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HILBERT FUNCTIONS OF SCHEMES OF DOUBLE AND REDUCED

POINTS

ENRICO CARLINI, MARIA VIRGINIA CATALISANO, ELENA GUARDO, AND ADAM VAN TUYL

Abstract. It remains an open problem to classify the Hilbert functions of double points
in P

2. Given a valid Hilbert function H of a zero-dimensional scheme in P
2, we show

how to construct a set of fat points Z ⊆ P
2 of double and reduced points such that

HZ , the Hilbert function of Z, is the same as H . In other words, we show that any
valid Hilbert function H of a zero-dimensional scheme is the Hilbert function of a set a
positive number of double points and some reduced points. For some families of valid
Hilbert functions, we are also able to show that H is the Hilbert function of only double
points. In addition, we give necessary and sufficient conditions for the Hilbert function
of a scheme of a double points, or double points plus one additional reduced point, to be
the Hilbert function of points with support on a star configuration of lines.

1. Introduction

Throughout this paper, k will denote an algebraically closed field of characteristic
zero. Let X = {P1, . . . , Ps} ⊆ P

2 be a finite set of reduced points with associated
homogeneous ideal IX = IP1

∩ · · · ∩ IPs
⊆ R = k[x0, x1, x2]. Given positive integers

m1, . . . , ms, we let Z = m1P1+ · · ·+msPs denote the scheme defined by the homogeneous
ideal IZ = Im1

P1
∩· · ·∩ Ims

Ps
. We refer to Z as a set of fat points. We call mi the multiplicity

of the point Pi; when mi = 2, we sometimes call Pi a double point. Given a set of fat
points Z, the support of Z is the set Supp(Z) = {P1, . . . , Ps}.

Information about the set of fat points Z is encoded into its Hilbert function. Recall
that the Hilbert function of Z is the function HZ : N → N defined by

i 7→ dimk(R/IZ)i = dimk Ri − dimk(IZ)i

where Ri, respectively (IZ)i, denotes the i-th graded piece of R, respectively (IZ)i (see
Chapter 5 of [16] for a comprehensive introduction to Hilbert functions). It is then
natural to ask if one can characterize what functions are the Hilbert function of a set of
fat points. A complete characterization of the Hilbert functions of reduced points (i.e.,
all the mi = 1) was first described by Geramita, Maroscia, and Roberts [12]. However,
even in the case that all the fat points are double points, a characterization of the Hilbert
functions remains elusive (see, for example, the surveys of Gimigliano [13] and Harbourne
[14]). In this paper, we contribute to this open problem by showing that every Hilbert
function of a collection of reduced points in P

2 is also the Hilbert function of a collection
of double points and reduced points in P

2. In specific cases, we can give a sufficient
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condition for a numerical function to be the Hilbert function of a scheme consisting only
of double points.

To further describe our results, we introduce some additional notation. One way to
study the Hilbert function of HZ is to study its first difference function (sometimes called
the Castelnuovo function) which is given by

∆HZ(i) = HZ(i)−HZ(i− 1) for all i ≥ 0, where HZ(−1) = 0.

When Z is a zero-dimensional scheme in P
2, it can be shown (see Remark 2.2) that

all but a finite number of values of ∆HZ(i) are zero. Furthermore, if ∆HZ(i) = 0 for all
i ≥ σ + 1, and if we write ∆HZ = (h0, . . . , hσ) to encode all the non-zero values of ∆HZ ,
then there is an 0 < α ≤ σ such that

(a) hi = i+ 1 if 0 ≤ i < α, and
(b) hi ≥ hi+1 if α ≤ i ≤ σ.

We call ∆H = (h0, . . . , hσ) a valid Hilbert function of a zero-dimensional scheme in P
2 if

∆H satisfies conditions (a) and (b). Ideally, we want to answer the following question:

Question 1.1. Let ∆H = (h0, . . . , hσ) be a valid Hilbert function. Write
∑

∆H =
∑σ

i=0 hi as
∑

∆H = 3d+ r with r ∈ {0, 1, 2}. Does there exist a set Z of d double points
and r reduced points in P

2 such that ∆HZ = ∆H?

Note that a scheme Z with d double points and r reduced points in P
2 will have

deg(Z) = 3d+ r. Furthermore, it is known that HZ(i) = deg(Z) for i≫ 0. This explains
why we require

∑
∆H = 3d+ r. If we could answer this question, we could determine if

a valid Hilbert function is the Hilbert function of a set of double points. Thus, the above
question is quite difficult.

We can ask a weaker question by simply asking if any set of double points and reduced
points can be constructed:

Question 1.2. Let ∆H = (h0, . . . , hσ) be a valid Hilbert function. Can one always find
integers d and r where d is positive and r ≥ 0 with

∑
∆H = 3d + r such that H is the

Hilbert function of a set Z of d double points and r simple points in P
2?

Note that if we allow d = 0 and r =
∑

∆H , then the above question is simply asking if
∆H is the Hilbert function of r reduced points, which follows from Geramita, Maroscia,
and Roberts [12]. We can now view Question 1.1 as asking if the d in Question 1.2 can
be taken to be the maximum allowed value. Ideally, when trying to answer Question 1.2,
we want to make d as large as possible.

One of the main results of this paper (Theorem 3.1) will give us a tool to answer
to Question 1.2. Specifically, starting with a set of double and reduced points on a
collection of general lines in P

2, we describe how to “merge” three reduced points to make
a new scheme with one new double point and three fewer reduced points. Moreover, this
procedure does not change the Hilbert function. The results of Cooper, Harbourne, and
Teitler [8] are the crucial ingredient to prove that our new configuration has the correct
Hilbert function. By reiterating this process, in a controlled fashion, Construction 3.5
shows how to start from a valid Hilbert function ∆H and create a set Z of double and
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simple points with ∆H = ∆HZ . Our answer to Question 1.2 is given in Theorem 3.9
where we find a d, that depends only on ∆H , such that we can construct a set of d
double points and (

∑
∆H) − 3d reduced points whose Hilbert function is H . In fact,

for all 1 ≤ d′ ≤ d, we can find a scheme of d′ double points and (
∑

∆H) − 3d′ reduced
points with Hilbert function H (see Corollary 3.10). Moreover, in Theorem 3.11 we give
a condition on a valid Hilbert function H that guarantees that H is the Hilbert function
of only double points.

We then focus on the special cases that

∆H = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

) or ∆H = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t + 1
︸ ︷︷ ︸

t

, 1)

In these cases, our construction produces
(
t+1
2

)
double points, respectively

(
t+1
2

)
double

points and one reduced points. In the first case, the support of the points are the
(
t+1
2

)

points of intersection of t general lines in P
2. This fact is equivalent to the statement

that the points in the support are a star-configuration of points in P
2; star configurations

are widely studied, e.g. see [4, 5]. We prove (see Theorem 4.4) that this configuration
is the only configuration of

(
t+1
2

)
double points in P

2 with ∆HZ = ∆H . In the second
case, we show (see Theorem 4.6) a similar result by showing again that there is only one
configuration of

(
t+1
2

)
double points and one reduced point that has ∆HZ = ∆H .

We conclude our paper with some final comments related to how well our construction
performs, i.e., given a known valid Hilbert function of t double points, how many double
points does our procedure produce for the same valid Hilbert function. In the case that
the support of points is in generic position, we derive an asymptotic estimate.

