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Combining LS-SVM and GP Regression for the
Uncertainty Quantification of the EMI of Power

Converters Affected by Several Uncertain
Parameters

Riccardo Trinchero, Member, IEEE, and Flavio G. Canavero, Fellow, IEEE

Abstract—This paper deals with the development of a prob-
abilistic surrogate model for the uncertainty quantification of
the voltage output spectral envelope of a power converter with
several stochastic parameters. The proposed approach relies on
the combination of the least-squares support vector machine (LS-
SVM) regression with the Gaussian process regression (GPR),
but it can suitably be applied to any deterministic regression
techniques. As a first step, the LS-SVM regression is used to
build an accurate and fast-to-evaluate deterministic model of
the system responses starting from a limited set of training
samples provided by the full-computational model. Then, the
GPR is used to provide a probabilistic model of the regression
error. The resulting LS-SVM+GPR probabilistic model not only
approximates the system responses for any configuration of
its input parameters, but it also provides an estimation of its
prediction uncertainty, such as the confidence intervals (CI). The
above technique has been applied to qualify the uncertainty of
the spectral envelope of the output voltage of a buck converter
with 17 independent Gaussian parameters. The feasibility and
the accuracy of the resulting model has been investigated by
comparing its predictions and CI with the ones obtained by five
different surrogate models based on state-of-the-art techniques
and by the reference Monte Carlo results.

Index Terms—Machine Learning, least-squares support vec-
tor machine, Gaussian process, confidence interval, conductive
emission, switching converter.

I. INTRODUCTION

Switching power converters play a key role in modern de-
vices, since they provide an efficient and compact solution for
power conversion. However, due to their time-varying activity,
the current and voltage waveforms at the input and output stage
of the converter are usually characterized by high-frequency
noisy components behaving as conducted emissions (CE). The
effect of possible component tolerances on the spectral content
of the electromagnetic interferences (EMI) generated by the
switching converter must be carefully investigated, especially
during the early design phase, through statistical tools and
methodologies for the uncertainty quantification in order to
avoid possible electromagnetic compatibility (EMC) issues
and thus expensive redesign [1].
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Monte Carlo (MC) simulation can be considered as a
traditional technique for such kind of analysis. The underlying
idea is to run thousands of deterministic circuital simulations
in which the components parameters are varied according to
their probabilistic distribution, in order to capture the actual
statistical behavior of the quantity of interest [2]. Despite its
simplicity, this direct approach turns out to be computational
expensive, since it requires a large number of simulations
with the full-computational model. Also, the MC approach
turns out to be a blind method which does not provide any
relationship between the input parameters and the simulation
output. In addition, it is important to remark that, due to
the nonlinearity and time-varying activity of the switching
converters, their simulations must be carried on in time-domain
and the CE spectrum is then calculated off-line from the
steady-state waveforms via the Fourier transform, leading to
a non-negligible computational overhead [3]–[5].

In the last decades, advanced techniques such as Polynomial
Chaos (PC) expansion [6]–[8] and its advanced variants, such
as the least-angle regressions (LARS) PC expansion [9]–[11]
have been proposed as alternatives to the traditional MC
analysis for the uncertainty quantification in complex systems.
The above techniques allow building accurate and fast-to-
evaluate surrogate models for the statistical analysis of the
outputs of a generic nonlinear system affected by stochastic
parameters. Recently, several advanced general purpose re-
gression techniques belonging to the Machine Learning (ML)
framework [12] have been adopted for the surrogate modeling
and the uncertainty quantification in many research fields.
In particular, the support vector machine (SVM) [13], [14]
and the least-squares support vector machine (LS-SVM) [15]
regression can be seen as a viable and accurate solution for
the surrogate modeling in high-dimensional parameter space,
sometime providing an improved accuracy with respect to
well-established PC-based expansions [16], [17].

All the above techniques provide as result a deterministic
model. This means that the resulting model can be interpreted
as a function, which allows predicting the system response
for any configuration of its input parameters, without any
information on the degree of confidence and the uncertainty of
its predictions. In fact, the degree of confidence of the model
prediction is usually known only for the set of training samples
used to build it, but it is completely unknown when the model
is evaluated for a generic point in the parameters space. Indeed,
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when we talk about deterministic models, one of the most
challenge question that can arise is: “How can we predict the
accuracy of a model without running an equivalent simulation
with the full-computational model?”

