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Abstract: Wildfire damage severity census is a crucial activity for estimating monetary losses and
for planning a prompt restoration of the affected areas. It consists in assigning, after a wildfire,
a numerical damage/severity level, between 0 and 4, to each sub-area of the hit area. While burned
area identification has been automatized by means of machine learning algorithms, the wildfire
damage severity census operation is usually still performed manually and requires a significant
effort of domain experts through the analysis of imagery and, sometimes, on-site missions. In this
paper, we propose a novel supervised learning approach for the automatic estimation of the
damage/severity level of the hit areas after the wildfire extinction. Specifically, the proposed approach,
leveraging on the combination of a classification algorithm and a regression one, predicts the
damage/severity level of the sub-areas of the area under analysis by processing a single post-fire
satellite acquisition. Our approach has been validated in five different European countries and on
21 wildfires. It has proved to be robust for the application in several geographical contexts presenting
similar geological aspects.

Keywords: copernicus; sentinel; satellite; wildfire; severity; U-Net; convolutional neural network;
artificial intelligence

1. Introduction

In recent years, European countries experienced an increase of wildfire events, causing extensive
damage from environmental, humanitarian, and economical perspectives [1]. After a wildfire
extinction, competent offices of public bodies report the perimeter of the burned areas and the severity
of the damage in each burned sub-area. The census of the burned areas is usually adopted (i) for
estimating the economical damage, and (ii) for planning a full environment restoration.

Europe actively supports wildfire census operations through the Copernicus Emergency
Management Service (Copernicus EMS) [2]. The service provides certified information about the
hit areas through delineation and grading maps. More precisely, delineation maps determine the
boundaries of areas hit by wildfires, while grading maps estimate the severity of environmental
damages. The damage level estimation activity, which is used to create the grading maps, is performed
by the EMS experts and it consists in assigning to each sub-area of the area hit by a wildfire a numerical
severity level between 0 and 4, where 0 is assigned to unburned sub-areas with no damages, while 4 is
assigned to the burned areas that have been completely destroyed by the wildfire. The intermediate
levels are used to represent burned sub-areas associated with negligible (1), moderate (2), or high (3)
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damages. For the sake of simplicity, only integer levels are used by domain experts to represent the
damage level of each sub-area. However, continuous values between 0 and 4 should be used to obtain
more accurate and fine-grained estimations. Currently, EMS experts manually compare pre- and
post-wildfire imagery to compute and assign the proper damage level to each hit sub-area. To achieve
good results and facilitate the experts work imagery taken in similar conditions are needed.

Automatic systems, based on machine learning algorithms, support domain experts to track the
evolution of wildfires [3–5] during the event and to automatically identify burned areas after the
wildfire extinction [6–20]. However, to the best of our knowledge, usually the post event estimation
of the damage level of the affected areas is a manual activity based on the comparison of pre- and
post-UAV or satellite-based imagery of the burned areas and, less frequently, through on-site missions.
The estimation process may also leverage on the analysis of the variations occurred in the soil between
the compared imagery [21]. To unburden domain experts from this complex and time-consuming
activity, we propose a novel deep-learning approach based on a two-step solution that combines
a classification algorithm and a regression one. First, a binary classification algorithm is used to
automatically label each sub-area as burned or unburned. Then, a regression algorithm is used to
assign a severity/damage level between 1 and 4 only to the sub-areas that are labeled as burned
sub-areas by the first step. The experimental results show that this two-step approach performs better
than a single step approach based only on a regression algorithm.

To the best of our knowledge, few attempts have been performed to automatically infer
severity/damage maps for burned areas [22] and they are all based on the comparison of pre- and
post-wildfire imagery. The quality of these approaches is affected by the used imagery. If the imagery
are taken in different conditions the damage level estimation could be affected. Specific preprocessing
techniques, and sometimes also a manual selection of imagery by means of the domain expert, are
needed to obtain comparable imagery. In the following, we describe the state-of-the-art damage
indexes and the manual and automatic approaches that are used to assign a severity/damage level of
each sub-area of an area hit by a wildfire.

In literature, damage severity caused by wildfires is commonly determined through two different
indices, depending on whether the data are acquired manually, through ground inspection [23], or from
remote sensors (UAV/satellites) [24].

The Composite Burned Index (CBI) [23] is computed by considering manually collected data.
Specifically, this first index is computed by considering detailed aspects, such as the condition and
colour of the soil, the amount of vegetation or fuel consumed, the resprouting from burned plants,
the establishment of new colonizing species, and blackening or scorching of trees. All those aspects are
combined to create the Composite Burned Index (CBI), which is the best approximation of damage
severity, but it is highly expensive to obtain, especially for large regions because it is based on manually
acquired data. This damage severity index is even more fine-grained than the one provided by EMS,
but its computation is not feasible at a large scale because too many data must be collected manually.

From remotely sensed imagery, the combination of spectral wavelengths of light particularly
susceptible to water, vegetation, and inert materials make the identification of fires easier,
through suitable indices like the Normalized Burn Ratio (NBR) [24]. The difference of NBR values
computed on acquisitions of the same area at different times (pre- and post-wildfire), allows estimating
variations of the soil caused by events like a wildfire. This kind of difference, named delta Normalized
Burnt Ratio (dNBR) [22], is known in the literature as a valid estimator/index of the severity of burned
regions. However, thresholds used for determining severity levels may vary among acquisitions and
may be soil-dependent. Differently from this approach, our technique uses only a post-fire image.
Hence, our approach is not affected by the selection of a pre-wildfire image taken in a condition
comparable to that of the post-wildfire image. In their work [22], Miller and Thode specify that
the imagery used in their study were chosen such that pre- and post-wildfire dates were as close
to anniversary dates as possible to minimize differences in phenology. This “alignment” operation,
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and other preprocessing operations, are not needed when our approach is used because only the
post-wildfire image is needed.