Acknowledgements. The computer algebra system CoCoA [1] played an integral
role in this project. The authors thank the hospitality of the Università di Catania and
McMaster University where part of this work was carried out. Carlini and Catalisano
were supported by GNSAGA of INDAM and by Miur (Italy) funds. Guardo thanks
FIR-UNICT 2014 and GNSAGA-INDAM for supporting part of the visit to McMaster
University. Guardo’s work has also been supported by the Università degli Studi di
Catania, “Piano della Ricerca 2016/2018 Linea di intervento 2”. Van Tuyl’s research was
supported by NSERC Discovery Grant 2014-03898.

2. Preliminaries

We begin with a review of the relevant background; we continue to use the notation
and definitions given in the introduction.

Definition 2.1. A sequence ∆H = (h0, h1, . . . , hσ) is a valid Hilbert function of a set of
points in P

2 if there is an 0 < α ≤ σ such that

(a) hi = i+ 1 if 0 ≤ i < α, and
(b) hi ≥ hi+1 if α ≤ i ≤ σ.

Note that the indexing of ∆H begins with 0.

Remark 2.2. It can be shown that H : N → N is a Hilbert function of a set of points in
P
2 if and only if ∆H(i) = H(i)−H(i− 1) is a valid Hilbert function. More precisely, it
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was first shown by Geramita, Maroscia, and Roberts [12] that H is the Hilbert function
of a reduced set of points in P

2 if and only if ∆H is the Hilbert function of an artinian
quotient of k[x, y]. Using Macaulay’s theorem which classifies all Hilbert functions, one
can determine all possible Hilbert functions of artinian quotients of k[x, y]. In particular,
one can show that the Hilbert functions of artinian quotients of k[x, y] must satisfy the
conditions of being a valid Hilbert function. The work of Geramita, Maroscia, and Roberts
implies that if Z ⊆ P

2 is any set of fat points, then ∆HZ must satisfy the conditions (a)
and (b) given above.

Definition 2.3. Let ∆H = (1, 2, . . . , α, hα, . . . , hσ) be a valid Hilbert function of a set of
points in P

2. We define the conjugate of ∆H , denoted ∆H⋆, to the be tuple

∆H⋆ = (h⋆1, . . . , h
⋆
α) where h

⋆
i = #{j | hj ≥ i}.

Remark 2.4. The definition above is reminiscent of the conjugate of a partition. Recall
that a tuple λ = (λ1, . . . , λr) of positive integers is a partition of an integer s if

∑r

i=1 λi = s
and λi ≥ λi+1 for every i. The conjugate of λ is the tuple λ⋆i = #{j | λj ≥ i}. Note that
∆H is not a partition, but ∆H⋆ is a partition. Furthermore, h⋆1 = σ + 1 since there are
σ + 1 non-zero entries in ∆H .

Example 2.5. Given a valid Hilbert function ∆H , it is convenient to represent ∆H
pictorially. That is, we make σ + 1 columns of dots, where we place hi dots in the i-th
column. For example, if ∆H = (1, 2, 3, 4, 4, 3, 1), then we can represent ∆H pictorially
as:

∆H =

• •
• • • •

• • • • •
• • • • • • •

The tuple ∆H⋆ = (7, 5, 4, 2) can be read directly off of this diagram; specifically, it is the
number of dots in each row reading from bottom to top.

Given a valid Hilbert function ∆H , one can use ∆H⋆ to construct a set of reduced
points X ⊆ P

2 such that HX = H by building a suitable k-configuration. We present a
specialization of this idea; an example appears as the first step of Example 3.6.

Theorem 2.6. Let ∆H = (1, 2, . . . , α, hα, . . . , hσ) be a valid Hilbert function with ∆H⋆ =
(h⋆1, . . . , h

⋆
α). Let ℓ1, . . . , ℓα be α lines in P

2 such that no three lines meet at a point. For
i = 1, . . . , α, let Xi ⊆ ℓi be any set of h⋆i points such that Xi ∩ ℓj = ∅ for all i 6= j. If
X = X1 ∪ · · · ∪Xα, then HX = H.

Proof. We sketch out the main ideas. Our hypotheses on the Xi’s implies that no point
of X is of the form ℓi ∩ ℓj with i 6= j. One can verify that h⋆1 > h⋆2 > · · · > h⋆α. But then
X is a k-configuration of type (h⋆α, . . . , h

⋆
1) as first defined by Roberts and Roitman [17]

(and later generalized by Geramita, Harima, and Shin [11]). In particular, one can use
[17, Theorem 1.2] to compute the Hilbert function of X to show that it is the same as
H . �

We now recall some crucial results from the work of Cooper, Harbourne, Teitler [8].
We have specialized their definitions to P

2.
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Definition 2.7 ([8, Definition 1.2.5]). Let Z = m1P1 +m2P2 + · · ·+msPs be a fat point
scheme in P

2. Fix a sequence ℓ1, . . . , ℓn of lines in P
2, not necessarily distinct.

(a) Define the fat point schemes Z0, . . . , Zn by Z0 = Z and Zj = Zj−1 : ℓj for 1 ≤ j ≤
n. That is, Zj is the scheme defined by IZj−1

: 〈Lj〉 if Lj is the linear form defining
ℓj and IZj

is the ideal defining Zj.
(b) The sequence ℓ1, . . . , ℓn totally reduces Z if Zn = ∅ is the empty scheme. This

statement is equivalent to the property that for each fat point miPi, there are at
least mi indices {j1, . . . , jmi

} such that each ℓjk passes through Pi.
(c) We associate with Z and the sequence ℓ1, . . . , ℓn an integer vector

d = d(Z; ℓ1, · · · , ℓn) = (d1, . . . , dn),

where dj = deg(ℓj ∩ Zj−1), the degree of the scheme theoretic intersection of ℓj
with Zj−1. We refer to d as the reduction vector for Z induced by the sequence
ℓ1, . . . , ℓn. We will say that d is a full reduction vector for Z if ℓ1, . . . , ℓn totally
reduces Z.

Remark 2.8. If Z is a fat point scheme, and if Pi1 , . . . , Pij are all the points in the support
of Z that lie on the line ℓ, then deg(ℓ∩Z) = mi1+· · ·+mij , i.e., the sum of the multiplicities
of the points lying on ℓ ∩ Z. The scheme Z : ℓ is the scheme that we obtain by reducing
the multiplicities of Pi1 , . . . , Pij by one (or removing the point if its multiplicity is 1), and
leaving the other multiplicities alone.

Example 2.9. Consider three non-collinear points P1, P2, P3 and the set of fat points
Z = 3P1 + 3P2 + 2P3. Let ℓ1 = ℓ2, ℓ3 and ℓ4 be the lines through P1P2, P1P3, and P2P3,
respectively. Then a full reduction vector for this scheme is (6, 4, 3, 2). The pictures below
show how to build this vector. For example, in Figure 1, the line ℓ1 passes through P1 and
P2. Since the multiplicity of P1 is three, and the same for P2, we have d1 = 3+3 = 6. We
then reduce the multiplicity of P1 and P2 by one, as in Figure 2. Then d2 = 2+2 = 4. The

ℓ1
3P1 3P2

2P3

Figure 1.