Gaussian process regression (GPR) [18]–[25], also known
as Kriging model, represents a possible solution to the above
challenging problem. The GPR belongs to the ML techniques
and it allows building a probabilistic model of the nonlinear
response of a complex system starting from a limited set of
training samples. The resulting model not only provides a
prediction of the model output, but it also allows estimating
the uncertainty of its prediction for any configuration of its
input parameters, such as the confidence intervals (CI) [26].
Also, the GPR is so general that it can be used to enrich
any kind of deterministic model resulting from a generic
regression with the CI of its predictions, thus providing the
user with a probabilistic model [18], [25]. It is important to
point out that there are several reasons why one might wish to
combine the GPR with an available explicit regression model,
instead of using the set of mean functions available within the
GPR, including: interpretability of the model, convenience of
expressing prior information and improved accuracy [18].

This paper presents an unconventional technique called LS-
SVM+GPR (preliminary results have been recently presented
in [27]) for the generation of a probabilistic model based
on a two-step procedure: (i) generate a deterministic model
based on a LS-SVM regression; (ii) use the GPR to build a
probabilistic model of the LS-SVM regression error function.

The proposed modeling technique has been applied to
the uncertainty quantification of the spectral envelope of the
output voltage of a realistic buck converter as a function of
17 independent Gaussian distributed parameters. The model
predictions are then compared with the ones provided by five
different surrogate models, i.e., the deterministic LS-SVM
regression with linear and RBF kernel and the GPR with
constant, linear and polynomial (order 2) trends, respectively.
The accuracy of all considered models will be investigated
by comparing their predictions with the results of a MC
simulation in LTspice [28].

The remainder of this paper is organized as follows. Sec-
tion II presents the proposed LS-SVM+GPR techniques. Sec-
tion III compares the accuracy of the proposed LS-SVM+GPR
probabilistic modeling with respect to the accuracy of five
different surrogate models based on the LS-SVM and the GPR
for the prediction of output voltage spectral envelope of the
output voltage of a buck converter as a function of 17 uncertain
parameters. Section IV concludes the paper.

II. PROBABILISTIC MODEL BASED ON LS-SVM+GPR

This section focuses on the development of a probabilistic
surrogate model of the responses of a generic nonlinear
function in a high-dimensional parameter space based on the
combination of the LS-SVM regression with the GPR.

A. Step 1: Deterministic model via LS-SVM Regression

Let us start considering the problem of fitting a given set
of training pairs D1:L = {(xi, yi)}Li=1, provided by a full
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Fig. 1. Graphical interpretation of the errors εi used within the LS-SVM
regression optimization. For illustration purposes, a 1-D parameter space is
considered only.

computational model M (i.e., yi = M(xi)) where yi ∈ R
and xi ∈ P with P ⊂ Rd (d represents the problem
dimensionality, i.e., the number of uncertain parameters) via
the following LS-SVM regression MLS-SVM (x) in the dual
space [15]:

M(x) ≈MLS-SVM (x) =

L∑
i=1

αiK(xi,x) + b (1)

where αi ∈ R are scalar coefficients, K(·, ·) : Rd×d → R is
the kernel function and b ∈ R is the bias term.

In summary, the LS-SVM regression allows building accu-
rate and fast-to-evaluate deterministic models of the response
of a generic high-dimensional nonlinear function M starting
from a number of L training samples [17]. This regression
provides an alternative interpretation to the standard SVM
regression [13]–[16] based on a more intuitive least-squares
formulation [15], as further explained at the end of this sub-
section. The most common kernels used in both the SVM and
the LS-SVM regression are listed below [13], [14], [15]:
• linear: K(xi,x) = xTi x;
• polynomial of order q: K(xi,x) = (1 + xTi x)q;
• Gaussian radial basis function (RBF): K(xi,x) =

exp
(
−‖xi − x‖2/2σ2

)
.

It is worth to remark that, different from the standard
regression techniques (e.g., the plain least-squares regression),
thanks to the use of kernels, any SVM-based regression in the
dual form provides a model for which the number of unknowns
to be estimated during the training phase (i.e., the number
of coefficients αi in (1)) turns out to be independent from
the dimensionality d of the input parameter space. Indeed, the
number of unknowns for the regression is equal to the number
of training samples L used to train the model [14], [15].