A recent work of Sauliano et al. [25] studied the relatedness between the dNBR computed
from Landsat-8 and Sentinel-2 satellites acquisitions with the CBI of an area affected by fire in Italy.
The dNBR computed from Sentinel-2 acquisitions resulted to be a valid estimator of the CBI and
therefore very useful for the estimation of severity levels. However, Franco et al. [26] adjusted the
thresholds of both dNBR and the delta Normalized Difference Vegetation Index (dNDVI) values to evaluate
the severity of two wildfires occurred in Patagonia between December 2013 and January 2014. Like the
dNBR, the dNDVI is computed as the temporal difference of two indices—NDVI pre-fire and NDVI
post-fire—sensible to the presence of vegetation. The work proves that, under an accurate fine-tuning,
those indices are valid estimators of the more accurate CBI. However, the complex (non-automatic)
fine-tuning of a set of thresholds is needed. Moreover, Xu et al. [27] evaluated the damage severity of
a single wildfire ignited in the Great Hinggan Mountains (China) using fine-tuned thresholds on NBR
and dNBR. Moreover, in that case, the time-consuming and complex fine-tuning operation is needed
to obtain good results.

Other works imply the adoption of machine learning techniques. Zheng et al. [28] proposed
a transfer learning approach based on a Support Vector Regressor (SVR) to predict the CBI index
value, which outperforms the aforementioned approaches. However, the technique proposed by
Zheng et al. was validated on pre- and post-fire satellite acquisitions on a unique fire event occurred
in the Southwest of United States, in 2002 and therefore its generality has not been validated.
Finally, another work worth mentioning is proposed by Gibson et al. [29], which examines eight
wildfires affecting New South Wales (eastern Australia). It runs several tests using the Random
Forest approach, trained on several sets of spectral indices (dNBR, RdNBR, dFCB, dNDVI, dBSI, etc.),
highlighting the contribution of each one to the final prediction of the CBI index value. Also, in this
case, the features are computed from pre- and post-wildfire acquisitions and the proposed approach
has been validated on a single event.

Overall, the state-of-art techniques leverage on dNBR and other indices derived from spectral
bands acquired from satellites (i.e., RdNBR, NBR, and dNDVI), either computing thresholds or
applying state of the art machine learning approaches. Generally, they are based on the comparison
of pre- and post-wildfire satellite imagery, which is not always possible, and on region-dependent
empirical thresholds (i.e., on non-generalized approaches).

To address the automation of the severity damage estimation problem, we propose a generalized
and an automatic deep learning-based system that, given a set of training grading maps related to
past wildfires, provides a severity map for a new area by analyzing Sentinel-2 satellite data acquired
after a new wildfire. The automatically returned grading map uses the same severity scale used by the
EMS experts. Therefore, our system can be used to automatize the EMS grading map generation after
a wildfire.

The main contributions of this paper are as follows.

• An automatic system, called Double-Step U-Net, for the estimation of wildfire damage severity
by means of deep-learning models inferred from Sentinel-2 satellite images.

• An automatic solution based only on post-wildfire imagery.
• A land-type-independent approach that can be applied to European regions.

The paper is organized as follows. Section 2 introduces (i) the data sources used to fetch data and
annotations (Section 2.1); (ii) data acquisition, processing, and analysis (Section 2.2); (iii) the problem
statement (Section 2.3), (iv) the proposed methodology (Section 2.4); (v) the framework and tools
adopted to accomplish this paper (Section 2.5); and (vi) the experimental setup, the hyperparameter
adopted for the used machine learning algorithms, and the evaluation metrics used to compare the
performances (Section 2.6). Section 3 reports and analyses the results, discussing the pros and cons of
the proposed method with respect to current approaches. Finally, Section 4 draws conclusions and
describe future work.
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2. Materials and Methods

This section describes the proposed system, called Double-Step U-Net, which is based on the
analysis of Sentinel-2 satellite data through deep learning models. Double-Step U-Net is based on the
joint exploitation of a two-stage approach that combines a classification and a regression algorithm to
address the post-wildfire severity estimation process. In this section, we initially describe the used data
(Section 2.1) and how they were collected (Section 2.2). Then, we formalize the addressed problem
(Section 2.3) and we describe in detail the proposed system (Section 2.4) and how we implemented it
(Section 2.5).

2.1. Data Sources

In this work, two different sources of information have been adopted: Copernicus Sentinel-2 [30],
which provides satellite imagery, and Copernicus Emergency Management Service (EMS) [2],
which provides manually generated damage severity maps of burned regions hit by past wildfires.
The EMS damage severity maps where used as ground truth grading maps.

Copernicus is the European Union’s Earth Observation Programme, implemented in partnership
with the Member States and the European Space Agency (ESA), offering information services based
on satellite Earth Observation and in situ (non-space) data. Sentinel-2 is the second mission of the
Sentinel spatial program, concerning satellites able to gather spectral data. In particular, the service can
provide two kinds of products: Level-1C and Level-2A. Level-1C products provide raw data [31,32],
composed of 100 × 100 km2 tiles (ortho-images in UTM/WGS84 projection), resulting from the use of
a Digital Elevation Model (DEM) to project the image in cartographic geometry. The tiles are acquired
as 13 different spectral wavelengths and spatial resolutions, summarized in Table 1.

Table 1. Sentinel-2 spectral bands description.

Band Description Central
Wavelength (µm)

Spatial
Resolution (m)

1 Coastal aerosol 0.443 60

2 Blue 0.490 10

3 Green 0.560 10

4 Red 0.665 10

5 Vegetation red edge 0.705 20

6 Vegetation red edge 0.740 20

7 Vegetation red edge 0.783 20

8 Near Infrared (NIR) 0.842 10

8A Narrow NIR 0.865 20

9 Water vapour 0.940 60

10 Short wavelength infrared (SWIR) 1.375 60

11 SWIR 1.610 20

12 SWIR 2.190 20

Level-2A products [33,34] are generated applying an algorithm for atmospheric reflectance
correction on Level-1C products, resulting in an orthoimage Bottom-Of-Atmosphere (BOA) corrected
product. The applied correction reduce (i) the noise brought by natural conditions, like air turbulence
and fog, and (ii) the influence of aerosols, producing a more qualitative image which highlights
ground information. It is applied on every spectral band listed in Table 1, except for band 10 which
does not contain any surface information and, therefore, it is omitted. Given the goal of this paper
to estimate burning severity levels, it is crucial to avoid atmospherical noise, which could lead to
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erroneous analyses and predictions. Therefore, in this paper, Level-2A products were used as source
data. Currently, those products are very large (about 600 MB for each tile) and thus hard to manage
in raw format. Therefore, we used Sinergise Sentinel-Hub Service [35], a cloud based engine that
handles the complexity of management of raw data internally, making Earth observation imagery
easily accessible through Application Programming Interfaces (APIs).