ℓ2
2P1 2P2

2P3

Figure 2.

line ℓ3 in Figure 3 passes through one point of multiplicity one and one of multiplicity
two, thus giving d3 = 3. Note that when we reduce each multiplicity, the point P1 is
removed. In the last step, we use the line ℓ4 to get d4 = 2 as in Figure 4.

The next result is another specialization of Cooper, Harbourne and Teitler [8].

Theorem 2.10. Let Z = Z0 be a fat point scheme in P
2 with full reduction vector d =

(d1, . . . , dn). If d1 > d2 > · · · > dn, then HZ only depends on d.
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ℓ3
P1 P2

2P3

Figure 3.

ℓ4
P2

P3

Figure 4.

Proof. From our assumption, we have di−di+1 ≥ 1 for all i = 1, . . . , n. Then di−di+p ≥ p
for all i. This implies that d = (d1, . . . , dn) is a GMS vector (see Definition 2.2.1 in [8]).
Then Theorem 2.2.2 and Section 2.3 of [8] imply

HZ(t) =

n−1∑

i=0

(
min{t− i+ 1, di+1}

1

)

,

that is, HZ can be computed directly from d. �

3. An operation that preserves the Hilbert function

In this section, we first show that under certain conditions, we can degenerate a fat point
scheme Z consisting of double points and reduced points to make a new fat point scheme
Z ′ consisting of one additional double point, and three less reduced points. Furthermore,
the two schemes will have the same Hilbert function. Note that degeneration techniques
have been successfully used in other situations, e.g. see [6, 7].

By repeatedly applying this procedure, we can do the following. Let ∆H be a valid
Hilbert function of a set of points. Theorem 2.6 implies that there is a set of reduced
points X with Hilbert function ∆H that satisfies the hypotheses of our procedure given
below. We can then remove three points from X and add a double point to make a set
Z of fat points with the same Hilbert function as ∆H . We can continue this procedure
(provided the hypotheses of our procedure are still satisfied) to build sets of fat points
consisting of double and reduced points that have Hilbert function ∆H . This procedure
will then allow us to give an answer to Question 1.2.

We now state and prove the main step in our procedure.

Theorem 3.1. Let ℓ1, . . . , ℓn be n lines in P
2 such that no three lines meet at a point.

Let Pi,j = ℓi ∩ ℓj for 1 ≤ i < j ≤ n. Suppose that Z is a set of double points and reduced
points in P

2 that satisfies the following conditions:

(a) Supp(Z) ⊆
⋃n

i=1 ℓi, i.e., all the points in the support lie on the lines ℓi.
(b) If 2P is a double point of Z, then P = Pi,j for some i < j, i.e., all double points

of Z lie at an intersection point of two ℓp’s.
(c) If Q is a reduced point of Z and Q ∈ ℓi, then Q 6= ℓi∩ℓp for p 6= i, i.e., the reduced

points do not lie at an intersection point.
(d) If

dj = deg(Zj−1 ∩ ℓj)
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for j = 1, . . . , n, then d1 > d2 > · · · > dn, where Zj = Zj−1 : ℓi and we set Z0 = Z.
(e) There exist i, j with i < j such that Z contains two reduced points Q1, Q2 ∈ ℓi and

a reduced point R ∈ ℓj, but 2Pi,j is not a double point of Z.

Let Z ′ be the set of double and reduced points obtained by adding the double point 2Pi,j to
Z, and removing the reduced points {R,Q1, Q2}. Then Z and Z ′ have the same Hilbert
function.

Proof. We begin by observing that Supp(Z ′) is also contained in
⋃n

i=1 ℓi by our construc-
tion since the only point we added to the support is Pi,j. This observation and (a) imply
that the lines ℓ1, . . . , ℓn totally reduce both Z and Z ′. Indeed, if Q is a reduced point
of Z, respectively Z ′, then it lies on some distinct ℓi by (c). If 2P is a double point of
Z, or Z ′, then P = ℓi ∩ ℓj for some i < j by (b) (or by the construction of Z ′), so there
are at least two ℓp’s that pass through 2P . It follows from the equivalent statement in
Definition 2.7 that the ℓi’s totally reduce Z and Z ′.

To finish the proof, we claim it is enough to show that

deg(Zj−1 ∩ ℓj) = deg(Z ′

j−1 ∩ ℓj) for all 1 ≤ j ≤ n.

Indeed, if this fact is true, then part (d) and Theorem 2.10 imply that the Hilbert function
of Z and Z ′ are the same.

To verify the claim, we first observe that our change from Z to Z ′ only effects the points
on the lines ℓi and ℓj , and consequently, could only effect the value of deg(Z ′

p−1 ∩ ℓp) for
p = i and j. In the computation of deg(Zi−1 ∩ ℓi) we get a contribution of two from each
reduced point Q1 and Q2. Those two points do not contribute to deg((Z ′

i−1 ∩ ℓi) since
we have removed them, but the fat point 2Pi,j (which is not in Z) contributes two to
the degree. The other points of Zi−1 and Z ′

i−1 on ℓi remain the same, so they contribute
equally to the degree. So deg(Zi−1 ∩ ℓi) = deg(Z ′

i−1 ∩ ℓi).

When we compute deg(Zj−1∩ ℓj) we get a contribution of one from R. This point does
not contribute to deg(Z ′

j−1 ∩ ℓj) since it was removed. We, however, get a contribution
of one from Pi,j. (The multiplicity of Pi,j was dropped from two to one when we formed
Z ′

i.) As we mentioned above, the other points on ℓj contribute the same. So, again we
have deg(Zj−1 ∩ ℓj) = deg(Z ′

j−1 ∩ ℓj). This completes the proof. �

Remark 3.2. We note that the hypothesis of Theorem 3.1 are sufficient conditions which
allow us, for example, to apply the results of [8]. Consider condition (d) on the degrees
di. If some of the inequalities do not hold, then the conclusion might be false. Let Z be
a set of five points supported on the union of the lines ℓ and ℓ′, namely two points on the
former and three on the latter. Thus ∆HZ = (1, 2, 2). If we set ℓ1 = ℓ and ℓ2 = ℓ′, we get
d1 = 2 and d2 = 3, and condition (c) is not satisfied. Indeed, the resulting set Z ′ is such
that ∆HZ′ = (1, 2, 1, 1). Hence the two Hilbert functions are not equal.

Remark 3.3. There are also counterexamples when the degrees di are not all distinct.
Consider, for example, the complete intersection of a cubic ℓ1 ∪ ℓ2 ∪ ℓ3 with the union of
two distinct lines. This set of six points lie on a conic, but applying our construction leads
to a scheme of one double point and three simple points not lying on a conic. That is,
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d1 = d2 = d3 = 2, and our construction does not preserve the Hilbert function in degree
two.

Remark 3.4. When we construct Z ′, then Z ′ will also satisfy the hypotheses (a)− (d) of
Theorem 3.1. If Z ′ also satisfies (e), then we can add another double point, and so on,
until hypothesis (e) is no longer satisfied.

We expand upon the above remark. Given a valid Hilbert function ∆H with ∆H⋆ =
(h⋆1, . . . , h

⋆
α), we present a construction based upon Theorem 3.1 which will allow us to

produce a set Z of double and simple points such that ∆H = ∆HZ . The rough idea
behind our construction is to start with a set of reduced points with the correct Hilbert
function, and then, in a controlled fashion, repeatedly replace three reduced points with
a double point, and use Theorem 3.1 to show that the Hilbert function does not change
after each iteration. Below, we will use the notation n+ = max{n, 0}.

