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1. Introduction 

Unmanned aerial vehicle (UAV) systems have gained the approval of the scientific community 
for different applications related to the acquisition of information, becoming common in geospatial 
research and a wide range of applications [1]. The cost- and time-effectiveness of UAV systems, 
compared to traditional field surveys, is partially responsible for their increasing favor. An additional 
factor contributing to their popularity is that they can be equipped with several sensors, such as 
optical and hyperspectral cameras, light detection and ranging systems (LiDAR), synthetic aperture 
radars (SAR), inertial measurement units (IMU), and global positioning systems (GPS) [1–4]. 

Many disciplines benefit from these technologies, including forestry [5]. The application of UAV 
in forestry inventory and, more generally, in the extraction of the main forest parameters (e.g., forest 
stand density, crown widths, basal area, average diameter at breast height, height) is well established. 
The structural information of forest stands is vital for silviculture and forestry inventories. The 
accurate detection of tree crowns is necessary to estimate the dendrometric attributes of forest stands, 
such as the tree position, the stem diameter, the height, the crown extension, and the volume[6–8]. 
Besides, these forest parameters can be valuable ecological indicators, which determine, among 
others, the carbon sequestration, the shading, the risk of wind-breakage, and the tree growth [9]. The 
determination of these parameters is performed at the individual tree level and requires information 
about single trees. 

Thus far, many approaches have been proposed for individual tree detection (ITD) via remote 
sensing. Generally, they are based on digital elevation models (DEM) that can be generated from 
LiDAR acquisitions [7,10–15] or structure from motion (SfM) [5,9,11,16,17]. SfM uses optical images 
acquired from multiple points of view to recreate the three—dimensional geometry of an object 
[18,19]. The 3D model generation is carried out by incremental steps. First, the key-points are 
extracted from the images based on contrast and texture-related rules. The key-points are identified 
in all input images and then matched between different images [19,20]. Then, the bundle adjustment 
is performed and the sparse point cloud is usually scaled and georeferenced [21,22]. The final step 
consists of the densification of the point cloud thorough specific algorithms [23]. 

Regardless of the data source, some 2D ITD methodologies include the computation of the 
canopy height model (CHM) for the detection and delineation of tree crowns [5,24]. First, the local 
maxima of the CHM are computed to detect treetops [5,24], and then, the crowns are delineated using 
image-processing and segmentation algorithms [10,13,15,25]. The most common technique for the 
delineation of crowns consists of watershed segmentation, using as input seeds the local maxima. 
Segmentation works on contiguous pixels that are grouped based on similar digital number (DN) 
values [4,13,15,26]; when the local maxima are identified, they are used as input seeds, or starting 
points, for the generation of the segments. Many other 2D ITD spectral information methodologies 
have been explored, but, unlike the others, these procedures mainly work on the segmentation based 
on brightness levels [7,9,10,24,27,28]. They consider the brightest pixel in a neighborhood as the tree 
crown apex and identify the tree crown perimeters using dark-pixel and valley-following approaches. 
Most of the ITD techniques depend on CHM generation methods that may affect the accuracy of tree 
crown delineation [13,29]. CHM is calculated as the difference between the digital surface model 
(DSM) and the digital terrain model (DTM). Thus, a good DTM is a fundamental prerequisite for the 
accurate characterization of CHM [11]. 