Through the Emergency Management Service, Copernicus provides annotations on natural
disasters made by domain experts who, depending on the situation, can use in situ measurements,
aircrafts, and Sentinel satellite imagery to record the effects of the hazard and the severity of the
damage. In the wildfire context, the EMS severity level ranges from 0 (unburned sub-area with
“No damages”) to 4 (“Completely Destroyed” sub-area). Intermediate values are used to represent the
following situations; “Negligible to slight damage”, “Moderately Damaged”, and “Highly Damaged”.

In this paper, we opted for the Copernicus EMS annotations because they are freely available for
many past wildfire events.

2.2. Data Acquisition, Preprocessing, and Analysis

As introduced in the previous section, Copernicus EMS provides grading maps indicating the
severity of damage caused by wildfires. They refer to (i) an Area of Interest (AoI) and (ii) a reference
date (marked as “Situation as of” in the map’s cartouche). The AoI is a squared region which includes
the area/s hit by the wildfire. It is composed of two tuples of coordinates <Longitude, Latitude>,
which indicate the top-left and bottom-right edges of the region. The reference date is the post-wildfire
date used as a reference for the analysis by the domain experts.

Sentinel-2 data was downloaded referring to both the AoI and the reference date specified in the
EMS grading map. However, it is quite common that, under those constraints, the Sentinel-2 data
of the area of interest could not be available. Commonly, the reason can be twofold: (i) AoI was not
explored or partially explored by satellites in the reference date, or (ii) the AoI is mostly covered with
clouds. Therefore, to be used in this paper, Sentinel-2 acquisitions were subjected to three constraints:
(i) the satellite acquisition must be equal to the reference date, (ii) data must be available for at least the
90% of the AoI, and (iii) cloud coverage must not exceed the 10% of the AoI. While the data availability
is given by the Sentinel-Hub service, the cloud coverage value was estimated according to the method
proposed by Braaten, Cohen and Yang [36].

In this paper, 21 Copernicus EMS grading maps have been collected from 5 European regions:
Portugal, Spain, France, Italy, and Sweden. The Sentinel-2 data have been downloaded at the highest
resolution. Then, the AoIs were split into 7 folds, according to two different constraints: (i) a fold must
include at least two AoIs, and (ii) areas of interest must be geographically close. A representation of
the geographical distribution of the wildfire-affected regions and their categorization in folds is shown
in Figure 1.

Once downloaded, satellite acquisitions are images of dimensions (W × H × D). W and H are
the acquisition Width and Height, respectively, and are up to 5000× 5000 pixels. D, the Depth, is the
number of spectral bands, which is 12 for Sentinel-2 L2A imagery. Copernicus EMS grading maps
are images of size W × H, having the same dimensions of the satellite acquisitions. Each pixel of the
Copernicus annotation determines the damage severity level of the corresponding pixel—at the same
row and column—of the Sentinel-2 acquisition. Details about the collection, especially the Copernicus
EMS annotations, the dates in which Sentinel-2 data were acquired, and the fold they were assigned to
are reported in Appendix A. Moreover, in order to allow the proposed method to generalize among
different kinds of vegetation, another aspect considered in the dataset is the heterogeneity of land use,
which includes inland areas with dense vegetation (i.e., red fold), areas characterized by cropland and
small or sparse trees (i.e., fucsia fold), coastal areas (i.e., blue fold) and rural areas with little or no
vegetation (i.e., yellow fold). A detail of the land use distribution for every AoI included in the dataset
is reported in the Appendix B.
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Figure 1. Map of the areas hit by wildfires considered in this study, split by fold. Circles determine
the position of the considered wildfires, while each circle colour identifies a specific fold: circles of the
same color identify areas of interest attributed to the same fold.

In order to assess the spectral bands that can provide useful information for the detection of
the damage severity, the Pearson’s correlation between the bands of the collected AoIs, the dNBR,
and the ground truth EMS damage level have been investigated. We considered also the dNBR
index because it is widely used in previous papers and we want to understand if that index,
based on pre- and post-imagery, is more correlated to the target variable than the Sentinel-2 bands.
The Pearson’s correlation is a measure computed between two variables and it ranges between
−1 and 1. High correlation is determined at the extremes of its domain: a highly positive or a highly
negative value means the two variables are directly or indirectly related, respectively. More in detail,
no correlation is expressed by 0, it is low for values between −0.35 and 0.35, and medium to strong
for the remaining values [37]. In order to compute the correlation coefficient, a transformation was
applied to each image and annotation. Each spectral band, the dNBR, and the EMS severity grading
maps (ground truth, GT), all having dimensions (W × H), have been flattened into a vector of length
(W × H), in order to resemble statistical variables. In the following, we use GT (Ground Truth) to refer
to the target variable of this analysis, i.e., the damage severity level. As shown in Figure 2, the spectral
bands presenting noticeable correlations (medium or high) with both the dNBR index and the target
variable GT (i.e., the damage severity level) are B06, B07, B08, B8A, and B09. Except for B09, the other
bands are known in the literature for the computation of the most used indexes for fire detection, such
as the Burned Area Index (BAI) [17], the Burned Area Index for Sentinel2 (BAIS2) [38], the Normalized
Burn Ratio (NBR) [39], the Normalized Burn Ratio 2 (NBR2) [16], and the Mid-Infrared Burned
Index (MIRBI) [40]. Moreover, B07 and B08 are used for the computation of (i) the vegetation index,
Normalized Difference Vegetation Index (NDVI) [41], and (ii) the water index, Normalized Difference
Water Index (NDWI) [42], respectively. Moreover, it is worth considering the high correlation between
dNBR and GT, which is coherent with the literature and confirms the dNBR to be a good estimator of
the GT. However, also the Sentinel-2 bands are characterized by high correlation values with respect to
the target variable and they can be obtained by considering one single post-fire image, whereas two
imagery (pre- and post-fire) are needed to compute the dNBR index.
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Figure 2. Correlation Matrix computed on burned areas. Spectral Bands B01–B12 refer to the post-fire
Sentinel-2 acquisition, dNBR is the Delta Normalized Burn Ratio, and GT is the severity level target
variable (i.e., the Copernicus EMS grading map Ground Truth).

Figure 3. Severity level distribution among each fold. For each severity level, the percentage of pixels
with the considered level is computed within each fold.

