the actual embedded microprocessor as part of the production software build. 

The key here is to ensure that the final build has fully integrated the automatically generated code with existing 
legacy code, I/O drivers, and real-time operating system. The process is appealing and definitely cost-effective, as it 
allows to reduce considerably the time associated to the development of the final product. Referring to Figure 4, in 
fact, it is clear that many factors may concur at a substantial delay in the accomplishment of the final product.  
Usually, when the controller is complex, the development is carried out by the synergy of two different groups: the 
software and the hardware working groups. The software manager has the task to produce the embedded code and 
make his/her staff work under specifications of the controller designer and the constraints of the hardware manager, 
who has the task to assembly the prototype hardware. The problems arise when the system integration tests begin. 
They might reveal that major hardware adjustments are required or that some unexpected software requirements 
necessitate the implementation of extra code lines or simply that minor bugs must be adjusted with workarounds. 

 
Figure 4. Controller production cycle without the aid of the automatic code generation techniques.  

 
Figure 5. Production cycle with the aid of the automatic code generation techniques. 

Figure 3. On-target Rapid Prototyping scheme. 
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These problems are not anomalous and both software or hardware engineers are aware that the initially estimated 
program costs and lengths may rise at the extent that the program is eventually cancelled.  

When automatic code generation techniques are employed the system integration tests can be scheduled starting 
from the very beginning and bringing the software and hardware working groups to communicate from the very 
early stage of the program, as shown in Figure 5. Software and hardware are developed and corrected step by step, 
moreover, requirements and constraints are verified in real-time, mitigating the risk of rework or major adjustments.  

Among the automatic code generation techniques, the production code generation activity is by far the 
application that draws more benefits from this concept, for obvious reasons. Unfortunately, however, this tool is not 
always applicable, unless the final product does not require specific certification. In the avionic field, for instance, 
the regulation DO-178B10 has become a de facto standard. The FAA's Advisory Circular AC20-115B, in fact, 
established DO-178B as the accepted means of certifying all new aviation software. The DO-178B is primarily 
concerned with development processes and no tool for automatic generation code is allowed to replace the job of at 
least two separate staff of software engineerings.  

E. Hardware-in-the-Loop (HIL) Testing 
HIL is another well known activity among engineers, who are aware that expensive, fragile, and unique systems 

are hard to test, especially if they do not really exist yet, as they are being developed together with the control 
system. Code is generated just for the plant model and runs on a highly deterministic, real-time computer. 
Sophisticated signal conditioning and power electronics are needed to properly stimulate the controller inputs 
(sensors) and outputs (actuator commands). Whereas rapid prototyping is often a development or design activity, 
hardware-in-the-loop testing serves as more of final lab test phase before road or track or flight tests begin. HIL is 
particularly meaningful when the plant is a dynamic systems, namely when the plant output is not simply a function 
of the present inputs, but is instead a function of the present inputs and some combination of past inputs. The 
problem is how to conduct meaningful tests of such a system, avoiding the risk of damaging the real plant with 
unexpected consequences. The use of real-time simulation is essential to determine whether the controller digital 
delays affect the operation of the actual system, well before the plant is irrecoverably damaged. 

F. Software-in-the-Loop (SIL) Testing 
This type of testing usually does not involve 

real time simulation. The production code for the 
controller is executed in an instruction-set 
simulator, debugger, or within the modeling 
environment itself, exercising the plant model and 
interacting with the user. The basic idea of the SIL 
is the same of the HIL, except that all run on 
standard PC hardware. The target hardware, 
together with sensor and actuators, is simulated and 
the software under test runs on that simulated 
hardware. The environment simulation runs in 
software as well. This approach allows the use of 
cheap PCs for testing the embedded software 
instead of costly HIL test-beds and in-circuit-
emulators, which often also pose availability 
problems.  

G. Processor-in-the-Loop (PIL) Testing 
This technique is similar to the SIL in that it executes the production code for the controller. However, real I/O 

via CAN or serial devices is used to pass data between the production code, executing on the processor, and the 
plant model, executing in the modeling environment. As with SIL testing, PIL testing do not execute in real-time. 