When the DTM of a forest stand is interpolated from LiDAR or photogrammetric point clouds, 
their accuracy is strongly influenced by the density of the forest stand, meaning the number of ground 
points identified by the sensor [11]. Indeed, CHM-based methods for ITD assume that local maxima 
analysis detects treetops. However, in structurally complex forest stands and steep slope areas, the 
results should be carefully interpreted [9]. In this framework, LiDAR data is much more accurate [5] 
than the SfM-based approaches, since LiDAR can penetrate tree crowns and obtain terrain 
information by reaching the ground [30]. As a result of this, and of the commercialization of light-
weighted sensors that can be mounted on UAVs, the most recent applications of ITD methodologies 
work on 3D datasets acquired with aerial laser scanners (ALS) [5,12,15]. Besides being able to generate 
more accurate point clouds, LiDAR technologies are more expensive than optical ones [24,30]. Even 
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if some countries, such as Norway, Sweden, and Canada, use LiDAR technology for national forest 
inventories, several annual acquisitions at local and regional scales are generally cost-prohibitive [30]. 
Therefore, many countries are not in the economical position to rely on LiDAR technologies. 
According to White et al. [29], generally, SfM-derived data for forestry inventories are more cost-
effective than LiDAR data and can cost about one-half to one-third of LiDAR data [29]. Moreover, 
LiDAR sensors are heavier than multispectral cameras and need to be mounded on UAVs with higher 
payload capacities. Besides being more expensive, larger UAVs with heavy payloads may require 
additional training and licensing (most UAV license national systems are based on maximum take-
off weight, MTOW, categories). Among others, LiDAR requires also high data storage structures [24] 
and powerful computational technology to obtain accurate results [5]. LiDAR data do not provide 
users with the spectral information, although some models have a camera integrated into the 
acquisition system. Table 1 provides an analysis of the advantages and disadvantages of the optical 
and LiDAR systems focused on UAV data acquisition for ITD. 

Table 1. Advantages and disadvantages of unmanned aerial vehicles (UAV) and light detection and 
ranging (LiDAR) systems for the acquisition of data in forested areas with UAV for individual tree 
crown detection (ITD) from the literature and authors’ personal experience. 

 Advantages Disadvantages 

Optical 

� Low cost [24,30]; 
� No advanced-trained personnel 

needed; 
� Provides multispectral 

information [31]; 
� Requires medium data storage 

structures; 

� Unable to penetrate tree crowns; 
� Inaccurate digital terrain model (DTM) in 

case of high-density stands [5]; 
� Sensitive to varying illumination 

conditions [19]; 
� Incapable of collecting data of trunks (2D-

nadiral information only) [11]; 
� Requires powerful computational 

technology; 

LiDAR 

� High accuracy [5]; 
� Penetrates tree crowns [11,30]; 
� Provides trunks and lower 

forest strata information [11]. 

� Expensive [11,24,30];  
� Requires UAV systems with high 

maximum take-off weight (MTOW) 
capability; 

� No multispectral information available 
[31] ; 

� Requires high data storage structures [24]; 
� Powerful computational technology 

needed [5]. 

The ITD approaches based on UAV aerial images promise to be a cost effective and valid 
alternative to LiDAR. They provide users with good accuracy data, with little usage of resources. 
Several studies have been carried out on the accuracy of ITD from UAV-derived information. Some 
methods identify the tree crowns from the brightness values of visible and infrared images [27,28], 
while some more recent ones work on multiscale filtering, segmentation of imagery, and math 
morphology algorithms [8] to define tree crowns [16,25,32]. These methods usually have complex 
segmentation workflows and require the application of image filters, such as Laplacian filters, 
Gaussian filters, and math morphology algorithms. Complex segmentation processes are necessary 
because UAV optical imagery of forested areas is frequently affected by shadows, slope-derived 
distortions, and low contrast [33,34]. These aspects, which are enhanced by the high spectral 
variability of very high resolution (VHR) imagery, make segmentation difficult. VHR images 
represent a challenge for segmentation and classification because, unlike in lower resolution images, 
single pixels no longer capture the characteristics of the classification targets [26]. Image-based 
methodologies for ITD, even if efficient, usually require several steps; therefore, high computational 
time is needed. This is one of the reasons why the image-based processes for ITD have been partially 
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fir (Abies alba Mill.), Norway spruce (Picea abies (L.) H. Karsten), and European larch (Larix decidua 
Mill.). Scots pines (Pinus sylvestris L.) and Swiss pines (Pinus cembra L.) are sporadically present. The 
study area extends to approximately 38 hectares. The forest stand is in a high-sloped mountainous 
area with north-facing exposure. The steep mountainsides make the area particularly prone to 
rockfall and avalanches. 

 

Figure 1. The study area in Cesana Torinese. The light blue circles are the check points (CPs) and the 
orange squares are the ground control points (GCPs). 