In Section 2.4, the new proposed approach, which leverages on Convolutional Neural Networks
(CNNs), will be introduced. Given the huge interest from the scientific community in such algorithms,
a common practice is to use consolidated approaches by adapting the general methodology to the
investigated domain. As most CNNs, the input size is reduced due to computational performances
and hardware limitations during the training phase. The high-resolution images retrieved from
Sentinel-Hub (and consequently, the grading maps) have dimensions up to 5000 × 5000 pixels, but the
image size is too big to be processed by a CNN in one shot (due to GPU memory limitations), therefore
it needs to be re-adapted. In this paper, we opted for preserving all the provided information by tiling
the original acquisitions in smaller crops of size 480 × 480 pixels, maintaining the spectral information
as provided by Sentinel-Hub. Moreover, only the crops containing at least one pixel classified as
burned (a damage severity level between 1 and 4) have been included in the dataset. In the end,
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the dataset contains a total of 135 crops, distributed in folds as follows; blue fold: 8, brown fold:
9, fucsia fold: 30, green fold: 16, orange fold: 18, red fold: 12, yellow fold: 42. As easily predictable,
the dataset’s folds present unbalanced EMS damage severity levels, as shown in Figure 3.

2.3. Problem Statement

This work focuses on the estimation of the EMS damage severity levels for the sub-areas of
an area hit by a new wildfire. More formally, given a post-fire Sentinel-2 L2A satellite acquisition
(an image of 12 spectral bands) of an area that has been hit by a new wildfire the goal is to predict
a continuous value in the range [0, 4] ∈ < for each pixel of the input post-fire image, in order to
approximate the Copernicus EMS damage severity grading map values, whose severity levels are
natural numbers within the same range. The problem is configured as a regression task because the
target variable is a numerical feature, which is used to represent ordered severity values. A set of
training post-wildfire imagery related to past wildfires, for which the value of the target variable is
known, is used to train a predictive model that is then applied to perform the prediction for the pixels
of the new post-wildfire imagery.

2.4. Methodology

As briefly introduced in Section 2.2, one of the most recent and promising approaches developed
in the computer vision field is U-Net [43]. The model, inspired from a Convolutional Neural Network
presented to the Computer Vision for Pattern Recognition conference [44], was originally employed
in the medical field for the segmentation of biological cells and for the analysis of MRI scans for the
detection of a number of pathologies [45–47].

The network concatenates two branches: a contracting path and an expansive path, giving it
the u-shaped architecture. The contracting path is a classical convolutional network, consisting of
repeated application of convolutions, each followed by a rectified linear unit (ReLU) and a max-pooling
operation. During the contraction, the spatial information is reduced while feature information is
increased. The expansive path combines both the features and the spatial information through
a sequence of up-convolutions and concatenations with high-resolution features from the contracting
path. The original version takes as input one grayscale image of dimension 572 × 572 pixels and
it outputs a binary mask of 388 × 388 pixels. The input is oversized compared to the output: that
choice was made to give some extra context to include information of the biological cells outside
exceeding the border of the considered tile. In the context of this paper, the dimension of a burned
area is not predictable, therefore the authors opted for setting the network’s width and height input
and output dimensions to 480 × 480 pixels for each of the 12 spectral bands. In the end, the U-Net’s
input dimension is set to 480 × 480 × 12 pixels.

One of the main contributions of this study is the modification of the original U-Net, empowering
its ability to distinguish between ordered classes, as in the case of damage severity. The classical
U-Net was proposed for solving a segmentation task, being able to identify a specified entity in an
image. Therefore, it is able to recognize relations and features (i.e., borders and gradients) among
the pixel values belonging to the searched entity. Conversely, in the context of this work, the goal
appears to be more complex and it can be split into two sub-tasks: (i) to identify areas affected by
fire, and (ii) to determine damage severity in the burned areas. In the first sub-task, the goal is to
distinguish burned areas from unburned regions, like in a classical segmentation task (classification
task). The second sub-task takes into account the areas affected by the fire and discriminates between
four consequent levels the severity of the damage (regression task). The two sub-tasks are solved with
two different building blocks: the “Binary Classification U-Net” and the “Regression U-Net”. In both
the building blocks, the output map is a matrix of dimensions 480 × 480, where each element refers to
the pixel at the same position of the input tile. In the proposed solution, the two building blocks are
combined together to outperform the prediction quality of the approach based only on the Regression
U-Net block.
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First, the Binary Classification U-Net is trained for segmentation purposes: given a satellite
image of 12 channels and a resolution of 480 × 480, the network assigns to each pixel the probability
of belonging to a burned area thanks to the application of the softmax activation function. Thus,
the generated output is a binary segmentation map of size 480 × 480 with values {0, 1} (i.e., unburned
or burned), where each pixel is assigned to the class with the highest probability. Second, the Regression
U-Net is used to provide the severity level estimation. Given the input satellite image, the model
generates as output a map of the same size as the input with values in range [0, 4]. Both architectures
are based on the U-Net model, with the only difference on the softmax activation function [48] at the
output layer of the Binary Classification U-Net, which is absent in the Regression U-Net, and the loss
functions used during the training process, as described in Section 2.6.

Figure 4. Parallel U-Net simplified architecture. The damage severity estimation is computed by
filtering the Regression U-Net output with the burned/unburned binary mask.

Sentinel-2 L2A

(480x480x12)

Burned/unburned

(480x480)
binary mask

Damage Severity

(480x480)
Estimationcropped image

Binary Class
U-Net

Regression
U-Net

Double-step U-Net

.

Figure 5. Double-Step U-Net simplified architecture. The damage severity estimation is computed in
two steps: burned area identification through the Binary Class U-Net and damage severity estimation
by means of Regression U-Net. The Regression U-Net receives as input the Sentinel-2 L2A image
filtered with the binary segmentation mask.

By combining the two mentioned building blocks differently, we have considered three
different approaches:

• A regression-only approach, in which only the Regression U-Net is used.
• A parallel approach, namely, Parallel U-Net, in which the two building blocks are used separately

in parallel. The final output is obtained by the mathematical multiplication of the two outputs as
shown in Figure 4.

• A two-step approach, namely, Double-step U-Net, in which the building blocks are concatenated.
First, the binary segmentation model is used to predict the burned area regions in the input tile.
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The binary prediction is used to filter the input and isolate the burned regions, thus generating
the input tile for the Regression U-Net, which provides the damage severity estimation. Figure 5
shows the simplified architecture of the proposed solution with sample images, where for satellite
imagery only the RGB channels are shown for simplicity.

