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Abstract—Distributed systems are extremely difficult to design
and implement correctly because they must handle both system
correctness and device failures. Most of the work focuses on the
first aspect, and in particular, on the correctness of security and
network configuration. The large demand for availability and
reliability for critical services is actually pushing new architec-
tures that tolerate failures, but a-priori analysis of redundancy
and recovery features is still limited. To this end, we present
a framework to design and formally verify the persistence
of network properties, even in case of failures. The solution
considers both nodes and links failure, and it is based on a formal
model that takes both network topology and network device
configurations into account. In contrast, most of the existing
approaches only consider network topology. By analyzing the
formal model, the framework can check whether the specified
network services are still available after failures, and in case of
success, it outputs a possible configuration of the devices to be
used for automatic recovery.

Index Terms—fault tolerance, network reachability, industrial
network systems

I. INTRODUCTION

Industrial Control Systems (ICSs) are physical and engi-
neered systems whose operations are monitored, coordinated,
controlled, and integrated by a computing and communication
network. Examples of ICSs include medical devices and sys-
tems, aerospace systems, transportation vehicles and intelligent
highways, defense systems, robotic systems, process control,
factory automation, building, and environmental control, and
smart spaces.

ICSs are often considered critical systems. In particular,
the dependability of their network (the Industrial Network
System) is fundamental [1], as well as its proper management,
which often requires a long design phase to avoid most of the
potential risks [2]–[7]. In fact, ICSs must interact with the
physical world and must operate safely, securely, efficiently,
and in real-time. In addition to these properties, reliability and
fault-tolerance are crucial for dependable systems, which are
spread across many industrial and critical scenarios.

One way to satisfy the requirements and to operate correctly
even in the presence of network failures is to introduce redun-
dancy for some of the network elements. Hence, the network
must first be designed with a correct topology; second, it must
implement the proper logic to react to failure quickly and
in the appropriate way. These fault-tolerant and dependable
architectures must be able to withstand multiple faults, but
the service must continue to satisfy the given requirements,

which might be not straightforward. When configuring the
network of an ICS, indeed, the administrator might need to
guarantee, at the same time, protection against cyber threats,
and hard real-time constraints. Sometimes these requirements
may be contrasting, because, for example, the introduction
of an additional security function in a communication path
either may cause higher latency not compatible with the real-
time constraints for that path or may reduce the number of
available paths by affecting the fault tolerance strategy results.
Furthermore, the widening number of functionalities and the
complexity of newly deployed networks further increases the
effort required for the network configuration process. This
makes the configuration activity too cumbersome and error-
prone for humans to be managed.

This paper proposes a formal verification approach, able to
guarantee that the designed network satisfies the required level
of reliability in an automatic way. To address this challenge,
our preliminary solution verifies fault-tolerance properties in
complex networks by applying the idea that given reachability
properties must hold even after a fault. Specifically, to formally
verify the reachability and, consequently, the fault tolerance,
we make use of First-Order Logic (FOL) to model the nodes
of the network and also take into account the configuration of
devices. This model is then used by a Satisfiability Modulo
Theories (SMT) solver to determine the satisfiability of the
problem, i.e., redundancy exists and the alternate path provides
the same properties of the initial one. By leveraging the pro-
posed framework, industrial network systems can be designed
and constructed to guarantee reliable real-time applications in
industrial automation.

Our model is able to deal with the configurations of network
devices. Hence the verification process is more complex than a
simple path redundancy check since we assure the redundancy
can be exploited by nodes and the backup path gives the same
services of the original one. To the best of our knowledge,
this is the first work that simultaneously verifies reliability in
terms of route redundancy and reachability properties. In our
view, this is fundamental in industrial networks, where simple
topologies are made up of many functionalities and nodes, e.g.,
Supervision, Control and Data Acquisition (SCADA) servers,
Industrial Firewalls, Remote Terminal Units (RTUs) and Pro-
grammable Logic Controllers (PLCs), to cite a few. Indeed,
as pointed out by other work [8], [9], the largest sources of
failures for complex networks are misconfigurations.



The paper is structured as follows: we start describing the
stat-of-the-art and other solutions related to network fault-
tolerance in Section II, then, we explain the problem and
the methodology in Section III. In Section IV we present
a motivating use case in the industrial networks. Finally
Section V concludes our paper.

II. RELATED WORK

According to [10], fault tolerance is the ability of a system
or component to continue normal operation despite the pres-
ence of hardware or software faults. As described above, fault-
tolerant networks require some type of redundancy, which
can take many various forms, such as hardware, software,
or time redundancy. Formal verification can bring benefits to
the design process of complex networks by formally verifying
the existence of reachability among critical services (e.g., [2],
[11]). Nonetheless, formal methods were rarely applied in the
design of computer networks and systems where links and
nodes can fail.