III. Plant Description: the Airship Prototype 
The Nautilus new concept airship features an architecture and an appropriate command system, which should 

enable the vehicle to maneuver in forward, backward and sideward flight and hovering with any heading, both in 
normal and severe wind conditions. To achieve these capabilities the Nautilus airship has been conceived with a 
highly non conventional architecture based on a double hull with a central plane housing structure, propellers, on 

 
Figure 6. The Nautilus ETF, a new concept unmanned 
airship. 
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board energetic system and payload. The resulting solution presents many innovative features, which cover many 
sectors of the aircraft design: almost all the subsystems have been purposely shaped and assembled and have never 
been tested on aeronautical applications. For this reason, great emphasis has been given to the prototype phase, 
which has been considered crucial in the final process of the feasibility assessment. The prototype is a reduced-scale 
platform which has been purposely assembled to test the most critical subsystems, such as the control system and the 
architectural solution. The ETF command system mainly consists of two vertical rotational axis ducted propellers 
and four thrust-vectoring propellers mounted on rotating vertical arms (Figure 6). The ducted propellers provide 
vertical thrust for steep rapid climb and descent and control the pitch attitude of the vehicle. In addition, their action 
is combined with the helium buoyancy to produce lift in hovering and also in forward flight, where the lift provided 
by buoyancy and vertical thrust is incremented by an aerodynamic component, developed by the double fuse-shaped 
body of the airship. The four thrust-vectoring propellers allow to control the lateral-directional attitude of the airship 
through the variation of the rotational speed (RPM) together with the rotation of the supporting vertical arms. 

A. Control Allocation System (CAS) 
Commands are generated by the pilot through an innovative cockpit, consisting of two throttles and a three-DOF 
joystick. The pilot inputs are processed and re-allocated by the Control Allocation System in order to generate the 
desired commands in terms of propeller rotational speeds and orientations of the four thrust-vectoring propellers. 
The Control Allocation System has been firstly designed and modeled in the FCC of the ETF Simulator and then 
integrated in the on-board computer of the airship prototype. The control strategies within the FCC have been 
developed for the two possible flight conditions: forward flight and hovering with/without wind. In forward flight, 
the joystick commands the orientation δ of the four thrust-vectoring propellers for the lateral and directional 
maneuvers, as well as the differential variation of the angular rate of all the six propellers, generating the differential 
thrusts ∆Tax and ∆TaxVT for the longitudinal maneuvers. The allocation strategy of the longitudinal control, shared 
between the forward and vertical propellers, has been purposely designed and scheduled to improve both the 
efficiency and the potentiality of this command, optimizing the airship performance in the whole speed range2. The 
two throttles act on the collective rotational speed of the four thrust-vectoring propellers and the two vertical axis 
propellers. In particular, the variation ∆n of the propeller rotational speed in rounds per minute (RPM) is 
proportional to the square root of the throttle input δth. This relationship has been imposed to obtain a linear relation 
between the command action and the generated thrust as the propeller thrust is proportional to the square root of the 
angular rate, according to the first Rénard formula11. All the six propellers can work in reverse mode with reduced 
efficiency. Moreover, the maximum collective thrust commanded by the throttle input δth is only a reduced 
percentage of the total available thrust, while the remaining available thrust is dedicated to the commanded 
maneuvers, which are thus always achievable even when the throttle command δth is maximum. 

 The general scheme of the control strategy in forward flight is illustrated in Figure 7, in which it is 
highlighted the position of each propeller with the corresponding control action generating positive pitching, rolling 
and yawing moments, respectively, for longitudinal, lateral and directional maneuvers. In particular, the forward and 
vertical collective thrusts TthFW and TthVT are linearly controlled by the two throttles, while the differential thrusts 
∆Tax and ∆TaxVT, as well as the propeller orientations δ  are generated through the joystick action. For lateral and 
directional maneuvers, the joystick firstly commands the axial ∆Tax and normal ∆Tn thrust increments with respect to 
the propeller rotational axis, successively, the FCC processes and re-allocates these signals in order to provide the 
corresponding orientation angles δ  of the propellers. In Figure 7 the positive rotations δ of the thrust-vectoring 
propellers are assumed to be in a clockwise direction. 