A detailed version of the Double-step U-Net architecture is shown in Appendix C.

2.5. Frameworks and Tools

In this section, the hardware components of the workstation used to run the experiments are
introduced, as well as a detail of the software packages used to develop this work.

Geospatial data from Copernicus EMS was processed using the GDAL software library [49] to
determine AoIs’ coordinates and to identify the precise regions affected by forest wildfires and the
corresponding severity levels. Sentinel-Hub services were used to collect Sentinel-2 data.

Satellite imagery was processed through Python with OpenCV and scikit-image [50] libraries.
Data analysis was performed through scikit-learn [51], whereas neural network models were developed
and trained using PyTorch framework [52]. All the software packages and versions are specified in
Table 2.

Table 2. Software packages and versions installed.

Software/Library Version

python 3.6.9
numpy 1.18.2
pandas 1.0.3
xlrd 1.2.0
matplotlib 3.2.1
scikit-learn 0.22.2
scikit-image 0.16.2
OpenCV 4.2.0
PyTorch 1.4.0
torchvision 0.5.0
CUDA 10.1

The experiments were run on a workstation with an Intel Core i9-7940X @ 3.10GHz with 128GB
of RAM and 4x GTX 1080Ti.

2.6. Experiments

Training neural networks is a complex and computationally intensive task, which requires
proper data preparation steps and hyperparameters selection. This section presents the experiments
performed, detailing the training and the evaluation procedures adopted.

As introduced in Section 2.2, the satellite acquisitions were divided into seven folds. The grouping
criteria was chosen by considering geographical distance among the position of the acquisitions,
in order to include in the same fold geographically close regions that could share similar morphology
and land cover aspects, such as vegetation types, infrastructures, and agricultural areas. The models’
performances were evaluated through a cross-validation approach, using the Root Mean Squared Error
as the evaluation metric. At each iteration, five folds are used as the training set, one as the validation
set, and the remaining fold as the test set. The validation set is used to assess the model’s performance
for the early stopping regularization criteria, discussed later in this section. A common prerequisite
in supervised learning algorithms is that the training, validation and test data arise from the same
distribution and are independent and identically distributed [53]. Therefore, in order to work properly,
a validation set should resemble the data distribution of the test set. However, as shown in Figure 1,
each fold presents a unique distribution of severity levels. In a real situation, there is no chance to
know the distribution of severity levels a priori. Therefore, the choice fell on a fold which contains all



Appl. Sci. 2020, 10, 4332 11 of 22

severity levels and which could generalise the most, presenting a distribution of severity levels which
tends mostly to a uniform distribution. Considering all those aspects, we chose the “fucsia” fold as the
validation set for each test set, except for itself: in that case, we chose the “green” fold.

To improve models generalization, data augmentation was applied on the training set of each
fold. During the training process, synthetic data was generated at each epoch from the 480 × 480 tiles
by randomly applying four transformations in sequence to each image: random rotation, random
horizontal flip, random vertical flip, and random shear. Each transformation has a specific probability
to be applied. Rotation and shear effects were performed with randomly generated angles within
specific ranges, differently for each image in each epoch. For reproducibility purposes, random
generation operations were performed using the same seed in each training.

The transformations and their respective parameters are shown in Table 3.

Table 3. Data augmentation parameters.

Transformation Probability Parameters

Random rotation 50% Angle: [−50◦, +50◦]
Random horizontal flip 50% -
Random vertical flip 50% -
Random shear 50% Angle: [−20◦, +20◦]

All the training phases were performed using Adam optimizer with a learning rate of 1× 10−4,
50 epochs and a batch size of 8. Two different models were considered in this study:

• the single U-Net: it is trained for the regression task. The Mean Squared Error (MSE) was used as
a loss function. This model will be referred to as the baseline;

• the Double-Step U-Net: it is trained in two steps: First, only the Binary Classification U-Net is
trained with Dice loss function [54], keeping the weights of the regression model frozen. Second,
the Regression U-Net was trained with Mean Squared Error (MSE) loss function. In this second
step, the weights of the binary classification model are frozen.

To validate the approach, an ablation study will be presented. First, the performance obtained by
the Binary U-Net on each fold will be reported. Then, the choice to link the two networks consecutively
will be justified comparing Double-Step U-Net with the simplified Parallel U-Net model.

During the training process, three techniques for regularization were adopted: early stopping,
dropout, and batch normalization. Early stopping was implemented to avoid overfitting and to stop
the training process in case no further improvements were seen in the validation loss. A patience
of 5 epochs was used with minimum improvements of 1× 10−2 on the validation loss. At the end
of each training process, the model’s best weights determined by the early stopping mechanism
were restored. Dropout layers were enabled during the training process before each transposed
convolution with a probability of 25%. Moreover, after each convolutional layer, batch normalization
was performed. Moreover, to guarantee the reproducibility of the tests, in each training of the
cross-validation process the networks were initialized with the same weights generated from the
same seed number, using a normal distribution and the Glorot initialization [55]. The two subtasks
introduced in Section 2 are evaluated as follows.

• The binary classification between burned and unburned areas is evaluated with Precision, Recall,
and F1-Score metrics [56]. Precision considers the purity of the predictions: among the pixels
predicted as belonging to a certain class, e.g., belonging to a burned region, it indicates the
percentage of matches with the GT. Recall verifies the ability of the estimator to recognize all the
pixels belonging to a certain class, specified in the GT. Therefore, given the whole set of pixels
belonging to a certain class (referring to the GT), the recall is the percentage of correctly predicted
pixels among the whole set. The F1-Score is the harmonic mean between Precision and Recall.
It is as a measure of accuracy with the property to consider the class imbalance.
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• The estimation of damage severity, concerning the distinction between 5 severity levels, is evaluated
with Root Mean Squared Error (RMSE) metric. Given the ordinal relationship between damage
severity levels, the RMSE gives a measure of distance between the prediction and the ground truth.

3. Results

This section shows and comments on the results of the experiments described in Section 2.6.
First, U-Net’s ability to distinguish between burned and unburned areas will be assessed.
Then, the performance achieved to predict the damage severity level by the Double-Step U-Net,
the Parallel U-Net and the Simple U-Net will be compared. Furthermore, their scores will be compared
with the performance obtained by the dNBR-based solution, the reliable estimator largely adopted in
the literature. Finally, the approaches will be discussed analyzing their average prediction error for
each severity level.