The goal of the LS-SVM regression in (1) is to minimize
the squared of the error ei between the model output and the
training samples, where ei = M(xi) −MLS-SVM (xi) (see
Fig. 1 for a pictorial illustration in a 1-D parameter space).
The least-squares problem leads to the following linear system,
allowing to estimate the parameters αi and b:[

0 1T

1 Ω + I/γ

] [
b
α

]
=

[
0
y

]
(2)

where α = [α1, . . . , αL]T , y = [y1, . . . , yL]T , 1T =
[1, . . . , 1] ∈ R1×L, I ∈ RL×L is the identity matrix and Ω ∈
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RL×L is the kernel matrix, whose elements represents the
kernel computed for all combinations of training points,
i.e., Ωij = K(xi,xj) for any i, j = 1, . . . , L. The LS-
SVM regression is already available in MATLAB within LS-
SVMLab Toolbox version 1.8 [29].

B. Step 2: Probabilistic model of the regression error via GPR

Let us consider the error function e(x) between the de-
terministic model MLS-SVM (x) and the full-computational
model M(x), which simply writes:

e(x) =M(x)−MLS-SVM (x). (3)

For a generic surrogate model built through a deterministic
regression, such as the LS-SVM regression, the error function
e(x) is only known for a discrete set of configurations of
input parameters xi for which the corresponding responses of
the full-computational model yi = M(xi) are available (i.e.,
these are the values used to train the deterministic regression
or to validate the model). This means that we are unable to
quantify the precision of the model prediction for a generic
input configuration x∗, without running an equivalent simu-
lation of the full-computational model (i.e., without knowing
y∗ =M(x∗)).

At this stage, we make use of GPR as a viable solution
which allows overcoming the above-mentioned limitation.
Indeed, the GPR can be adopted to enrich any deterministic
models built via a regression technique [18]. Without loss
of generality, in the remaining of this Section, the proposed
modeling scheme is applied to the LS-SVM regression shown
in eq. (1), leading to the following formulation:

M(x) ≈

MLS-SVM+GPR(x)︷ ︸︸ ︷
MLS-SVM (x) + ẽ(x), (4)

whereMLS-SVM is the deterministic regression estimated via
the LS-SVM regression presented in Sec. II.1, and ẽ(x) is
an unknown function accounting for the regression residuals.
This means that we are assuming the existence of a nonlinear
function ẽ(x) approximating the error function e(x) in (3) of
the deterministic model, i.e., e(x) ≈ ẽ(x).

As it is very very unlikely that, in practice, the error ẽ(x)
is an uncorrelated random error (like a white noise signal), a
commonly used approach is to describe the error as a Gaussian
process, i.e., ẽ(x) ∼ GP (0, k(x,x′)) with zero mean and
variance function k(·, ·) [19]. In elementary terms, a GP is
analogous to a function, but instead of returning a scalar
value of ẽ(x) for an arbitrary x, it returns an ensemble of
values drawn from a Gaussian distribution, subject to some
smoothness condition imposing a given correlation function
k(x,x′) between any two inputs x and x′, [20]. Hence, the
mean and variance over the possible values of ẽ at x are readily
evaluated (see Appendix A for additional information). For the
sake of terminological precision, the formulation in (4) is a
particular case of the GPR with a fixed mean function [18].

More technically, the above-mentioned correlation implies
that the residuals calculated on the training samples e(xi) =

M(xi) − MLS-SVM (xi) 6= 01 for i = 1, . . . , L can be
modeled via a L-dimensional multivariate distribution, given
by:e(x1)

...
e(xL)

 ∼ N

0

...
0

 ,
k(x1,x1) . . . k(x1,xL)

...
. . .

...
k(xL,x1) . . . k(xL,xL)


 ,

(5)

where N indicates the Normal distribution.
It is important to remark that the choice of covariance func-

tion k(·, ·) is extremely important for our modeling purposes,
since it specifies the correlation among the values of the error
function in (3) for any value of x ∈ P [21]. The underlying
idea is, that points with similar predictor values are aspected to
have close response values, therefore we are implicitly assum-
ing that e(x) is smooth [18]. Various correlation functions are
available in literature [20], [18]. Without loss of generality, we
focus on the Matern 5/2 covariance function with an automatic
relevance determination (ARD) hyper-parameters (i.e., θ) [18],
[20], [30], which writes:

k(x,x′|θ) = σ2
f

(
1 +
√

5r +
5

3
r2
)

exp(−
√

5r), (6)

with,

r =

√√√√ d∑
m=1

(xm − x′m)2

σ2
m

, (7)

where σf and σm for m = 1, . . . , d are the so-called hyper-
parameters collected in the vector θ. The hyper-parameters θ
can be estimated through optimization from the available infor-
mation on the error training samples e(xi) for i = 1, . . . , L. As
an example, the GPR tool of MATLAB allows estimating the
above quantities by maximization of the log likelihood [18].