Construction 3.5.

INPUT: A valid Hilbert function ∆H with ∆H⋆ = (h⋆1, . . . , h
⋆
α).

OUTPUT: A scheme Z of double points and reduced points in P
2 with HZ = H.

STEP 0. Let ℓ1, . . . , ℓα and Pi,j be as in Theorem 3.1. Let Z0 be a set reduced points of P2

with HZ0
= H as constructed in Theorem 2.6 with Z0 ⊆

⋃α

i=1 ℓi such that |Z0 ∩ ℓi| = h⋆i .
Continue to STEP 1.

For n ≥ 1:

STEP n. Set hn = ((h⋆n − (n− 1))+, . . . , (h
⋆
α − (n− 1))+) and

sn = #{k | n+ 1 ≤ k ≤ α and h⋆k ≥ n}.

If sn = 0, then return Zn−1. Otherwise, let

tn = min

{⌊
(h⋆n − (n− 1))+

2

⌋

, sn

}

.

Remove 2tn points on ℓn and one point on each ℓj for j = n + 1, . . . , n + tn from Zn−1,
and add the double points 2Pn,j where Pn,j = ℓn ∩ ℓj, for j = n + 1, . . . , n + tn. Let Zn

denote the resulting scheme. Continue to STEP n+ 1.

Proof. We verify that Construction 3.5 produces the stated output. First, note that the
construction will stop at (or before) STEP α because sα = 0.

We now show that the scheme Zn of double and reduced points construced at STEP n
has the property that HZn

= H . We proceed by induction on n. If n = 0, then the set of
reduced points Z0 has the property HZ0

= H by Theorem 2.6.

So, now assume that n ≥ 1, and that Zn−1 satisfies the induction hypothesis. We first
observe that the value (h⋆i − (n− 1))+ in the tuple hn = ((h⋆n − (n− 1))+, . . . , (h

⋆
α − (n−

1))+) counts the minimal possible number of reduced points on ℓi for i = n, . . . , α after
constructing Zn−1. This is because in each of STEP 1 through n − 1, we used at most
one reduced point on ℓi when constructing Zj with 0 ≤ j ≤ n− 1.

If sn = 0, then our procedure terminates with Zn−1, which, by induction, is a set of
double and reduced points with HZn−1

= H . Now suppose that sn > 0, i.e., there exists
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a n + 1 ≤ k ≤ α such that h⋆k ≥ n, or equivalently, h⋆k − (n − 1) ≥ 1. In fact, because
h⋆1 > h⋆2 > · · · > h⋆n > · · · > h⋆k > · · · > h⋆α, we can assume h⋆n+j − (n − 1) ≥ 1 for
j = 1, . . . , sn, and also h⋆n − (n− 1) ≥ 2. Consequently,

tn = min

{⌊
(h⋆n − (n− 1))+

2

⌋

, sn

}

≥ 1.

From our description of the entries of hn, it follows that we can find 2tn reduced points on
ℓn and a reduced point on each of the lines ℓn+1, . . . , ℓn+tn in Zn−1. For each j = 1, . . . , tn,
we remove two reduced points from ℓn and one reduced point from ℓn+j, and replace these
three reduced points with the double 2Pn,n+j where Pn,n+j = ℓn ∩ ℓn+j. By repeatedly
applying Theorem 3.1, each time we add a new double point and remove the reduced
points, the new scheme has the same Hilbert function. Consequently, the scheme Zn

produced by STEP n satisfies HZn
= HZn−1

= H , as desired. �

Example 3.6. We illustrate Construction 3.5 with the valid Hilbert function ∆H =
(1, 2, 3, 4, 2). In this case ∆H⋆ = (5, 4, 2, 1). Fix four general lines ℓ1, ℓ2, ℓ3, and ℓ4, i.e.,
no three of the lines meet at a point. If we place five points on ℓ1, four points on ℓ2, two
points on ℓ3, and one point on ℓ4, as in the Figure 5, then the set of reduced points Z0

has Hilbert function ∆HX = ∆H (by Theorem 2.6). The construction of Z0 is STEP 0
of Construction 3.5.

For STEP 1, we let h1 = (5, 4, 2, 1) and s1 = 3. Since s1 6= 0, we let t1 = min{⌊5
2
⌋, 3} =

2. We remove 2 · 2 = 4 points from ℓ1, and 1 point from ℓ2 and 1 point from ℓ3, and we
add the double points 2P1,2 and 2P1,3 to make the scheme Z1 as in Figure 6. The double
points are denoted with a 2 in the figure. Note that by Theorem 3.1 this scheme has the
same Hilbert function as Z0. Roughly speaking, we are “merging” two points on ℓ1 with
a third point on ℓ2 (or ℓ3) to make the double point 2P1,2 (or 2P1,3).

ℓ1

ℓ2
ℓ3 ℓ4

Figure 5. The set Z0 with
HZ0

= H

ℓ1

ℓ2
ℓ3 ℓ4

2
2

Figure 6. The scheme Z1

with HZ1
= H

Moving to STEP 2, we set h2 = ((4 − 1)+, (2 − 1)+, (1 − 1)+) = (3, 1, 0) and s2 = 1.
(Note the j-th entry of h2 is a lower bound on the number of reduced points on ℓj+1 for
j = 2, 3, 4.) Because s2 6= 0, we let t2 = min{⌊3

2
⌋, 1} = 1. We remove two points from ℓ2

and one point from ℓ3 from Z1, but add the double point 2P2,3 to form the scheme Z2.
Again, Theorem 3.1 implies that this construction of double and reduced points has the
same Hilbert function as Z1, and consequently, Z. See Figure 7 for an illustration of Z2.
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ℓ1

ℓ2
ℓ3 ℓ4

2
2

2

Figure 7. The scheme Z2

with HZ2
= H

Finally, at STEP 3 we have h3 = ((2 − 2)+, (1 − 2)+) = (0, 0) and s3 = 0. Our
construction terminates and returns the scheme Z2, which consists of three double points
and three reduced points, and ∆HZ2

= ∆H = (1, 2, 3, 4, 2).

Example 3.7. Construction 3.5 may not produce a set of just double points, even if ∆H
is known to be the valid Hilbert function of a set of double points. For example, consider
the scheme Z of two double points. We have ∆HZ = (1, 2, 2, 1). So, ∆H = (1, 2, 2, 1) is
a valid Hilbert function of a set of double points. However, Construction 3.5 cannot be
used to detect this fact. In particular, since ∆H⋆ = (4, 2) Construction 3.5 returns only
one double point (and two simple points on ℓ1, and an other simple point on ℓ2).

Example 3.8. Consider the valid Hilbert function ∆H = (1, . . . , 1
︸ ︷︷ ︸

σ+1

). Construction 3.5

applied to this ∆H stops at the beginning of STEP 1 by producing σ + 1 reduced points
on a line ℓ1. A valid Hilbert function of this type is the only time Construction 3.5
terminates at STEP 1. Note that it can be shown that if ∆H = (1, . . . , 1), then the only
zero-dimensional scheme Z with ∆HZ = ∆H is precisely a set of reduced points on a
line. If ∆H = (1, 2, . . .), then Construction 3.5 will produce a scheme Z with at least one
double point.