In the binary classification task, the Binary U-Net achieved good performances, as shown in Table 4.
According to the F1-Score, the approach was on the average able to classify correctly burned and
unburned pixels (sub-areas) for the wildfires in every fold, except for the brown one, which contains
data acquired from Sweden. In detail, in that fold, the Binary U-Net showed high Recall, but poor
Precision: this means that the network overestimated the burned areas, predicting many false positives.
The choice to use the same fold (fucsia, containing data acquired in Spain) as the validation set, helped
us to understand the limits of applicability of the approach for data acquired far from the test set.
Therefore, training and test areas with strong differences, in terms of geology or land cover aspects,
can prevent the neural network from working properly in the binary classification task. However, this
limitation is mitigated in the regression problem, discussed below in this section.

Table 4. Binary U-Net cross-validation results for the binary classification subtask.

Bin. U-Net
Fold

Blue Brown Fucsia Green Orange Red Yellow

Precision 0.91 0.45 0.93 0.99 0.71 0.84 0.78
Recall 0.95 0.98 0.98 0.91 0.99 0.99 0.99

F-Score 0.93 0.61 0.95 0.95 0.82 0.91 0.87

A detailed performance report for the Single U-Net, the Parallel U-Net, and the Double-Step
U-Net in every fold for the estimation of damage severity task is shown Table 5. As mentioned in
Section 2.4, the three approaches use solely post-fire satellite acquisition for making their predictions.
The table presents the RMSE evaluated on every fold, for every severity level, reported as an ordinal
number for the sake of space. Severity levels are mapped as follows; 0 stands for No damage, 1 stands
for Negligible to slight damage, 2 stands for Moderately Damaged, 3 stands for Highly damaged, and 4 stands
for Completely destroyed. In a first analysis, we do not consider the dNBR column, but we focus only
on the three networks performances. The best score for each row, considering only the U-Net-based
approaches, is marked with the star symbol (?). Compared to the Single U-Net, the approaches in
which the outputs of the Binary U-Net and Regression U-Net are combined showed better overall
performances. The Double-Step U-Net is the most accurate in the discrimination between severity
levels (1 to 4), achieving best results in 5 folds out of 7 (blue, fucsia, green, orange, and yellow).
The only exception is for the brown fold because the Regression U-Net is strongly dependent on the
Binary U-Net’s performance. However, the RMSE values of the brown fold for the Double-Step U-Net
result to be comparable to the RMSE values of other folds (i.e., orange and yellow), and they are better
than the ones of the consolidated approach based on dNBR. Therefore, Double-Step U-Net result to be
also robust for regions presenting strong differences from the ones that are used to train the model.
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Table 5. Cross-validation performance per fold. (?) indicates the best RMSE per severity category
among the three U-Net versions. (†) indicates the best RMSE per severity category, dNBR included.

Fold Severity
Performance (RMSE)

dNBR Single U-Net Parallel U-Net Double-Step U-Net

Blue

0 0.78 1.06 0.23 ?† 0.27
1 1.07 0.89 0.89 0.73 ?†

2 1.23 0.71 0.80 0.62 ?†

3 0.82 0.63 0.65 0.52 ?†

4 0.62 † 0.93 ? 0.96 1.44

Brown

0 0.65 0.22 0.20 ?† 0.47
1 0.97 0.94 0.94 0.92 ?†

2 1.01 0.65 ?† 0.65 ?† 0.86
3 0.70 0.35 ?† 0.35 ?† 0.39
4 0.48 † 1.26 ? 1.28 1.49

Fucsia

0 0.82 0.39 0.16 ?† 0.24
1 1.37 1.40 1.41 1.02 ?†

2 1.12 1.35 1.35 1.00 ?†

3 1.10 0.97 0.97 0.75 ?†

4 1.67 1.26 ?† 1.28 1.49

Green

0 0.20 0.28 0.04 ?† 0.18
1 0.64 † 1.03 0.92 0.80 ?

2 1.18 † 1.78 1.76 1.40 ?

3 1.46 1.87 1.90 1.38 ?†

4 1.09 1.57 1.58 1.00 ?†

Orange

0 0.42 † 0.40 0.39 ? 0.43
1 1.10 † 1.68 1.68 1.47 ?

2 1.04 1.14 1.14 1.02 ?†

3 - - - -
4 - - - -

Red

0 0.20 0.21 0.15 ?† 0.33
1 0.66 † 0.71 ? 0.71 ? 1.21
2 0.80 0.56 ?† 0.56 ?† 0.97
3 - - - -
4 0.58 † 1.96 1.96 1.21 ?

Yellow

0 1.31 0.37 0.25 ?† 0.54
1 0.83 † 0.83? 0.84 1.04
2 1.24 0.89 0.89 0.71 ?†

3 - - - -
4 0.99 † 1.70 1.71 1.18 ?

Considering the dNBR in the evaluation, the best performances per row in Table 5 are marked
with the dagger symbol (†). In order to compare the dNBR with the GT, its values were thresholded
according to the default values [23]. In this case, best results vary from fold to fold, but generally,
they are matched by U-Net based approaches. It must be considered that the dNBR is computed using
both pre- and post-fire acquisitions, whereas U-Net’s approaches consider only post-fire acquisitions.
In order to summarize the performance, the average RMSE value for each severity level is shown
in Table 6. Compared to the Single U-Net, the Double-Step U-Net results to be a better approach,
achieving the best RMSE on each severity level. Moreover, with reference to the dNBR, the Double-Step
U-Net achieves comparable performance, with a noticeable improvement for the detection of the
unburned area (severity 0), but using only half of the information. The reason behind the success of
Double-Step U-Net is hidden in the problem split. First, the neurons of the Binary U-Net are employed
to identify burned regions. Its prediction will mask the spectral values of unburned regions, leaving



Appl. Sci. 2020, 10, 4332 14 of 22

only the information related to burned areas to the Regression U-Net. Therefore, the latter network
will employ its neurons in finding differences between correlated values (severity levels 1 to 4).

Table 6. Average performance for severity level. (?) indicates the best RMSE per severity category
among the three U-Net versions. (†) indicates the best RMSE per severity category, dNBR included.

Severity
Overall Per-Class Performance (RMSE)

dNBR Single U-Net Parallel U-Net Double-Step U-Net

0 0.62 0.42 0.20 ?† 0.35
1 0.95 † 1.07 1.05 1.03 ?