Thanks to the properties of GP and to the prior information
provided by the training error samples, for any new value
of the input parameter x∗ ∈ P , such that x∗ 6= xi for
i = 1, . . . , L, the samples of {e(x1), . . . , e(xL), e(x∗)} follow
an L+ 1-dimensional joint Gaussian distribution [19], which
writes: [

e
ẽ∗

]
∼ N

([
0
0

]
,

[
K kT∗
k∗ k∗∗

])
, (8)

where e = [e(x1), . . . , e(xL)]T , K ∈ RL×L is the
correlation matrix given by Kij = k(xi,xj), k∗ =
[k(x∗,x1), . . . , k(x∗,xL)] ∈ R1×L, k∗∗ = k(x∗,x∗) and
ẽ∗ = ẽ(x∗) is a prediction of the error function at x∗.

The probability of predicting M(x∗), called posterior dis-
tribution, given the prior information on the training samples
D1:L, corresponds to conditioning the joint distribution in (8)
on the observations (i.e., training samples):

p(MLS-SVM+GPR|x∗,D1:L) ∼ N(µx∗ , σ
2
x∗

) (9)

1It is ought to remark that, for a regression, the values of the error function
on the training samples, i.e., ei = e(xi) are usually different from zero.
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where µx∗ and σ2
x∗

are defined as follows:

µx∗ =MLS-SVM (x∗) + k∗K
−1e (10a)

σ2
x∗

= k∗∗ − k∗K
−1kT∗ . (10b)

We are then going to use the prediction mean µx∗ in-
stead of the deterministic LS-SVM regressionMLS-SVM (x∗)
in (1), whereas the variance σ2

x∗
gives a local error indicator

about the precision of the estimate. The above probabilistic
interpretation allows estimating the confidence interval at the
100(1 − α)% level, such that the full computational model
M(x∗) at any point x∗ ∈ P:

(
µx∗ − z1−α2 σx∗

)
≤M(x∗) ≤

(
µx∗ + z1−α2 σx∗

)
, (11)

with a probability of (1−α), [26] where z denotes the inverse
of the Gaussian cumulative distribution function evaluated at
1 − α

2 and µx∗ ± z1-α2 σ
2
x∗

represent the upper and lower
confidence bound, respectively.

It is ought to be remarked that the above formulation holds
only for a GPR with a fixed mean function. In fact, the
standard GPR does not use the LS-SVM model as a trend
and writes [18], [25]:

M(x) ≈ GP (βf(x)T , k(x,x′)), (12)

where k(., .) is the covariance function (see as an example the
ADR Matern 5/2 covariance function in (6)) and βf(x)T is
the GP trend in which f(x) = [f1(x), . . . , fP (x)] indicates a
set of bases functions and β = [β1, . . . , βP ] are the regression
parameters to be estimated during the training of the GPR.
As an example the MATLAB tool for the GPR works directly
with constant, linear and polynomial bases functions.

III. APPLICATION EXAMPLE

The LS-SVM+GPR modeling technique presented in Sec. II
has been applied to build a probabilistic surrogate model for
the uncertainty quantification of the output voltage spectral
envelope of the switching converter in Fig. 2, as a function of
17 stochastic parameters. The converter is a 12V:5V switching
buck converter with its feedback network (see [31] for addi-
tional details) operating at a switching frequency of 100 kHz
through a sawtooth signal defined between 0V and 5V .

In the following analysis, the values of all the components
specified in the schematic of Fig. 2 have been considered as
Gaussian stochastic variables centered at their nominal value
and with a standard deviation of 10% around their mean value,
leading to 17 uncorrelated Gaussian parameters (i.e., x ∈ R17).
The full-computational model used to evaluate the global
effect of the uncertainty parameters on the stochastic behavior
of the spectral envelope of the voltage output of the converter
is based on a parametric transient simulation in LTspice.
Specifically, the spectral envelope of the output voltage vout,
namely Vout,E(f ; x∗), for a generic configuration of the circuit
parameters x∗ is calculated through the full-computational
model via the following procedure: (i) use the input parameter
configuration to run the corresponding transient simulation in

Sawtooth

12 V

0.3 Ω

0.7 V

10 mΩ 50 +,

44.1 +.