As noted in the last remark, if ∆H = (1, 2, . . .), then our procedure produces a scheme
with at least one double point. We are actually interested in producing a scheme with the
largest possible number of double points. We can determine the number of double points
produced by Construction 3.5 directly from ∆H , as shown in the next result which gives
an answer to Question 1.2.

Theorem 3.9. Let ∆H be a valid Hilbert function with ∆H⋆ = (h⋆1, . . . , h
⋆
α). Set

d =

α−1∑

i=1

min

{⌊
(h⋆i − (i− 1))+

2

⌋

,#{k | i+ 1 ≤ k ≤ α and h⋆k ≥ i}

}

.

Then there is a set of fat points Z of d double points and r = (
∑

∆H)−3d reduced points
with ∆HZ = ∆H.

Proof. We first note that si in Construction 3.5 equals #{k | i+ 1 ≤ k ≤ α and h⋆k ≥ i}
Also, we have s1 ≥ s2 ≥ · · · ≥ sα−1 ≥ sα = 0. Let j = max{i | si 6= 0}. So, for
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i = 1, . . . , j,

min

{⌊
(h⋆i − (i− 1))+

2

⌋

,#{k | i+ 1 ≤ k ≤ α and h⋆k ≥ i}

}

.

is the number of double points added to Zi−1 at STEP i. For i = j+1, . . . , α, Construction
3.5 has terminated, and no new double points are added. This fact is captured in the
summation via the fact that all the summands

min

{⌊
(h⋆i − (i− 1))+

2

⌋

,#{k | i+ 1 ≤ k ≤ α and h⋆k ≥ i}

}

= 0

for i = j + 1, . . . , α. �

We record some corollaries:

Corollary 3.10. Let ∆H = (1, 2, . . . , α, hα, . . . , hσ) be a valid Hilbert function, and let d
be as in Theorem 3.9.

(i) The integer d satisfies min
{⌊

σ+1
2

⌋
, α− 1

}
≤ d ≤

(
α

2

)
.

(ii) For every integer 1 ≤ e ≤ d, there exists a scheme Z of e double points and
(
∑

∆H)− 3e reduced points with HZ = H.
(iii) Let e = min

{
⌊σ+1

2
⌋, α− 1

}
. Then there exists a scheme Z with e double points

and (
∑

∆H)− 3e reduced points.

Proof. For (i), the support of each double point produced by Construction 3.5 has the
form ℓi∩ℓj. Since there are only α lines ℓ1, . . . , ℓα used in this construction, the outputted
scheme can have at most

(
α

2

)
double points, thus giving the upper bound. For the lower

bound, note that in the computation of d using Theorem 3.9, when the index is i = 1, we
have h⋆1 = σ + 1 and α− 1 = #{2 ≤ k ≤ α and h⋆k ≥ 1}, i.e., the lower bound is the first
term in the sum.

The proof of (iii) will follow from (i) and (ii) since e ≤ d. For (ii), notice that
Construction 3.5 adds one double point at a time, and when it finishes, we have d double
points. Since e ≤ d, we use this procedure again, but changing our stopping criterion so
the procedure terminates when we have e double points. �

Recall that one of the fundamental problems about Hilbert functions of double points
in P

2 is to classify what functions are the Hilbert functions of double (or more generally,
fat) points. We can now contribute to this problem by identifying some new functions as
the Hilbert functions of double points.

Theorem 3.11. Let ∆H be a valid Hilbert function, and let ∆H⋆ = (h⋆1, . . . , h
⋆
α). Suppose

that
(h⋆i − (i− 1))+

2
= #{k | i+ 1 ≤ k ≤ α and h⋆k ≥ i} for i = 1, . . . α− 1.

Then ∆H is Hilbert function of a set of double points in P
2.

Proof. We prove this by showing that Construction 3.5 terminates with a scheme of only
double points. At STEP 1, observe that the vector h1 = (h⋆1, . . . , h

⋆
α) has the property
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that h⋆i is the exact number of reduced points on ℓi. The hypotheses imply that when
Construction 3.5 executes STEP 1, the value of t1 is given by

t1 =
(h⋆1)+
2

= s1.

But this means that all the reduced points on ℓ1 and one reduced point on each of
ℓ1+1, . . . , ℓ1+s1=α are removed to form 2t1 double points. In particular, no reduced points
are left on ℓ1 and h2 = ((h⋆2−1)+, . . . , (h

⋆
α−1)+) has the property that (hi−1)⋆+ is exactly

the number of reduced points remaining on ℓi. (In the general, case, (h⋆i − 1)+ is only a
lower bound for the number of reduced points that remain).

Proceeding by induction on n, note that at STEP n, the tuple hn = ((h⋆n − (n −
1))+, . . . , (h

⋆
α−(n−1))+) counts exactly the number of reduced points on ℓi for i = n, . . . , α

after constructing Zn−1. This is because in each of STEP 1 through n − 1, we used at
exactly one reduced point on ℓi when constructing Zj with 0 ≤ j ≤ n−1. The hypotheses
imply when Construction 3.5 executes STEP n we get

tn =
(h⋆n − (n− 1))+

2
= sn.

So, all the remaining reduced points on ℓn and one reduced point on each of ℓn+1, . . . , ℓn+sn

are removed to form 2tn double points. In particular, no reduced points are left on ℓn and
hn+1 = ((h⋆n+1 − n)+, . . . , (h

⋆
α − (n))+) has the property that (hi − n)⋆+ is the exactly the

number of reduced points remaining on ℓi.

When the algorithm terminates, hn = (0, . . . , 0), that is, no reduced points remain. �

Example 3.12. Consider the valid Hilbert function

∆H = (1, 2, 3, 4, 5, 6, 2, 2, 1, 1)⇔ ∆H⋆ = (10, 7, 4, 3, 2, 1).

Then ∆H⋆ statisfies the hypothesis of Theorem 3.11 since

h⋆1
2

= 5 = #{k | 2 ≤ k ≤ 6 and h⋆k ≥ 1}

(h⋆2 − 1)+
2

= 3 = #{k | 3 ≤ k ≤ 6 and h⋆k ≥ 2}

(h⋆3 − 2)+
2

= 1 = #{k | 4 ≤ k ≤ 6 and h⋆k ≥ 3}

(h⋆i − (i− 1))+
2

= 0 = #{k | i+ 1 ≤ k ≤ 6 and h⋆k ≥ i} for i ≥ 4.

Then ∆H is the Hilbert function of (
∑

∆H)/3 = 9 double points. Indeed, if ℓ1, . . . , ℓ6
are six general lines such that no three meet at a point, Construction 3.5 will produce the
scheme of nine double points

Z = 2P1,2 + 2P1,3 + 2P1,4 + 2P1,5 + 2P1,6 + 2P2,3 + 2P2,4 + 2P2,5 + 2P3,4

where Pi,j = ℓi ∩ ℓj with Hilbert function HZ = H .

The following corollary is used in the next section.
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Corollary 3.13. Let ∆H be a valid Hilbert function with ∆H⋆ = (h⋆1, . . . , h
⋆
α). If

h⋆i − (i− 1)

2
= α− i for i = 1, . . . α,

then there exists a scheme Z in P
2 of only double points with ∆H = ∆HZ .