2 1.09 1.01 1.02 0.94 ?†

3 1.02 0.95 0.97 0.76 ?†

4 0.91 † 1.45 1.46 1.30 ?

It is worth mentioning that the masking operation performed by the Binary U-Net prediction
introduces a new and uncommon value in the spectral information fed as input to the Regression
U-Net: the 0 value. Areas identified as unburned will be “cancelled” by replacing their original value
with 0, that is not present in nature. Therefore, a bad classification from the Binary U-Net can lead
the Regression U-Net to make more mistakes because it will consider 0-valued-regions as unburned
and every other unburned region not detected by the Binary U-Net will be considered as burned.
In Figure 6, a comparison between predictions of dNBR, Single U-Net, and Double-Step U-Net is
shown in two areas of the green fold. At a first glance, delineating the wildfire contours just looking
at the RGB acquisition (pictures a1 and b1) seems feasible, but assigning different severity levels
appears to be more challenging. In both the acquisitions, the Binary U-Net predictions resulted to
be highly accurate (pictures a3 and b3), compared to the Copernicus EMS annotation (GT, pictures
a2 and b2). The dNBR (pictures a4 and b4) show a good match with the GT, except for some noise
in the vast unburned regions. The Single U-Net (pictures a5 and b5) correctly identifies the burned
region and the contours of different burned areas, but it tends to underestimate the severity. In the end,
the Double-Step U-Net (pictures a6 and b6) improves the prediction of the Single U-Net, resulting to be
more similar to the GT. The time required by the Double-Step U-Net to perform the damage severity
evaluation using one NVIDIA GTX 1080 Ti on an input tile of size 100 km × 100 km is, considering
the highest spatial resolution available (reported in Table 1), 28 s on average. The time required to
predict the severity level estimation by the proposed deep learning model for an image of 480 × 480
resolution with 12 spectral bands is inferior to 1 s.

4. Conclusions

This work introduces the application of a convolutional neural network, namely, U-Net for the
estimation of the damage severity of regions affected by wildfires from satellite imagery. Compared
to the literature, which commonly uses pre-fire and post-fire satellite acquisitions, this approach
only makes use of post-fire data. Moreover, our approach results to be location-independent for the
assessed European regions, and possibly for all the areas presenting common land-use as the AoIs
presented in this work), being able to process geographically distributed satellite imagery. Furthermore,
a modified version of U-Net named Double-Step U-Net, is created and introduced to improve the
performance of the standard method. The approaches have been validated across five European
regions, within 21 manually annotated wildfire events. As a result, Double-Step U-Net outperformed
U-Net and achieved comparable performance to the thresholded dNBR, which is computed using both
pre- and post-wildfire satellite acquisitions.

Future works will assess the contribution of other information, like Synthetic-aperture radar (SAR)
data provided by Sentinel-1 data, or the Digital Elevation Maps (DEM) to improve the performances
of Double-Step U-Net for distinguishing between wildfire severity levels. Moreover, the approach can
be adapted and evolved to analyse the daily wildfire expansion, in order to provide a risk map for
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the potential areas that could be affected in the near future. Therefore, areas more likely to be affected
by severe damage can be identified earlier, in order to let decision-makers to conduct better disaster
response management and to limit overall damages.

(a1) (a2) (a3)

(a4) (a5) (a6)

(b1) (b2) (b3)

(b4) (b5) (b6)

Figure 6. Wildfire severity level predictions. The severity levels range from black (severity 0) to white
(severity 4). (a1,b1) Sentinel L2A acquisition; (a2,b2) Copernicus EMS grading map (GT); (a3,b3) Binary
mask generated by the Binary U-Net: black and white colors indicate unburned and burned regions,
respectively; (a4,b4) Thresholded dNBR, obtained from pre and post-fire acquisitions; (a5,b5) Single
U-Net prediction; (a6,b6) Double-Step U-Net prediction.
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Appendix A

Dataset—Legend:

• ISO stands for ISO-3166 Country Code (https://www.iso.org/obp/ui/#search&3166);
• EMSR stands for Copernicus Emergency Management Service (EMS) - Rapid Mapping (R)

Activation Code (https://emergency.copernicus.eu/mapping);
• BB_TL_LON and BB_TL_LAT is the couple of coordinates (LONgitude, LATitude) of the Bounding

Box (BB) for the Top Left (TL) corner;
• BB_BR_LON and BB_BR_LAT is the couple of coordinates (LONgitude, LATitude) of the Bounding

Box (BB) for the Bottom Right (BR) corner;
• PRE Date and POST Date stand for Pre Fire acquisition Date, and Post fire acquisition Date,

respectively. They specify the date in which the Sentinel-2 satellite registered information related
to the specified bounding box, which is compliant with the constraints of availability and cloud
coverage specified in Section 2.2.

• FOLD indicates in which fold the product belongs to, according to the colors represented in
Figure 1.

Table A1. Areas of Interest (AoIs) considered in this work. Each AoI reports information about the
Country (ISO code), the grading map identifier for Copernicus EMS (EMSR), the coordinates of the
AoI’s top-left and bottom-right corners, the Pre-fire (PRE Date) and Post-fire (POST Date) Sentinel-2
acquisition dates, and the related fold.

ISO EMSR BB_TL_LON BB_TL_LAT BB_BR_LON BB_BR_LAT PRE Date POST Date FOLD

FR 221_01 9.300647504 42.886608180 9.505183140 42.763508590 06-07-2017 15-08-2017 blueIT 371_01 9.644467300 39.921109700 9.687531600 39.856982400 18-07-2018 18-07-2019

SE
290_03 16.260418860 59.853342900 16.321359390 59.828218650 20-05-2018 09-06-2018

brown298_02 16.361547000 63.140440500 16.447381400 63.099673880 26-06-2018 24-07-2018
298_06 15.357103890 62.915099290 15.574015210 62.833943810 27-06-2018 24-07-2018

ES

248_01 −6.196452795 41.659029510 −6.009019170 41.544015950 14-07-2017 08-08-2017

fucsia
248_03 −5.635075322 40.498431780 −5.506317882 40.418039390 02-04-2017 04-09-2017
248_04 −5.095913397 40.401377180 −5.017491612 40.352353570 01-07-2017 20-08-2017
248_05 −4.999988815 40.416147790 −4.903491087 40.355830440 15-08-2017 04-09-2017
368_01 −5.078459714 40.337887420 −4.823074137 40.208122740 18-05-2018 01-07-2019