20 mΩ

1.25 Ω
1 kΩ

1 kΩ

200 Ω

10 kΩ

4.7 nF

2.5 V

3.9 nF12 kΩ

27 pF

+
i678(t)

i<=(t)

−
?@AB(C)

+

−

DEF

Fig. 2. The buck converter schematic considered in Sec. III [31]. For each
component, nominal values are indicated.

LTspice; (ii) compute the spectrum V̂out(f ; x∗) by applying
the Fast Fourier transform (FFT) on the steady-state portion of
the voltage waveform vout(t; x∗); (iii) compute the magnitude
of the peak spectral envelope Vout,E(f ; x∗) via the MATLAB
function envelop and convert the resulting spectrum in dB.

For any configuration of the input parameters, the tran-
sient simulation has been run in the time window [0, 3] ms
with a time-step of 10 ns. In order to ensure that all the
waveforms have reached the steady-state, the FFT has been
applied only to the last 3 switching periods of the voltage
waveform vout(t; x∗) [3], [4]. The resulting spectral envelope
Vout,E(fk; x∗) with k = 1, . . . , Nf covers a frequency band-
width from DC to 30 MHz via a set of Nf = 91 linearly
spaced frequency samples.

For each of the frequency component fk, the above simula-
tion scheme (i.e., the full-computational model) has been used
to generate a set of L training samples {(xi, yi(fk)}Li=1, where
the input parameter configurations [x1, . . . ,xL] have been
drawn based on the latin hypercube sampling scheme [32]
and yi(fk) = Vout,E(fk; xi)). The training samples have been
used to train the proposed LS-SVM+GPR surrogate model
which writes:

Vout,E(fk; x) ≈MLS-SVM+GPR(fk; x)

=M(LS-SVM+GPR),k(x) (13)

for any x ∈ P , and k = 1, . . . , Nf .
Specifically, two different LS-SVM+GPR models have been

trained by considering two different LS-SVM regressions with
either linear or RBF kernel. For the sake of completeness, the
same training samples have been also used to build other five
different surrogate models based on state-of-the-art techniques
such the deterministic LS-SVM regression with linear and
RBF kernel and the standard probabilistic GPR with constant,
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Fig. 3. Average absolute error ∆dB(f) calculated by comparing the predictions of the surrogate models based on the LS-SVM (solid and dashed green
curves), the LS-SVM+GPR (solid and dashed red curves) and the plain GPR (blue solid, dashed and dotted curves) with the corresponding ones obtained via
a MC simulation with 10,000 samples for an increasing number of training samples L = 50, 150 and 300.

linear and polynomial (order 2) trend [18], respectively. All the
proposed probabilistic models (i.e., the ones based on the LS-
SVM+GPR and the GPR) use the ARD Matern 5/2 covariance
function in (6).

The accuracy of each model is then illustrated in Fig. 3.
The plots provide a comparison among the accuracy provided
by each of the considered surrogate models in terms of the
average absolute error spectrum ∆dB(fk) defined for k =
1, . . . , Nf , as follows

∆dB(fk) =

NMC∑
i=1

∣∣∣Vout,E(fk; xi)− Ṽout,E(fk; xi)
∣∣∣

NMC
, (14)

where Vout,E(fk; xi) corresponds to the envelope amplitude in
dB obtained via the LTspice simulations for each configuration
xi of the uncertain parameters considered in a MC simula-
tion with NMC = 10, 000 samples, whilst Ṽout,E(fk; xi) is
the corresponding value estimate by a given surrogate. The
above error is computed by using each of the considered
surrogate built with an increasing number of training samples
L = 50, 150 and 300.

From the curves of Fig. 3, the most accurate models are
the ones based on the deterministic LS-SVM regression with
linear and RBF kernel (solid and dashed green lines), however,
the proposed modeling scheme based on the LS-SVM with
linear and RBF kernel+GPR (see the solid and dashed red
curves) provides the most accurate probabilistic surrogate
models for all the considered set of training samples (i.e.,
L = 50, 150 and 300). Indeed, the curves related to the LS-
SVM+GPR are usually below the ones related to standard GPR
(solid, dashed and dotted blue lines). The results also show the
improved convergence of the LS-SVM-based deterministic and
probability models when a small set of training samples are
available, i.e., L = 50, [16], [17].