LONGITUDINAL LATERAL DIRECTIONAL

FRONT UPFRONT DOWN

thFW axT T− ∆

VERT. FORE

thFW axT T+ ∆

thVT axVTT T+ ∆

REAR DOWNREAR UP

thFW axT T+ ∆

VERT. AFT

thFW axT T− ∆

thVT axVTT T− ∆

XB

FRONT UPFRONT DOWN

REAR DOWNREAR UP

latδ+

latδ+ latδ−

latδ−
FRONT UPFRONT DOWN

REAR DOWNREAR UP

dirδ+

dirδ− dirδ−

dirδ+

XB XB

YB YB YB

 
Figure 7. Control strategy for longitudinal, lateral and directional maneuvers in forward flight. 
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 The control strategy in hovering condition is almost analogous to the forward flight except that all the thrust-
vectoring propellers are collectively oriented in the wind direction through the angle δcoll. In addition, the directional 
command is accomplished through a differential thrust of the right and left forward propellers with respect to the 
longitudinal wind axis Xw. In this way, the pilot continues to command the desired moments in the body-axis 
reference frame XB –YB, while the FCC processes these commands and computes the corresponding control inputs in 
the wind-axis reference frame. The relationship between the two sets of command inputs depends exclusively on the 
collective orientation angle δcoll. This control allocation strategy, implemented in the on board computer of the 
prototype, is inherently based on two main assumptions. Firstly, the longitudinal thrust component, produced by the 
forward throttle δth, has to be preserved during any longitudinal, lateral and directional maneuver in order to 
guarantee the desired motion and speed of the airship. Secondly, the longitudinal and lateral commands have to be 
proportional to the related moments to manage forward flight and hovering with the same control philosophy6. 

B. Command Lines  
The command action is performed through ten brushless motors, driven by two dual-channel and six single-

channel control boards. Each thrust-vectoring propeller, in particular, is controlled by two distinct command lines: 
the orientation one, which rotates the vertical arm and thus the thrust direction, and the propulsion one, which is 
responsible of the propeller regime variation. The orientation line has five elements: the dual-channel control board, 
the brushless motor, the gearbox, the encoder and the transmission system. Due to the peculiar propeller setup, this 
control board is shared with the corresponding command line of the adjacent front or rear propeller and is interfaced 
to the computer through the RS-232 standard interface. 

The propulsion line is made up by four components: the slip rings, the control board, the brushless motor and the 
encoder. In this case the control board is dedicated and is connected to the computer through the RS-422 standard 
interface, which should protect the communication capability against the signal degradation caused by the slip ring 
presence. 

C. Avionic System 
The avionic system is essentially based on the following devices: 

• On-board Computer (PU); 
• Navigation Sensor Unit 

(NSU); 
• Avionics Battery; 
• Propulsive Battery; 
• Electrical Power Generation 

(EPG) 
The on-board computer is based 

on a x86 compatible processor, 
installed on a PC/104 mainboard. The 
Navigation Sensor Unit (NSU) 
basically gathers all the sensors used 
for the control and navigation task, 
such as the Inertial Measurement Unit 
(IMU), the gyroscopes, the 
accelerometers, the Air Data Sensors 
and a GPS card. Other sensors are 
purposely distributed in the airship to 
monitor crucial parameters, such as 
the temperature of the batteries and 
the weight on the landing gear. All 
these sensors are directly 
interconnected to the main computer 
through proper I/O cards. Other devices are purposely inserted for safety reasons, to command the shut-off valves or 
dissect parts of the electrical circuit in emergency situations. These devices are commanded directly by the pilot 
through a relay board on the on-board computer or automatically through the EPG, in case of fault of the on-board 
computer. 

Figure 8. The avionics panels. 
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 The five apparatus are disposed on two triangular panels fixed in the bottom part of the central structure of 
the airship, as shown in Figure 8. The location of the avionic system panel in a central position has been selected in 
order to make easier the connections to the other on board systems without affecting significantly the airship Center 
of Gravity position. 

IV. Hardware/Software Architecture of the On-Board Computer (PU) 
The innovative control system of the ETF airship requires a good computational capability to implement the 

complex control logic. Pilot commands have to be received via a radio-link and then converted into the actual 
commands and sent to the actuators. This conversion is performed by the CAS described in Section III.A. The 
software running on the on-board computer has manifold tasks, such as the CAS implementation, the connection 
with the ground station and the interface with the avionic system and actuators. In the following subsections, the 
hardware and software architecture of the on-board computer, named Processor Unit (PU), will be described in 
detail. 