ES

216_01 −2.372395304 38.474711270 −2.314204884 38.425632380 28-06-2017 04-08-2017

green216_02 −2.314223218 38.474528270 −2.256145364 38.425540850 03-07-2017 04-08-2017
216_04 −2.314236645 38.425632380 −2.256299384 38.376741980 03-07-2017 04-08-2017
216_05 −2.430549330 38.455364920 −2.372358909 38.406286030 03-07-2017 04-08-2017

ES 365_01 0.412424949 41.454152670 0.770854806 41.165836340 31-05-2019 30-06-2019 orange373_01 −0.630882068 41.824559980 −0.508149384 41.754863330 18-07-2018 25-07-2019

ES
302_01 −6.673627731 37.809332970 −6.460693904 37.671156100 16-07-2018 05-08-2018

red302_06 −6.603647894 37.733337620 −6.530111345 37.685598470 16-07-2018 05-08-2018
302_07 −6.530284692 37.733470790 −6.456643427 37.685736730 16-07-2018 05-08-2018

PT 250_01 −9.163435178 40.036735710 −8.705635612 39.636755460 27-09-2017 17-10-2017 yellow372_04 −8.192177749 39.796433080 −7.948217694 39.609595860 13-08-2018 24-07-2019

https://www.iso.org/obp/ui/#search&3166
https://emergency.copernicus.eu/mapping
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Appendix B

Dataset Land use—Legend: Land use details for the areas of interest considered in the dataset
Tables A2 and A3. They are specified in the grading maps cartouche, using the hectare (ha) as unit of
measurement. The land use types are specified as follows (Land use types used in this work refer to
the official Copernicus EMS notation, available at https://emergency.copernicus.eu/mapping/ems/
domains):

• Residential/Industrial: urban areas involving residential or industrial buildings;
• Arable land: also specified as cropland, non-irrigated arable land areas, permanently irrigated

land, and rice fields;
• Grassland: natural grassland;
• Forests: broad-leaved forest, coniferous forest, mixed forest;
• Heterogeneous agricultural areas: annual crops associated with permanent crops, complex

cultivation, land principally occupied by agriculture, agro-forestry areas;
• Open spaces with little or no vegetation: beaches, dunes, sand plains, bare rock, sparsely

vegetated areas, and glaciers;
• Pastures: ground covered with grass or herbage, used or suitable for the grazing of livestock;
• Permanent Crops: vineyards, fruit trees and berry plantations, olive groves;
• Shrub and/or herbaceous vegetation association: natural grassland, moors, and heathland,

Sclerophyllous vegetation, transitional woodland shrub;
• Inland wetlands: inland marshes, peatbogs;
• Woodland shrub: transitional woodland shrub.

For sake of space the table is split in two parts: the first reports land use attributes from “Arable
land” to “Open spaces with little or no vegetation”, the other from “Pastures” to “Woodland”.

Table A2. Land use details for the AoIs considered in this work. For the sake of space, this table is
partial, and continues in Table A3. It reports, in hectares: Residential/Industrial areas, Arable lands,
Grasslands, Forests, Heterogeneous agricultural areas, and Open spaces with little or no vegetation.
For each land use type, the areas affected by fire are reported (Burned).

EMSR Res. / Ind. (ha) Arable Land (ha) Grassland (ha) Forests (ha) Het. agric. (ha) Open sp. (ha)
Burnt AoI Burnt AoI Burnt AoI Burnt AoI Burnt AoI Burnt AoI

221_01 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
371_01 3.5 29 123.3 646.8 36.5 98.9 503.8

290_03 115.6 17.8 570.3 86.7
298_02 262.2 197.4 1062.7 56.4
298_06 350.5 7661

248_01 112.1 1048.1 7562.7 84.1 1404.8
248_03 286.2 2617.4 247.8 2589.8
248_04 85.2 573 36.4 488
248_05 58.8 247.6 1330.4 5.6 186.4
368_01 12.1 32.2 58.2 8279.2 10.8 1233.3 1010.8

216_01 43 185 169.7 244.3 46.5 103.7
216_02 37 265.6
216_04 466 646.5 185.3
216_05 57 3.3 129.4 26.2 1872.3

365_01 365.1 1323.3 1538 12,281.3 2287 35,995.5
373_01 208.3 2899.4 173 1702.9 122.6 810

302_01 761 630.2 708 7653.5 24.7 3148.8
302_06 24 4650 29.3 377.8 744.7 27.2
302_07 3 54 54.9 1597.5 50.3

250_01 120.7 1129.3 7677 50.8 2472.8 636.2 2356.4
372_04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

https://emergency.copernicus.eu/mapping/ems/domains
https://emergency.copernicus.eu/mapping/ems/domains
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Table A3. Land use details for the AoIs considered in this work. For the sake of space, this table is
partial, and continues from Table A2. It reports, in hectares: Pastures areas, Permanent crop lands,
Shrubs or herbaceous vegetation areas, Inland wetlands areas, and Woodlands. For each land use type,
the areas affected by fire are reported (Burned).

EMSR Pastures (ha) Perm. Crops (ha) Shrubs / herb. (ha) In. Wetlands (ha) Woodland (ha)
Burnt AoI Burnt AoI Burnt AoI Burnt AoI Burnt AoI

221_01 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
371_01 25 267.9 381.8 936.3

290_03 13.9 18.3 120.1 14
298_02 7.9 112
298_06 52.2 1626.2

248_01 1642.4 8521.42 56.1 1989.9
248_03 674.7 2980.1 836 1565.6
248_04 437.4 2353.5 47.3 220.6
248_05 588.9 1513 166.7 2457.5
368_01 1708.6 2896.1 1471.3 15,130.6

216_01 796.1 924 860.9 1482.4
216_02 658.2 1834.5 172.8 643
216_04 99.7 821.6 980.1
216_05 236.1 148.8 483.82

365_01 316.8 6695.8 880.2 8877.5 38.3
373_01 366.3 918.3

302_01 199.4 499.8 958 13,469.9
302_06 391.9 960.4
302_07 83.6 2578.9

250_01 300 642 1172.2 6596.2
372_04 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
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Appendix C

Figure A1. Double-Step U-Net architecture.
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