Proof. We have
∆H⋆ = (2α− 2, . . . , α+ 1, α, α− 1

︸ ︷︷ ︸

α

).

Now apply Theorem 3.11. �

4. Special configurations

In this section, we will examine two valid Hilbert functions:

∆H1 = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

), and ∆H2 = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

, 1).

In the first case, we will show that only the sets Z of
(
t

2

)
double points with support on a

star configuration have ∆HZ = ∆H1. In the second case, we will show that the only sets
Z of

(
t

2

)
double points and one simple point that have ∆HZ = ∆H2 are sets of double

points with support on a star configuration plus one extra point on one of the lines that
define the star configuration.

We start by collecting together some required tools. The first result we need is the
following theorem (see [3] or [9]).

Theorem 4.1. Let X ⊂ P
2 be a zero-dimensional subscheme, and assume that there is a

t such that ∆HX(t−1) = ∆HX(t) = d. Then the degree t components of IX have a GCD,
say F , of degree d. Furthermore, the subscheme W of X lying on the curve defined by F
(i.e., IW is the saturation of the ideal (IX , F )) has Hilbert function whose first difference
is given by the truncation ∆HW (i) = min{∆HX(i), d}.

Now we recall some well known results about star configurations. Given any linear
form L ∈ R, we let ℓ denote the corresponding line in P

2. Let ℓ1, . . . , ℓt+1 be a set of
t + 1 distinct lines in P

2 that are three-wise linearly independent (general linear forms).
In other words, no three lines meet at a point. A star configuration of

(
t+1
2

)
points in P

2

is formed from all pairwise intersections of the t+ 1 linear forms.

Geramita, Harbourne, and Migliore have computed the Hilbert function of double points
whose support is a star configuration. Specifically,

Theorem 4.2 ([10, Theorem 3.2]). In P
2, let t be a positive integer, let X be a star

configuration of
(
t+1
2

)
points, and let Z = 2X be a set of double points whose support is

X. Then the first difference of the Hilbert function of Z is

∆HZ(i) =







i+ 1 if 0 ≤ i ≤ t
t+ 1 if t+ 1 ≤ i ≤ 2t− 1
0 if i ≥ 2t.

Remark 4.3. We point out that the above result can be generalized to P
n.
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4.1. Double points on a star configuration. We consider the valid Hilbert function

∆H = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

).

By Corollary 3.13 with t = α − 1, we already know in this case that Construction 3.5
gives a set of only double points. In this subsection, we will prove that the configuration
produced by our construction is a set of double points lying on star configuration, and
furthermore, this is the only set of double points whose first difference is equal to ∆H .
Since for t ≤ 2 all is trivial, we will assume that t ≥ 3.

Theorem 4.4. Let t ≥ 3 be an integer, and let Z ⊂ P
2 be a set of

(
t+1
2

)
double points.

Then the sequence

(4.1) ∆H = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

)

is the first difference of the Hilbert function of Z if and only if Z is a set of double points
whose support is a star configuration.

Proof. (⇐) This follows from Theorem 4.2.

(⇒) Suppose that Z is a set of
(
t+1
2

)
double points such that the first difference of

Hilbert function is given by (4.1), i.e.,

(4.2) ∆HZ =

• • • . . . •
• • • • . . . •

...
• . . . • • • • . . . •

• • . . . • • • • . . . •
• • • . . . • • • • . . . •

• • • • . . . • • • • . . . •
0 1 2 3 t 2t− 1

t+ 1 rows

We want to prove that the support of Z must be a star configuration constructed from
t+ 1 general lines.

Let IZ be the ideal of Z. We shall sometimes refer to (IZ)t as the linear system of all
the plane curves of degree t containing Z, since this is what the forms in (IZ)t correspond
to from a geometrical point of view. From (4.1) we note that the smallest degree in a
minimal set of generators of IZ is t + 1, the largest degree is 2t, and there is only one
curve, say C = {F = 0}, in the linear system defined by (IZ)t+1. Moreover IZ does not
have new minimal generators until the degree 2t.

Because (IZ)2t contains all the forms of type F · (x, y, z)t−1, then the linear system
(IZ)2t cannot be composed with a pencil, see [18, pg. 26]. We recall that a linear system
is composed with a pencil if any of its elements is of the type φ1 · φ2 · · ·φn where the
forms φi are of the type c1ψ1 + c2ψ2 for scalars ci and forms ψi. Moreover, since IZ is
generated in degrees ≤ 2t, the base locus of (IZ)2t is exactly Z. Hence, (IZ)2t has no
fixed components. By Bertini’s Theorem (for example, see [15]), the general curve of
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the linear system (IZ)2t is integral (irreducible and reduced). Thus we may assume that
(IZ)2t = (G1, . . . , Gr) where r = dimk(IZ)2t and each Gi = {Gi = 0} is an integral curve.

For each curve Gi, consider the intersection Gi∩C. Since each Gi is integral and deg Gi >
deg C, we have deg(Gi ∩C) = deg Gi ·deg C. Now each point of Z is a double point of both
Gi and C. So, the degree of the scheme Gi ∩ C at each point of Z is at least 4. Hence
deg(Gi ∩ C) ≥ 4

(
t+1
2

)
= 2t(t + 1) = deg Gi · deg C = deg(Gi ∩ C). It follows that Gi and

C only intersect at the points of Z, and that for each point P in the support of Z, the
degree of the scheme Gi ∩ C at P is exactly 4.

Now observe that the curve C is not integral. In fact, C has
(
t+1
2

)
double points, but an

integral curve of degree t+ 1 has at most
(
t

2

)
double points.

We claim that C totally reduces by distinct lines, that is, if aL is an irreducible com-
ponent of C (i.e., the polynomial defining L is irreducible) of multiplicity a, we will show
that L is a line and a = 1.

Let P1 be a general point on L. Since F vanishes on P1, the first difference of the
Hilbert function of Z + P1 is the following

∆HZ+P1
(i) =







i+ 1 if 0 ≤ i ≤ t
t+ 1 if t + 1 ≤ i ≤ 2t− 1
1 if i = 2t
0 if i > 2t.

To see why this is the case, when we add a point to Z, we have to add a point to the
diagram in (4.2). There are only two places to put a point and maintain a valid Hilbert
function: 1) put a point where i = t + 1 or 2) put a point where i = 2t. In the first case
we get ∆HZ+P1

(t+ 1) = t+ 2, and so we do not have curves in the linear system defined
by (IZ)t+1. But this is a contradiction since P1 is a point of C. So 2) must hold. We will
prove that L is a common component for the curves of the linear system (IZ+P1

)2t.

Recall that each Gi intersects L only at the points of Z. If d denotes the degree of L, then
the degree of Gi∩aL is 2tad. Now, consider a curve T = {T = 0} with T ∈ (IZ+P1

)2t. We
have that deg(T ∩aL) ≥ 2tad+1. However deg T = 2t and deg aL = ad. So, by Bezout’s
Theorem, L is a common component for every curve of the linear system (IZ+P1

)2t.