2. Methods 

2.1. UAV Flight and Photogrammetric Data Acquisition 

UAV technology was used in this research in order to generate photogrammetric products to be 
used as input data for the segmentation of single tree crowns using multifractal analysis. The UAV 
system used was chosen to take into account the characteristics of the study area, regarding the 
topography, and the environmental conditions that could affect the execution of flights, the 
resolution of the products to be generated, and the sensors to be integrated. Besides the radiometric 
information regarding the visible part of the electromagnetic spectrum (red, green, blue), the near 
infrared (NIR) part was necessary. Indeed, NIR information can enhance the presence of vegetation 
in the image-processing phase, and, generally, NIR information helps distinguish shadows from dark 
objects, which have higher reflectance in the NIR. Due to the large area involved in this application 
and the steep terrain, with an elevation difference of about 400 m, we used a commercial fixed-wings 
solution, an eBee Plus made by senseFly. The eBee has a payload of up to 0.3 kg, a flight autonomy 
of 59 min, and it can reach a cruise speed of 40–110 km/h. Moreover, it does not require expert users, 
because take-off and landing are completely automatic, thanks to the built-in global navigation 
satellite system (GNSS) receiver. 

Two different camera devices were employed for the collection of the RGB and NIR 
electromagnetic spectra. To perform the RGB flight, the eBee Plus was equipped with the RGB 
senseFly S.O.D.A. digital camera, with a sensor of 20 MP (5472 × 3648), a focal length of 10.6 mm, and 
a sensor size of 13.2 × 8.8 mm. A fixed number of frames per second equal to 0.25 fps was 
automatically acquired by the camera using a shutter cable. The flight with the eBee was planned 
using the eMotion software, considering a photogrammetric overlap between images of 80% in the 
lateral and longitudinal direction, an altitude of 220 m, a speed of 9 m/s, and an average ground 
resolution of 5 cm. Due to the extension of the area and the significant difference in height of the 
terrain, which could have adversely affected the autonomy of the battery by not allowing the flight 
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borders of the segments were smoothed (GDAL smoothing algorithm, set as three iterations with 0.5 
offset) and validated. 

Table 4. Algorithms and parameters used for the segmentation. The input band is the Hölder 
exponent image. 

Algorithm Parameters Values Notes 

Contrast split segmentation 

Minimum threshold 0.4  
Maximum threshold 1  

Step size 5  
Stepping type Add  

Class for bright objects Other  
Class for dark objects Trees  

Multiresolution segmentation 
Scale parameter 11 

Only trees class Shape 0.05 
Compactness 0.5 

Chessboard segmentation Object size 3 Only other class 

Assign class 
Use class Temporary class 

Only other class 
condition Border to trees > 0 px 

Grow region Candidate classes Temporary class Only trees class 
Remove object Condition  Area < 80 px  

2.5. Validation 

Specific attention is given to the validation of the segmentation goodness methodology. Indeed, 
even if the literature is rich in methodologies for the evaluation of the goodness of segmentation and 
extraction of specific objects from imagery [53], a shared and accepted methodology for the accuracy 
assessment does not exist [54]. Besides this, the methods applied are quite similar to each other and, 
generally, they are based on the comparison between manually digitalized reference objects and the 
segmented objects [25,53–57]. We opted for a two-level validation, which takes into consideration 
qualitative and quantitative accuracy measures. The first level was based on the work of Ke at al. [25] 
and it consisted of a simple visual evaluation, while the second level assessment was a single tree 
quantitative method that compares several variables and it assessed the under-segmentation and 
over-segmentation. Both levels will be described in detail in the following sections. The accuracy 
assessments used as reference 200 crowns that were randomly selected but manually delineated 
(Figure 4). 