In [12] the authors presented a new language for writing
fault-tolerant SDN programs by means of regular expressions.
This solution compiles programs to instructions for OpenFlow
switches by leveraging in-network fast-failover mechanisms.
This is orthogonal to our approach, where a verification
module makes sure the topology is fault-tolerant and can be
combined with solutions such as [12] to connect services
without disruption.

Ding et al. presented a framework [13] to design fault-
tolerant wireless network control systems, particularly suited
for industrial automation applications. However, they mainly
focus on the optimization of control actions with the devel-
opment of a reliable Fault Detection and Identification (FDI)
algorithm working at different functional layers.

Dynamic Fault Graphs [14] can be used in this scenario
as well. Indeed, the authors conduct the overall system de-
pendability analysis through the entire phases of modeling,
structural discovery, and probability analysis. Future behaviors
are predicted through probability forecast and are then used
to verify the required network properties.

Also the redundancy of trees in a graph was already
explored in literature [15]. We share with this work the idea
to prevent the disruption of services by design, however, our
model considers the behavior of each network node to assess
if an alternative path exists that can transmit a packet from a
source to a destination.

Verdi [16] is a framework for implementing and formally
verifying distributed systems in Coq. We share with this
solution the target use case (the distributed systems), but
we address the problem from the reachability point of view,
generalizing their approach.

Finally, in [17] the authors presented an efficient mechanism
to detect if a fault-tolerance property holds by enumerating all
the possible counterexamples. Their approach is based upon
the concept of Stable Path Problems with Faults (SPPFs),
and it allows to verify reachability under faults in standard
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Fig. 1. Workflow of our approach. Logical abstraction as a set of FOL
formulas is obtained starting from the physical description. Fault-tolerance
property is verified through the FOL representation.

topologies. However, they focus on the verification of dis-
tributed routing protocols, neglecting middlebox devices in
their model.

III. GENERAL APPROACH

The goal of the proposed framework is to formally verify
that some network reachability properties are satisfied even in
the presence of some network failures. The verification process
takes into account the forwarding behavior of the network
nodes based on their configurations, by leveraging an SMT
solver, which, given a set of formulas describing the network,
checks whether the reachability condition is satisfiable. To
obtain the models required by the SMT solver to validate
the network properties, we first need a description of the
network. This is usually provided by the administrator who
needs to deploy and verify that the proposed design can work
properly. This knowledge constitutes the Network Description,
which includes: (i) the network topology, (ii) the configuration
of network and security devices such as firewalls and VPN
terminators, and (iii) the required reachability policies.

These policies express the requirements of the administrator,
aiming at defining how the network has to withstand the
failures of nodes and links. The network administrator can
specify that a given service residing on node d can be accessed
from node s even if some items, enumerated in a list F , are
damaged. Furthermore, the degree of fault-tolerance, k, must
be specified as an additional parameter, defining the number
of elements that can fail simultaneously. The specification of
fault items is done at the physical layer, where the topology
is specified as the union of links and nodes, and each node is
associated to a network function, e.g., router, switch, firewall.



Once the admin provides the input, the framework extracts
the information needed to construct the Network Graph, which
is an intermediate representation, used to study initial network
properties, such as path redundancy. In fact, the graph is
examined to find all the paths between the specified s and d,
represented as a list of chains starting with s and ending with
d. However, the presence of multiple paths is not sufficient to
guarantee a given level of fault-tolerance, as the configuration
of some devices may block the communication on some of
them. For this reason, the chains are then converted into First-
Order Logic (FOL) formulas, where the nodes are expressed
by logical conditions modeling their forwarding behavior, also
taking their configuration, provided as input by the administra-
tor, into account. This is done by following the same approach
described in [2] for network reachability verification. Finally,
an SMT solver is used to check whether traffic can actually
flow between s and d in each chain, and this result is used to
check if fault tolerance policies are satisfied.

In case of a positive outcome, i.e., fault-tolerance guarantee,
the output is one or more backup routes available for future
use. As we provide this piece of information as a list of nodes,
it can be used to set the alternative route when the primary
one is down. For example, recent versions of OpenFlow for
SDN-enabled networks include support for conditional rules
whose forwarding behavior depends on the local state of the
switch. When the type on an entry is Fast Failover (FF), each
action bucket is associated with a parameter that determines
liveness, and the switch forwards traffic to the first live bucket.
With these FF entries, a switch explicitly handles the backup
case, but the controller program must anticipate every possible
failure and pre-compute appropriate paths. Our framework
provides the output necessary to properly configure switches
in advance, without burdening the network admin in case of
failure. Other network protocols offer equivalent concepts and
syntax to handle the backup paths; therefore, our output can be
exploited in many different contexts according to the specific
protocol and architecture. On the other hand, when the result
is negative, i.e., fault tolerance is not guaranteed, our tool
reports a message stating whether the cause is the absence
of a secondary path or the configuration of a device. In the
latter case, the tool can detect the node blocking the traffic,
and includes this information in the final message.