Now look at Z +P1 +P2 where P2 is another general point on L. Since L is a common
component for every curve of (IZ+P1

)2t, then the first difference of the Hilbert function of
Z + P1 + P2 is given by

∆HZ+P1+P2
(i) =







i+ 1 if 0 ≤ i ≤ t
t+ 1 if t + 1 ≤ i ≤ 2t− 1
1 if i = 2t
1 if i = 2t+ 1
0 if i > 2t+ 1.

So, using Theorem 4.1 with d = 1, we get that Z + P1 + P2 has a subscheme of degree
2t + 2 lying on a line ℓ. But Z imposes independent conditions to the curves of degree
2t− 1, hence Z has at most t double points with support on a line, and so P1, P2 ∈ ℓ and
deg(C ∩ ℓ) = 2t + 2. Since 2t + 2 > t + 1 = deg C · deg ℓ, then the line ℓ is a component
of C. Now observe that P1 and P2 are generic points on L, so L must be the line ℓ.
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It follows that every irreducible component of C is a line, and thus

C = a1ℓ1 + · · ·+ avℓv,

where the ℓi are lines and a1 + · · ·+ av = t + 1. Now we will show that ai = 1 for all i,
that is, C is a union of t + 1 distinct lines. First observe that no ai can be bigger than
2. Indeed, if ai > 2, then the curve C \ ℓi would be a curve of degree t containing Z;
this contradicts the fact that C is the curve of minimal degree containing Z. Hence, by
this observation, or simply by recalling that deg(Gi ∩ C) in every P ∈ Z is exactly 4, the
irreducible components of C are simple or double lines. After relabeling, we can assume

C = 2ℓ1 + · · ·+ 2ℓs + ℓs+1 + · · ·+ ℓ2s+r,

where 2s+ r = t+ 1.

We observe that the points of Z lying on the simple lines can lie only on the intersection
with other simple lines. So there are at most

(
r

2

)
such points. Since deg(Gi ∩ C) = 4 for

every P ∈ Z, the points of Z on the double lines cannot lie on the intersections with other
lines. Moreover, since Z imposes independent conditions to the curves of (IZ)2t, on each
line Li we have at most t double points, and so the number of points of Z on the double
lines is at most st. It follows that at most st +

(
r

2

)
points of Z lie on C, that is,

|Z| =

(
t+ 1

2

)

≤ st+

(
r

2

)

.

Because t+ 1 = 2s+ r, we have
(
2s+ r

2

)

≤ s(2s+ r − 1) +

(
r

2

)

,

and from here we get rs = 0. If r = 0, then we get

C = 2ℓ1 + · · ·+ 2ℓs where 2s = t + 1,

and Z must have t points on each line ℓi. By Bezout’s Theorem, it follows that the curves
of degree 2t− 1 through Z have the lines ℓi as fixed components. Removing these s lines
from Z we remain with a scheme Z ′ of |Z| =

(
t+1
2

)
simple points and we get

dimk(IZ)2t−1 = dimk(IZ′)2t−1−s ≥

(
2t− 1− s+ 2

2

)

−

(
t + 1

2

)

=
5t2 − 4t− 1

8
.

But (IZ)2t−1 is not defective, hence

dimk(IZ)2t−1 =

(
2t− 1 + 2

2

)

− 3

(
t+ 1

2

)

=
t2 − t

2
.

But t2−t
2

6≥ 5t2−4t−1
8

for any t, so we get a contradiction. Therefore, s = 0 and C is a union
of t + 1 distinct lines. It follows that the support of Z is a star configuration of t + 1
lines. �

Remark 4.5. It is easy to see that if ∆HZ is of type (4.1), Construction 3.5 gives a set
of double points on a star configuration. For instance, if ∆H = (1, 2, 3, 4, 4, 4), then
∆H⋆ = (6, 5, 4, 3). Step 0 and the final step of Construction 3.5 are given in Figure 8,
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respectively Figure 9. In Figure 9, the three reduced points near the intersection of ℓi and
ℓj should be viewed as one double point at ℓi ∩ ℓj.

ℓ1

ℓ2
ℓ3 ℓ4

Figure 8. Initial setup of Construction

ℓ1

ℓ2
ℓ3 ℓ4

Figure 9. Output of Construction

4.2. Double points on a star configuration plus one point. In this section we
will investigate when a scheme of one simple point union

(
t+1
2

)
double points has the

same Hilbert function of one simple point union double points with support on a star
configuration.

Theorem 4.6. Let t ≥ 3 be an integer, let Z ⊂ P
2 be a set of

(
t+1
2

)
double points, and let

P be a simple point. Then the sequence

∆H = (1, 2, 3, . . . , t
︸ ︷︷ ︸

t

, t+ 1, . . . , t+ 1
︸ ︷︷ ︸

t

, 1)

is the first difference of the Hilbert function of Z + P if and only if Z is a set of double
points whose support is a star configuration of t+1 lines and P lies on one of those lines.

Proof. (⇐) One can compute the Hilbert function from [10, Theorem 3.2].

(⇒) Suppose that Z + P is a set of
(
t+1
2

)
double points and a simple point, such that

the first difference of the Hilbert function looks like

(4.3) ∆HZ+P =

• • . . . • •
• • • . . . • •

...
• . . . • • • . . . • •

• • . . . • • • . . . • •
• • • . . . • • • . . . • •

• • • • . . . • • • . . . • • •
0 1 2 3 t 2t

t+ 1 rows

Our goal is to show that the support of Z must be a star configuration of t+ 1 lines and
a point P that lies on one of those lines.
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Consider only the scheme Z. The first difference of the Hilbert function of Z can only
have one of the following two forms:
(4.4)

• • . . . • •
• • • . . . • •

...
• . . . • • • . . . • •

• • . . . • • • . . . • •
• • • . . . • • • . . . • •

• • • • . . . • • • . . . • •

or

• • . . . •
• • • . . . • •

...
• . . . • • • . . . • •

• • . . . • • • . . . • •
• • • . . . • • • . . . • •

• • • • . . . • • • . . . • • •

To see why, note that ∆HZ is constructed from ∆HZ+P by removing exactly one point.
The two cases represent the only two ways to remove a point from (4.3) and still have a
valid Hilbert function.

If ∆HZ is of the first type, then by Theorem 4.1, the support of Z is a star configuration
and the curve C is given by the product of the t + 1 lines of the star configuration. If
P does not lie on a line of the star configuration, then P /∈ C, and thus (IZ+P )t+1 = 0.
Hence the first difference Hilbert function of Z + P would have type

∆HZ+P =

•
• • • . . . • •

• • • • . . . • •
...

• . . . • • • • . . . • •
• • . . . • • • • . . . • •

• • • . . . • • • • . . . • •
• • • • . . . • • • • . . . • •

which is different from (4.3). So P lies on a line of C, and the conclusion follows.

It suffices to show that the second case cannot occur. So assume for a contradiction
that ∆HZ is given by the second diagram in (4.4). Note that the smallest degree in a
minimal set of generators of IZ is t + 1 and there is only one curve, say C = {F = 0}, in
the linear system defined by (IZ)t+1.

Now we will show that the linear system (IZ+P )2t has no fixed components. Suppose
for a contradiction that T is a fixed irreducible component of (IZ+P )2t and let Q ∈ T be
a generic point. Since dimk(IZ+P+Q)2t = dimk(IZ+P )2t we have

∆HZ+P+Q(i) =







i+ 1 if i ≤ t
t + 1 if t+ 1 ≤ i ≤ 2t− 1
1 if i = 2t
1 if i = 2t+ 1
0 if i ≥ 2t+ 2.