A. Hardware Architecture 
The PU is based on a PC/104 mainboard, a solution combining reliability, compactness and easy 

implementation. The mainboard includes a low-power x86 compatible processor and basic interfacing capabilities 
(RS-232, Ethernet and USB ports, mouse and keyboard input). The hard-disk is a solid-state Flash-Disk, which is 
typical for embedded systems that do not require the larger capacity of magnetic drives but must be highly reliable. 
To effectively interface the PU with the other components of the avionic system and the actuators, several additional 

I/O boards are necessary: 
— an Analogic/Digital acquisition board, used to convert 

voltage signals to a digital format accessible by the 
PU. This board is used to acquire signals coming 
from the Weight-on-Wheel analogic sensors, 
basically load cells measuring the load distribution 
on the airship tripods; 

— a serial board comprising eight serial RS-232/RS-422 
ports and four RS-232. These ports are used to 
interface the PU with the actuators (engine 
controllers) and with some avionic devices (NSU); 

— a relay board, including twenty software-activated 
relays, nine of which used to command the Remote 
Control Switches controlling the on-board power 
distribution and two of which used to activate the 
emergency shut-off valves. The board also includes 
twenty optoisolated digital inputs, two of which are 

used to acquire the signals from the shut-off valve proximity sensors. 
This configuration, as illustrated in Figure 9, includes all the interfaces needed for the ETF prototype, and leaves 
several spare inputs and outputs, which might become necessary in case some extra device is added. 

B. Software Architecture 
The PU Operating System is QNX12, a real-time OS designed specifically for embedded systems. Taking 

advantage of a true micro-kernel architecture, it ensures deterministic execution of the running applications. This is 
a crucial issue in a safety-critical system, in which every task must be executed at the expected time and without 
delay. The real-time nature of QNX also allows to synchronize the running applications in a significantly better way 
than what can be accomplished using a traditional OS. 

The software is structured to optimize functionality in the several different tasks it has to accomplish. The main 
element, named “Core”, is basically the real-time version of the Simulink model representing the CAS. The Core 
interfaces with the other applications through the use of Shared Memories, which are reserved portions of system 
memory accessible to different running applications. The hardware interfaces are controlled by several low-level 
applications specifically designed to achieve input and output requirements, while interacting with the Core through 
the Shared Memories. Figure 10 shows the software architecture: it is evident how the Core component is heavily 
relying on the low-level applications, as these are its only means of interfacing with external hardware. There are 
seven low-level applications, interfacing with the Core through nine Shared Memories: 

 
Figure 9. Prototype version of the PU. 
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— ClientRX receives data from the Ethernet interface (radio-link) and writes it to the Shared Memory joystick.shm; 
— WriteRelay reads data in engine.shm and consequently directs the relays; 
— WriteSerial interfaces with the engine controllers through the serial ports, sending the commands contained in 

engine.shm and writing replies received in query.shm; 
— NSU receives and decodes data sent by the NSU avionic device, then writes it to nsu.shm; 
— WriteSensori reads values from the A/D acquisition board (WOW sensors) and digital values from the relay 

board (proximity sensors) then writes everything into sensori.shm; 
— EPG is in charge of the Ethernet communication with the EPG avionic device, which monitors the batteries and 

is used as a partial backup of the PU for safety procedures; 
— ClientTX reads data from all Shared Memories and sends it to the ground station. 
 
Having more than one application writing data into a Shared Memory can cause severe conflicts, so it is very 
important to avoid this eventuality. There are no problems with reading operations, in fact, several applications can 

read data at the same time.  
The Core component is 

developed using automatic 
code generation techniques. 
The entire Simulink model of 
the Control Allocation System 
is converted into an 
embedded executable code 
using the RT-LAB software 
package. The generated 
executable code uses Shared 
Memories as a mean of 
input/output communication, 
as the physical interfaces are 
controlled by the low-level 
applications. These in turn are 
developed using the QNX 
Integrated Development 
Environment. Theoretically, it 
would be possible to write 
Simulink S-functions to 
interface directly the core 
with the hardware devices, 
using the same automatic 

code generation process. However, this solution is not attractive as it involves creating complex fully inlined S-
functions, which may be much more demanding and critical than writing the low-level applications. In addition, 
using external applications to drive the hardware peripherals gives advantages in terms of system modularity and 
software reliability. 

These advantages certainly make this solution preferable, especially when the system must be certified as an 
avionic apparatus. At present, it is unfeasible to obtain certification for automatically generated software. According 
to the DO-178 rules, in fact, all the software critical functions must be implemented through purposely structured 
and commented custom written code. The implementation of safety procedures is also very important, as these have 
to ensure a predictable behavior in case of failure. 