 

Figure 4. Yellow points indicate the location of the reference crowns within the study area. 
To minimize the subjectivity, 200 random points were spread within the study area, and the 

crown on which the points fall was defined by manual segmentation, using as a background layer 
the RGN and RGB orthomosaics. 
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The outcome is positively confirmed by the area-based analysis. As Table 7 shows, the RMSE on 
the area represents only 14% of the average dimension of the crowns: it is 3 m2 over 21 m2 of average 
crown extension. The RMSE on the perimeter is almost 3 m over the 18 m average perimeter, 
corresponding to 15%. This may be caused by the difficulties related to the definition of the reference 
tree, but also to the non-appropriate threshold value selected for the contrast split algorithm. 

Table 7. Root mean square error, the average and the % of error on the average, of the perimeter, the 
area, and the compactness metrics of the Hölder exponent segmentation and the validation datasets. 

 Metric RMSE Average RMSE/Average 

Hölder 
Area (m2) 2.903 21.099 14% 

Perimeter (m) 2.727 17.972 15% 

Spectral 
Area (m2) 4.367 21.299 21% 

Perimeter (m) 10.378 18.055 57% 

NDVI 
Area (m2) 3.758 21.407 18% 

Perimeter (m) 6.590 18.130 36% 

Texture 
Area (m2) 4.025 20.885 19% 

Perimeter (m) 5.574 17.863 31% 

CHM 
Area (m2) 2.090 23.126 9% 

Perimeter (m) 5.961 18.982 31% 

Multi-Sourced 
Area (m2) 3.432 21.772 16% 

Perimeter (m) 4.812 18.356 26% 

Table 8 presents the summary statistics regarding the over-segmentation (OS), under-
segmentation (US), completeness (D), intersection over union (J) indices, and the distance between 
centroids. The minimum, maximum, and average values for each index were computed. What stands 
out is the high values of under-segmentation, which confirm the results of the visual estimation. The 
completeness (D) and the intersection over union (J) indices show significant positive results that 
confirm the accuracy of the ITD. The median values of D and J are respectively 0. 18 and 0.72. The 
mean distance between the centroids of the reference and segmented crowns is 83 cm, while the 
median distance is exceptionally 45 cm. This value is promising and indicates that the results are 
close to a 4-pixel error in crown localization. 

Table 8. Summary statistics of the over-segmentation index (OS), the under-segmentation index (US), 
the completeness index (D), the Jaccard index (J), and the distance between centroids. 

Parameter OS US D J Centroids Distance 
average 0.084 0.284 0.227 0.661 0.830 

min 0.000 0.002 0.037 0.047 0.021 
max 0.533 0.953 0.674 0.935 4.077 

median 0.056 0.214 0.181 0.718 0.458 

Overall, the assessment depicts a positive scenario. The method used identifies the location of 
the crowns (centroid distance is below 50 cm) as well as their extensions, with a segmentation mean 
error of 14% on the area. Figure 8 presents the median values of the Jaccard index plotted against the 
area of the reference crowns. It can be seen that the proposed method is very efficient on larger 
crowns and prone to under-segmenting on smaller crowns. Indeed, the J index for the medium 
extension crowns (10–30 m2) is mostly above 0.5. The lowest values of J are recorded on very small 
crowns (less than 5m2). 
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Figure 8. Distribution of the Jaccard index (y-axis) values according to the crown size (x-axis). 

Concerning the comparison with the ITD based on spectral, textural, and elevation information, 
Table 6 and Table 7 show respectively the results from the visual evaluation and the RMSE for the 
other validation segmentation methodologies. Generally, the Hölder exponent performs better as an 
input feature for the segmentation ruleset. Regarding the visual assessments, at equal condition, the 
results from the Hölder exponent outclassed those obtained from the other five validation datasets. 
For all methods, the producer’s accuracy shows higher values. Indeed, the number of objects 
describing the reference dataset, in any case, is less than 228 (the number of segments from Hölder 
analysis). The segmentation generated from the spectral information has the highest F1 score within 
the validation datasets, although it is very far from the F1 score of Hölder exponent segmentation 
(0.734 of Hölder against the 0.348 of spectral bands). The CHM methods show the larger value of 
simple omission, which might be attributable to the inaccuracies of photogrammetric DTM in areas 
with sloping. 