As a further validation, Fig. 4 provides a graphical com-
parison between the scattering plots obtained by comparing
the results of a MC simulation with 10,000 samples for
all the Nf = 91 frequency points, with the corresponding
ones provided by the deterministic surrogate models based on
LS-SVM regression with linear kernel (green dots) and the
mean values predicted by the proposed LS-SVM (RBF)+GPR

Fig. 4. Scatter plot (10,000 samples) comparing, for all the considered
frequency points, the voltage spectral envelope Vout,E predicted by the
deterministic model based on the LS-SVM with linear kernel (green dots; left
panel) and by the statistical surrogate model based on LS-SVM (RBF)+GPR
(red dots; right panel) against the MC samples generated by the full-
computational model.

statistical model (red dots). The plots highlight the capability
of the two models to accurately predict the actual value of
the MC simulation, since the samples are very close to the
dashed line, which represents the perfect agreement between
the model and the reference samples.

Also, Fig. 5 compares the probability density functions
(PDFs) of the spectral envelope magnitude at f0 = 100 kHz
provided by the deterministic LS-SVM regression with linear
kernel (solid green line) and the mean values of the LS-
SVM (RBF)+GPR (solid red line) in (10a) with the histogram
resulting from 10,000 MC samples (gray bins). The results
highlight once again the excellent capability of the two models
to capture the main feature of the reference PDF resulting from
the MC simulations.

As a final comparison between the two models, Fig. 6
shows two realizations of the spectral envelope randomly
selected among the results of the MC simulation (black curve)
along with the corresponding predictions provided by both
the deterministic surrogate model based on the LS-SVM with
linear kernel (dashed green curve) and results of the proposed
probabilistic model (i.e., the mean values and the 99% CI)
based on the LS-SVM (RBF)+GPR model (red vertical bars)
for L = 300. The results clearly highlight the advantages
of the proposed modeling techniques with respect to the
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Fig. 5. Comparison among the PDFs computed for the realizations of the
spectral envelop Vout,E(f0;x) at f0 = 100 kHz obtained from the mean
values of the probabilist model based on the LS-SVM (RBF)+GPR (solid red
line) and the LS-SVM regression with linear kernel (solid green line) with
the histogram of 10,000 MC samples (black bins).

classical deterministic regression. In fact, different from the
deterministic model based on the LS-SVM regression, for
any given configuration of the input parameters, the proposed
probabilistic one built via the LS-SVM+GPR does not only
provide an approximation of the envelope spectra (red dots),
but it also provides the users with a statistical information on
the model error and reliability by means of the 99% CI (red
error bars). The accuracy of such CI can be easily appreciated
by noticing that the actual spectral envelope provided by the
full-computational model (black curve) lays between the CI
estimated by the proposed models. It is important to remark
that the CI shown in Fig. 6 cannot be computed from the
results of the MC simulation, since they are not related to
any statistical quantity (e.g., statistical moments, quartiles,
confidence limits, etc..) associated to the uncertain responses
of the system under modeling. Indeed, the CI provide the user
with a statistical information on the model error, only.

Table I provides a detailed summary of the computational
cost required to build each of the considered surrogate models
tmodel and the computational cost tpred required by each
model to predict 10,000 realizations of the envelope spectra.
All the simulations have been performed on a MacBook Pro
with an Intel Core i5 CPU running at 3.1GHz and 16GB of
RAM. The individual simulation with the full-computational
model takes 1.7s, therefore the computational time required
to generate the L = 50, 150 and 300 training samples is
about 85 s, 255 s and 510 s. However, even for the maximum
number of training samples (i.e., L = 300), the most complex
surrogate model can be generated in less than 465 s (i.e.,
less than 8 min). The results highlight the advantage of the
proposed technique based on the surrogate models with respect
to the standard MC simulation, since each of the considered
models allow predicting the envelope spectra for 10,000 re-
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Fig. 6. Comparison between the envelope spectra for two different configu-
rations of the converter parameters (black curve) randomly chosen among the
10,000 realizations of the MC simulation with the corresponding predictions
of the deterministic model based on the LS-SVM with RBF kernel (dashed
green curve) and the mean values and 99% CI estimated by the probabilistic
models built via the LS-SVM (linear)+GPR (red vertical bars).

alizations of the uncertain parameters in less than 30 s, while
the corresponding MC simulation requires about 4 h 43 min.