V. System Verification & Validation 
When thoroughly exploited, modeling and simulation can drastically reduced the risk of confronting significant 

problems during the system integration phase. To optimize the process, an effective strategy consists in identifying 
the criticalities and developing a set of test harnesses, made up by series of hardware layouts, verification procedures 
and test cases.  
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Figure 10. Software architecture of the PU. 
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A. Interpretive Simulation 
Model-based design has proven to be an effective framework for the development of activities related to guidance, 
navigation and control. In particular, programming tools such as Matlab and Simulink, which strongly rely on the 
model-based design, have become a must for designing control systems and reusing the models in multiple 
activities. They provide the designer with the ability to manage complex designs by segmenting models into 
hierarchies of components in an interactive graphical environment, which allows the designer to easily configure 
and check signals, parameters, and model properties. Once a set of equations has been written, hence, it is 
straightforward to implement them according the control scheme of Figure 1, and run simulations to diagnose bugs 
or unexpected behaviors in the control design. In this context, the interpretive simulation task is to test the system in 
all the operational modes and under environmental conditions which may be difficult or impossible to access for 
system tests (such as icy roads in the middle of summer, or the conditions of outer space, etc…). Simulation allows 
intricate test sequences to be performed quickly and repeatably at relatively low cost, without risking loss of life or 
valuable assets. Although interpretive simulation is essential to verify the consistency of the control laws, however, 
it does not provide full understanding of the mechanisms driving the real system. Usually, in fact, the simulation 
runs in non-real time, as the process is sequential, even when a certain degree of parallelism is brought about by the 
PC processor. Variables are usually in double-precision floating-point format and are exchanged between plant and 
controller through a direct communication. Information about time delays, digit truncation, precision or bit loss are 
neglected and this deficiency is enough to justify the need for further tests. 

B. Real-Time Validation of the Automatically Generated Code 
After modeling the CAS in the Simulink environment, the RP technique can be effectively used to test the code 

in operative conditions. This involves the generation of automatic code in C, which can be compiled and executed in 
the QNX real-time environment. In this phase the communication is bi-directional between the Simulink plant model 
and the CAS real-time version, so that a commercial computer, with limited I/O capabilities, can be effectively used 
as the target platform. Plant and CAS run on two distinct PCs, controlled by different operative systems and 
connected by a simple LAN cross-over cable. The translation from the Simulink code to the C code, might bring 
about some discrepancies which might drastically affect the command action. Therefore, suitable tests must be 
scheduled to assess these discrepancies and evaluate the correct functioning of the embedded code. This implies 
comparing results obtained from the real-time execution with the ones derived from the non-real-time interpretive 
simulation. Obviously, this comparison must be 
accomplished under the same inputs, which can be 
time-histories composed with the superposition of 
characteristic commands (step, doublet, chirp, 
etc…) or with maneuvers recorded from a 
standard input device (joystick).  

Initially, a certain degree of inconsistencies 
can be expected, due to pathological problems, 
which can be easily solved using preventive 
measures, such as the insertion of dead zones, 
saturation thresholds and rate limiters. When these 
errors are fixed, satisfactory results can be 
achieved, as shown by the example of Figure 11. 
In particular, the upper diagram reports the actual 
comparison of the output values, while the lower 
diagram shows the difference between the real 
and the estimated outputs. In this case, there are 
only minor discrepancies, such as a peak, which is 
clearly marked and might be attributed to a time 
delay caused by the input dead-zone crossing. 

C. Software Stress Analysis 
Once the real-time behavior of the automatically generated code has been evaluated, attention can be focused on 

a series of procedures, based on the SIL technique, which has to stress the PU software through a set of specific and 
rigorous tests. A valid approach to verify the functionality of the Core component, in fact, is to test it under all the 
predictable conditions and the widest range of unpredictable conditions. In particular, different sets of input 
commands are generated and fed to the pertinent Shared Memory, the joystick.shm, which gathers all the signals 
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coming from the pilot cockpit of the ground station. Successively, the output signals of the PU Core, in terms of 
propeller rotational speeds and orientations of the four thrust-vectoring propellers, are collected and statistically 
analyzed in order to avoid possible anomalous situations, which could be harmful to the on-board hardware of the 
airship. The embedded Core software is stressed not only with regular input signals but also with random or 
senseless signals, such as input commands out of the operating ranges. These anomalous signals simulate, for 
example, a communication error or an execution error of the external devices and allow to deeply and efficiently test 
the Core behavior also in critical situations requiring emergency procedures. 