By Theorem 4.1 with d = 1, we have that Z +P +Q has a subscheme W of degree 2t+2
lying on a line ℓ. But W cannot be contained in Z, since (IZ)2t cannot have a scheme of
degree 2t + 2 on a line. So the scheme W is the intersection of ℓ with t points of Z plus
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P and Q. But Q is generic on T , thus T should be the line ℓ. Now consider the scheme
W \Q ⊂ ℓ which is the union of t points of Z plus P .

Since the schemeW\Q has degree 2t+1, the point P cannot give independent conditions
to the curves of the linear system (IZ+P )2t−1. If ∆HZ resembles the second case of (4.4),
then ∆HZ+P cannot be of type (4.3), since in this case P would impose independent
conditions to the curves of (IZ+P )2t−1, a contradiction. Thus, the linear system (IZ+P )2t
does not have fixed components.

Moreover, since (IZ+P )2t contains forms of the type F · (x, y, z)t−1, then it cannot be
composed with a pencil, see [18, pg.26]. Using Bertini’s Theorem (see [15]), the general
curve of (IZ+P )2t is reduced and irreducible. Let G be such a general integral curve. We

have that deg G · deg C = 2t(t+ 1). But since deg(G ∩ C) ≥ 4 t(t+1)
2

+ 1, the curve G would
contain a component of C, thus giving a contradiction. �

Finally we show that if we add a multiplicity “on the top”of (4.2), a statement similar
to that of Theorem 4.6 does not hold. More precisely let t ≥ 3 be an integer, and let
Z ⊂ P

2 be a set of
(
t+1
2

)
double points. Suppose that P is a simple point such that the

first difference Hilbert function of Z + P has the form

(4.5) ∆HZ+P =

•
• • • . . . • •

• • • • . . . • •
...

• . . . • • • • . . . • •
• • . . . • • • • . . . • •

• • • . . . • • • • . . . • •
• • • • . . . • • • • . . . • •
0 1 2 3 t 2t− 1

t+ 1 rows

Obviously, if the support of Z is a star configuration of t + 1 lines and P is a generic
simple point, then the first difference of the Hilbert function of Z+P is of type (4.5), but
the converse is not true, as we show in the following example.

Example 4.7. Consider a scheme Z of
(
t+1
2

)
double points, whose support, except one

double point, say 2Q, are the points of a star configuration of the t+1 general lines ℓ1, . . . ,
ℓt+1. More precisely, the points of Z lie on the intersections ℓi ∩ ℓj , for all i 6= j, except
for (i, j) = (1, 2). Let the simple point P be a general point on ℓ1 and suppose Q is a
general point on ℓ2 (see Figure 10). Note that in Figure 10, all the points of intersection
are double points.

In order to prove that the first difference of the Hilbert function of Z + P is of type
(4.5), it is enough to prove that dimk(IZ+P )t+2 = 2 and (IZ+P )2t−1 is not defective. By
Bezout’s Theorem, the t lines ℓ2, . . . , ℓt+1 are fixed components for the curves of the two
linear systems (IZ+P )t+2 and (IZ+P )2t−1. Hence we have

dimk(IZ+P )t+2 = dimk(IX)2 and dimk(IZ+P )2t−1 = dimk(IX)t−1,

where X is a union of t simple points on the line ℓ1 and the point Q ∈ ℓ2. Since 2 < t,
in order to compute dim(IX)2, we may remove the line ℓ1 and we get dimk(IZ+P )t+2 =
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dimk(IQ)1 = 2. Since X imposes independent conditions to the curve of degree t − 1 we
have

dimk(IX)t−1 =

(
t− 1 + 2

2

)

− t− 1 =

(
t

2

)

− 1,

which is the expected dimension of (IZ+P )2t−1, and we are done.

ℓ1

ℓ2

Figure 1

P

2Q

Figure 10. All but one double point on a star configuration plus one
double point and one simple point

5. Final remarks

In this paper we presented an algorithm that, given a valid Hilbert function H for a
zero-dimensional scheme, will produce a scheme consisting of double and simple points
having Hilbert function H .

We know that for some special H (for example, see Theorem 3.11) our algorithm will
produce a set consisting of only double points. Furthermore, in Section 4 we showed
that for one family of valid Hilbert functions H , not only does our algorithm produce a
scheme with the maximal possible number of double points, our algorithm produces the
only possible configuration of double points with this Hilbert function.

However, there are H for which our algorithm does not perform well. Consider, for
example, when H is the Hilbert function of double points with collinear support; our
algorithm will produce a set with just one double point! Thus it is natural to ask how
well our algorithm performs.

The major obstacle in answering this question is the following: given a Hilbert function
H of a degree 3t zero-dimensional scheme, we do not know the maximal number of double
points that the scheme can possess. Of course t gives an upper bound, but this bound
might not be sharp. Ideally we would like to compare this unknown number with the
number of double points that our algorithm produces for H and possibly make some
asymptotic estimate.

This problem will be the object of further investigations, but we can already present an
interesting result. Consider the scheme consisting of t, generic double points and let H
be its Hilbert function. It is well known (e.g., see [2]) that, with the exceptions t = 2 and
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t = 5, H(i) = min
{(

i+2
2

)
, 3t

}
. The following result describes the asymptotic behavior of

our algorithm for this H .

Proposition 5.1. Let H be the Hilbert function of t generic double points, and let s(t)
be the number of double points produced by our algorithm with input H. Then

lim
t→+∞

s(t)

t
=

3

4
.

Proof. For each positive integer t, we choose b and 0 ≤ ǫ ≤ b+1 such that 3t =
(
b+2
2

)
+ ǫ;

note that b is uniquely determined by t and viceversa. We consider the case b odd, and a
similar argument applies in the case b even. With this notation we have that, for t ≥ 6,

∆H = (1, 2, . . . , b+ 1, ǫ).

Moreover, it is easy to see that, applying our algorithm to ∆H produces the same result
when applying our algorithm to the length b+ 1 sequence

∆H1 = (1, 2, . . . ,
b+ 1

2
,
b+ 3

2
, . . . ,

b+ 3

2
︸ ︷︷ ︸

b+1

2

).

As shown is Section 4, we obtain a set of

s(b) =
1

8
(b+ 1)(b+ 3)

double points. By a change of variables and using the bound ǫ ≤ b+ 1 we get

lim
t→+∞

s(t)

t
= lim

d→+∞

s(b)
1
3

(
b+2
2

)
+ ǫ

3

=
3

4
,

and this complete the proof. �
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nia, Viale A. Doria, 6, 95100 - Catania, Italy

E-mail address : guardo@dmi.unict.it

(A. Van Tuyl) Department of Mathematics and Statistics, McMaster University, Hamil-

ton, ON, Canada L8S 4L8

E-mail address : vantuyl@math.mcmaster.ca

http://www.math.unl.edu/~bharbourne1/srvy9-12-01.pdf
http://arxiv.org/abs/alg-geom/9704018

	1. Introduction
	2. Preliminaries
	3. An operation that preserves the Hilbert function
	4. Special configurations
	4.1. Double points on a star configuration
	4.2. Double points on a star configuration plus one point

	5. Final remarks
	References