The geometrical accuracy does not reflect the performance of the visual assessment. Indeed, the 
spectral information, even if quite-well performing in the F1 score, does not provide a good 
geometrical match with the reference crowns, while the geometrical accuracy of the CHM method 
outperforms the Hölder exponent results. It is worth underlining that the CHM samples amount to 
only 162 reference objects due to the simply omitted crowns. Within the RMSE analysis, the 
performance of the multi-sourced approach is the closest to that of the Hölder exponent. 

Analyzing the median values of the indices in Figure 9, the under-segmentation (US) index does 
not reveal any significant difference between the Hölder exponent and other segmentation 
procedures. Meanwhile, in the analysis of the over-segmentation (OS), we have similar values from 
Hölder, sum variance, and the NDVI. The mixed and CHM approaches show the worst results in the 
completeness (D) and OS. The lowest value of centroid distance is that detected by CHM. It appears 
that the results of the segmentation based on the NDVI and the multi-sourced inputs (CHM and sum 
variance textural analysis) are the closest to those of the Hölder exponent. Nevertheless, no methods 
provided results as accurate as those of the Hölder exponent by using the same simple segmentation. 
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Figure 9. The plot of the over-segmentation index (OS), under-segmentation index (US), ompleteness 
index (D), Jaccard index (J), and the distance between centroids (CD) calculated on the Hölder 
exponent dataset and the validation datasets (spectral information, NDVI, sum variance textural 
information, CHM, and the mixed input data). 

4. Discussion 

The results of this very first application of multifractals analysis of UAV imagery for the 
identification of single tree crowns are promising. In a relatively short time (around 13 min), it was 
possible to analyze 38 hectares of forest using one input layer only. The Hölder exponent analysis 
results in a clear image of the single tree crowns. 

The pixels corresponding to the border of crowns present higher values of Hölder exponent. 
This most probably led to the underestimation of the dimension of the crowns after the contrast split 
segmentation. Nevertheless, growing the segmented objects of three pixels and smoothing them 
allowed us to limit such errors on most of the crowns. 

The assessment of the classification reveals promising results. The visual evaluation suggests 
more than 73% of the F1 score, which is in accordance with similar studies. Indeed, the very recent 
application of Qiu et al. [8] reaches an accuracy level of 76% in the VHR imagery segmentation, but 
this is also higher than the producer’s and user’s accuracy values obtained by Ke and Quackenbush 
in 2011 [25]. Mohan’s and Vieira’s works [5,56], respectively, reached 86% and 70% of the F1 score. It 
is worth mentioning that these comparisons should be interpreted with caution since many aspects 
can influence the goodness of the ITD. Firstly, the high level of subjectivity affects visual evaluations. 
Secondly, the characteristics of the study areas have a dominant role in the results of the ITD. Indeed, 
the illumination distortions due to the topography, the density, and the structure of the stand, along 
with the dominant species, can influence the results (and the goodness) of the segmentation. To fairly 
compare the results, we should have at least similar case studies; indeed, the works mentioned above 
are realized in flat or low-sloped areas over different types of forest stands. The selected ruleset is an 
additional influencing factor: it must be underlined that the segmentation applied in this study is 
intentionally plain and can be further improved, especially in the refining phase. 

As already mentioned, the visual evaluation is limited in the assessment of the goodness of the 
segmentation. Several other aspects regarding the shape and the size of the individual tree crowns 
can be taken into account. The results of the quantitative assessment are clear: the positions of the 
crowns, as well as their extension, are very well-identified. As evidence, the median value of the 
centroid distance is 45 cm. Additionally, the area difference is not particularly relevant, since the 
RMSE represents only 14% of the average crown area. Thanks to the smoothing process, there is an 
evident match between the borders of the segmented and reference objects (the RMSE on the 
perimeter is almost 3 m). Although the validation indicates a good segmentation, it is important to 
underline the difficulty of the manual segmentation of references: even for the human eyes, the 
identification of single trees is not immediate. This is a quite common weakness of ITD (and, more 
generally, segmentation) researches. The RMSE of the perimeter has been calculated by Yurtseven et 
al. in their ITD research [55]. They obtain a 6-m RMSE on the perimeter metric, even though they had 
the chance to identify the crowns on a 1.2 cm/pixel RGB orthomosaic, as an additional demonstration 



Remote Sens. 2020, 12, 2407 19 of 25 

 

of the subjectivity and complexity of the reference dataset identification. Compared to the existing 
works of ITD and segmentation, the Hölder exponent provides results that are perfectly in line with 
the literature. 