D. I/O Interface Setting and Testing 
A complex control system, such as the 

one being developed for the ETF airship, 
usually communicates with a large number 
of avionic devices and actuators. This 
means that the various apparatus must be 
interfaced with the PU I/O boards, which 
must be properly set and tested. The RP 
and SIL techniques used to validate the 
automatically generated software, which 
implements the CAS, are not suitable to 
accomplish this task. To effectively set and 
test the interfaces, it is crucial to have a 
properly configured target system. While 
RP focuses on testing the real-time 
software using a generic platform, on-target 
RP is based on the execution of the 
previously tested software on a specific 
platform, equipped with the necessary I/O 
interfaces. 

On-target RP involves assembling a prototype version of the on-board computer, where the Core component of 
the CAS is executed. The communication interfaces of the avionics devices and the on-board hardware can be 
allocated on four different I/O boards furnished 
with serial ports, analogical inputs, digital inputs 
and relay outputs. As these boards feature 
different communication protocols and have a 
certain degree of customization, the setting 
phase implies that each interface is treated 
separately. The interface is thus developed 
tuning every single protocol for the devices that 
have to be connected. The use of the on-target 
RP allows not only to develop the interfaces in 
an efficient manner, but also to thoroughly test 
them. It is possible to verify whether the 
communication protocols are exactly 
implemented, whether the data exchanged with 
the external devices are properly formatted and 
if the variables are actually confined in the 
predicted range.  

E. System Integration 
After these first analyses on the embedded software and interfaces, specific test rigs can be designed for the HIL 

testing of all the available external hardware. In particular, a test bench has been assembled for the propulsion motor 
and another one has been dedicated to the orientation motor. Finally, a third test bench, resulting from the previous 
ones, has been conceived to evaluate the integration of the embedded control software running on the PU with all 
the external hardware, considering also synchronization problems and casual conflicts. Hence, it has been possible 
to test entirely the interaction between the PU and the maneuvering system, made up by six propulsion motors and 
four orientation motors. In fact, although the test bench is principally made up by just one propulsive motor and one 
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orientation motor with the relative 
components, all the serial I/O ports, RS-
232 and RS-422 standard protocols are 
present and the missing motors are 
simulated through a dedicated real-time 
model. In this way, the embedded 
control code has to manage in any case 
different hardware components through 
different serial I/O ports and has to run 
different software to implement the 
communication protocols. The tests to 
evaluate the system integration have 
been carried out by using pre-recorded 
command inputs, which correspond to a 
specific maneuver of about 360 s 
accomplished by means of the ETF 
Simulator. For each test the commanded 
signal coming out from the CAS and the 
actual signal measured by the encoders 
are recorded with a sampling frequency of 10 Hz and processed for performance analysis and evaluation. Figure 12 
shows respectively the rate number (RPM) and the orientation (deg) of the front-up propeller. In order to evaluate 
the degree to which the two commanded signals are correlated to the corresponding actual signals, a statistical signal 
processing analysis has been accomplished by using the following cross-correlation function: 

 ( )
( )( ) ( )( )

( )( ) ( )( )2 2

i

i i

com i com act i act
R

com i com act i act

τ
τ

 − ∗ − − 
=

− ⋅ −

∑

∑ ∑
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where ( )com i  and ( )act i  are respectively the commanded and actual signal series, com  and act  are the mean 
values of the corresponding series and τ  is the correlation delay. The response characteristics of the propulsion and 
orientation motors in terms of time delay can be estimated through a batch analysis, by calculating the correlation 
over the entire signal series ( )com i  and 

( )act i . From Figure 13 it can be 
noticed that the time delay of the 
propulsive motor is about 0.3 s, whereas 
the time delay of the orientation motor 
is about 0.9 s. The same concept has 
been successively employed to 
implement an on-line correlation 
analysis in the PU embedded software, 
in order to monitor the motor 
functioning and detect possible failures 
or commands erroneously executed. 
This analysis is executed with a 
frequency of 1 Hz. At each sample time, 
the correlation analysis inspects the 
recorded signals on a dynamic window 
of 15 s and computes the relative 
correlation series, after a suitable 
filtering process that cancels all the 
spikes in the measured signals. The resulting on-line correlation series are then processed to obtain the maximum 
cross-correlation values and the corresponding time delays. Figure 14 shows an example for the commanded and 
actual RPM signals of the propulsive motor of Figure 12, with and without the filtering process of the measured 
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signals act(i). Conversely, the on-line correlation and time delay values relative to the orientation motor are 
presented in Figure 15. These two important on-line parameters allow to check the correct working of the propulsion 
and orientation motors, as well as to implement emergency procedures or simply visual warnings in case their values 
are anomalous or drop under a fixed threshold. 
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