IV. CONCLUSIONS

This paper deals with the development of a probabilistic
model for the prediction of the spectral envelope of the output
voltage waveform of a switching converter with a feedback
network; 17 uncertain parameters related to the circuit com-
ponents values are considered. The proposed technique relies
on a two-step modeling scheme which combines the LS-SVM
regression with the GPR. The accuracy of the resulting prob-
abilistic model is then assessed by comparing its predictions
with 10,000 MC simulations. For the sake of completeness,
the results of the proposed model are then compared with the
ones provided by five different surrogate models, such as the
ones based on the deterministic LS-SVM regression with both
linear and RBF kernel and the probabilistic models obtained
via the standard GPR with constant, linear and polynomial
(order 2) trend, respectively. From the results presented in
this work, the proposed probabilistic models built with the
LS-SVM+GPR can be considered as viable approaches for
the development of accurate and fast-to-evaluate probabilist
models for the prediction of the uncertain response of complex
non-linear system in a high-dimensional parameter space.
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TABLE I
COMPARISON AMONG THE COMPUTATIONAL COSTS NEEDED TO GENERATE THE MODELS AND TO EVALUATE 10,000 SAMPLES. REFERENCE IS THE MC

SIMULATION.

Method
L = 50 L = 150 L = 300

tmodel tpred tmodel tpred tmodel tpred

MC − 4 h 43 min − 4 h 43 min − 4 h 43 min

LS-SVM (linear) 42 s <1 s 45 s <1 s 115 s <1 s

LS-SVM (RBF) 51 s <1 s 61 s 2 s 165 s 4 s

LS-SVM (linear)+GPR 52 s 2.5 s 129 s 10 s 414 s 23 s

LS-SVM (RBF)+GPR 59 s 3 s 131 s 12 s 465 s 26 s

GPR (constant trend) 13 s 2.2 s 73 s 10 s 304 s 19 s

GPR (linear trend) 10 s 2.3 s 73 s 10 s 294 s 19 s

GPR (poly trend order 2) 11 s 2.3 s 73 s 10 s 307 s 19 s

APPENDIX
GAUSSIAN PROCESS

A Gaussian process (GP) is a potentially infinite collection
of random variables such that any finite subset of it has a joint
multivariate Gaussian distribution. It can be considered as an
extension of the concept of multivariate Gaussian distributions
to infinite dimensionality [18].

A generic GP writes:

f(x) ∼ GP (µ(x), k(x,x′)), (15)

where µ(x) : Rd → R is a function defining the mean value
(trend) of the GP and k(x,x′) : Rd×Rd → R is the covariance
function. The GP is completely characterized by the above
quantities which are defined as:

m(x) = E[f(x)], (16a)

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (16b)

As an example let us considering the following random
function [22]:

y(x) = b0 + b1x+ b2x
2, (17)

where the coefficients b1, b2 and b3 mutually independent
Gaussian variable with bi ∼ N (0, σ2

i ) for i = 0, 1, 2. For
any x ∈ [−1,+1] the draws have zero mean, i.e.,

E[y(x))] = E[b0 + b1x+ b2x
2]

= E[b0]x+ E[b1]x+ E[b2]x2

= 0 + 0x+ 0x2 = 0, (18)

and covariance function:

k(y(x1), y(x2)) = E[(b0 + b1x1 + b2x
2
1)(b0 + b1x2 + b2x

2
2)]

= σ0 + σ1x1x2 + σ2
2x

2
1x

2
2 = k(x1, x2).

(19)

Because linear combinations of a fixed set of independent
normal random variables have a multivariate normal distribu-
tion, given a set of values of the input parameter x1 . . . , xL,

the probability of getting the responses [y(x1), . . . , y(xL)] has
a multivariate normally distribution, even if it is degenerate
when L > 4 (i.e., the covariance matrix K, computed form the
covariance function k(·, ·) in (19), is not full-rank anymore).
Without requiring any additional assumptions, the random
function y(x) in (17) can be modeled in more generic way
as a Gaussian process, such as y(x) ∼ GP (0, k(x, x′)).
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