The tendency of the proposed method to under-segment more than over-segment is evident also 
from the comparison of US (0.284) and OS indices (0.084). The Jaccard indicator is 72%, a result which 
is in line with other studies, despite of the high variability of the delineation of the reference dataset. 
Hussin et al. [57] applied the OS and US indicators to the assessment of tree segmentation, using 
satellite imagery of 2-m resolution, and they obtained comparable values for both under-
segmentation and over-segmentation. However, in their work, they faced the opposite situation: 
over-segmentation errors are more dominant than under-segmentation ones. Persello et al. and 
Clinton et al. [53,54] obtained very similar OS and US results too, even though both studies focused 
on the segmentation (and classification) of satellite imagery in urban areas. The 0.18 median value 
resulting from the D index mirrors the values in the literature and it is a relatively good result. The 
literature reports values between 0.31 and 0.42. Again, these metrics and comparison should be 
interpreted with caution since they are the results of segmentation from satellite imagery and this 
does not include the extraction of single tree crowns. Finally, the Jaccard index, or intersection over 
union index, values vary between 0.05 and 0.95, with 0.72 as the median value. 

On the same segmentation process, the results of Hölder exponent segmentation clearly outclass 
the others from spectral, textural, and CHM information. From this first application, it emerged that 
Hölder exponent can facilitate the ITD from UAV VHR imagery. Indeed, by applying a basic 
segmentation process, we obtained satisfying results in line with the literature, but in a relatively short 
time and with one elevation-independent input layer only. With this approach, the ITD from optical 
imagery of densely forested areas might be more accurate than simple spectral and elevation-based 
analysis. Naturally, this work should not be interpreted as an attempt to discredit ITD from the spectral 
and CHM dataset but as an alternative and computational low-demanding solution to ITD. 

5. Conclusions 

The purpose of the current study was to determine the local Hölder exponent connected with 
multifractal theory and use it for the description of VHR UAV optical imagery and the detection of 
individual single tree crowns. Although multifractals analysis has been applied in image processing 
in many different fields, from the medical field to satellite remote sensing, their use for UAV imagery 
has not been confirmed. The high radiometric variability is typical of the VHR datasets that often 
introduced noise, which is reflected in imprecision in automatic segmentation and classifications. 
This aspect was reduced by the multifractal analysis, and the single tree crowns clearly emerged. The 
Hölder exponent makes the segmentation easier and simpler based on the threshold of the local 
contrast. The results of the validation are generally satisfying and in line with similar research 
realized on optical and LiDAR datasets. The main detected errors were classified as under-
segmentation problems. 

Unfortunately, as far as we know, little research on ITD applies quantitative methods similar to 
those that we used for the assessment of the segmentation. Indeed, a strong limit in the assessment 
of ITD is the subjectivity in the definition of the reference dataset. Nevertheless, the obtained results 
confirm the Hölder exponent applied to VHR imagery as a potentially powerful tool in the ITD. The 
analysis required a relatively short time and low computational power. Additionally, RGB and NIR 
sensors mounted on UAVs are systems that are becoming cheaper and easily operable. The present 
study lays the groundwork for future research into ITD from VHR optical imagery. Since this is its 
very first application, several aspects still need to be addressed and further investigated. Our focus 
area was coniferous-dominant, with crowns that present fractal patterns from a nadiral view; we 
might have very different results on broadleaves forests. Moreover, we worked with the Hölder 
exponent only and it would be interesting to explore additional measures in different forest types 
and try to work with different spatial resolutions, spectral bands, and parameters. Additionally, it 
may be worth testing different neighborhood sizes for the calculation of the Hölder exponent to verify 
its influence on the analysis. It is worth mentioning that multifractal descriptors can be applied in 
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