In Fig. 1 we summarize the aforementioned processing and
the workflow required to obtain the final result starting from
the administrator input. Although the formality of the model
may seem complex to handle for a network administrator, this
complexity is hidden to the user who is just required to provide
as input a JSON file representing the network description,
while the generic FOL formulas for each kind of network
node are available inside the framework as a library, as also
done in Verigraph [2] for network verification.

It is also worth noticing that, in our approach, we verify
reachability on paths rather than on graphs, in line with most
existing tools for network verification, e.g., HSA [18] and
Verigraph [2]. In such a way, we can deal with simple and easy
to treat models. Redundancy can indeed be verified simply by
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Fig. 2. Example of a typical industrial network where multiple and different
functionalities are deployed.

checking whether a secondary path can be considered as an
alternative path in case of failure. This procedure allows us to
keep complexity low and to provide the response in a short
amount of time. In fact, since paths are mutually independent,
the SMT solver can verify reachability separately for each
path. Solving the problems in parallel provides a speedup over
solving all of them sequentially.

IV. MOTIVATING EXAMPLE

In order to better motivate our approach that jointly consid-
ers both network topology and configuration, we first define
a sample use case scenario inspired by previous work on
Industrial networks [11], [19], [20]. In particular, we focus on
Supervisory Control And Data Acquisition (SCADA) systems,
i.e., computer systems for gathering and analyzing real-time
data, which are usually deployed to control and monitor entire
sites, and, consequently, are often complex systems spread
out over large areas. These systems are crucial for industrial
organizations since they help maintain efficiency, process data
for smarter decisions, and communicate system issues to
reduce downtime.

Fig. 2 shows the physical representation of a SCADA
network, where fundamental functionalities are deployed, such
as Firewalls, Routers, and IDSs. Aside from traditional nodes,
more distinctive functions for an industrial scenario are com-
bined together. Remote Terminal Units (RTUs) and the Pro-
grammable Logic Controllers (PLCs) automatically perform
nearly all the control actions. These hosts execute control
functions for a supervisory level intervention, communicate
with an array of objects such as sensors, and then route
the information from those objects to computers running the
SCADA software. For example, the PLC controls the flow of
cooling water, while the SCADA system allows any changes
related to the flow conditions (such as high temperature,



loss of flow, etc.) to be recorded and displayed. The data
acquisition starts at the PLC or RTU level, which involves the
reports of equipment status, and meter readings. Data are then
formatted to allow the operator of the control room to make
the supervisory decisions of overriding or adjusting normal
PLC (RTU) controls, by using a remote (or local) console.

Due to the exposure to a wide range of security problems,
access to individual sub-networks is secured by firewalls that
implement basic network security policies, allowing only the
desired traffic. The firewalls separate four different zones:
(i) Enterprise Network, which includes all the end-hosts and
workstations, (ii) DMZ, with the database and other services
externally available, (iii) Process Control Network, where all
the industrial services reside, (iv) Internet, for the external
communications. From the Enterprise Network, it is possible
to reach the Internet (except a specific subset of addresses),
while from the outside, it is not possible to contact machines
in the Enterprise Network (except by administrative roles).
Firewall B allows communication just from a certain range of
IP addresses. In Fig. 2, Firewall B allows that RTU A with IP
address 10.0.0.15 can be reached at port 8080 from IP address
10.0.0.1 and from any port. The administrator sets this rule to
allow any hosts masked by NAT A (with IP address 10.0.0.1)
to control the RTU A remotely.

This configuration guarantees a working scenario, as the
Process Control Network is adequately protected. At the same
time, in the case of Firewall A’s damage, we can notice how
the Enterprise Network can still potentially communicate with
RTU A via a secondary route, e.g., Firewall C - NAT B -
Router A - Firewall B - IDS A. Nonetheless, NAT B assigns
the IP address 10.0.0.2, and Firewall B, as a consequence,
blocks the communication, since RTU A can be accessed
only from 10.0.0.1. This is a pretty basic example where the
configuration of security devices impacts the fault-tolerance
verification process and motivates the model presented in the
following section.

V. CONCLUSION

This paper presents a novel approach to model networks
and formally verify fault tolerance property in an industrial
scenario. The proper design and configuration of networks are
error-prone and a cumbersome task for the administrator; also
tests do not often explore all the possible occurrences, leading
to uncertainty and incorrectness. For this purpose, our tool
assists the design phase, to achieve a formal verification of
fault-tolerance properties, very critical for industrial scenarios.

The preliminary solution presented exploits First-Order
Logic to formally verify that reachability holds between spec-
ified source and destination. The framework first enumerates
all the paths available in the topology, then it analyzes if,
even in the presence of faults, the desired services are still
reachable. As future work, we further plan to extend this
preliminary work by extensively evaluating performance over
complex networks, and integrating this framework with the
automatic configuration of devices.
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