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Abstract Here we will show the behavior of some of q-functions. In particular we plot the q-

exponential and the q-trigonometric functions. Since these functions are not generally included 

as software routines, a Fortran program was necessary to give them.  
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Introduction  Frank Hilton Jackson (1870-1960) was an English clergyman and mathematician 

who systematically studied what today is known as the q-calculus. In particular, he studied 

some q-functions and the q-analogs of derivative and integral [1]. Actually, Jackson started his 

studies introducing the q-difference operator, an operator the origins of which can be tracked 

back to Eduard Heine and Leonhard Euler [2]. For this reason, the q-difference operator is also 

known as the Euler-Heine-Jackson operator [3]. Also Carl Friedrich Gauss was involved in the 

q-calculus since he proposed some relations such as the q-analog of binomials [4]. 

As told in [5], the q-calculus has various “dialects,”  and for this reason it is known as 

“quantum calculus,” “time-scale calculus” or “calculus of  partitions” [5]. Here we will use the 

notation  given in the book by Kac and Cheung [6]. This book is discussing two modified 

versions of a quantum calculus, defined as the “h-calculus” and the “q-calculus.” The letter “h” 

indicates the Planck's constant and the letter “q” stands for quantum. Let us note that these two 

versions of calculus reduce to Newton's calculus in the limit where h → 0 or q → 1. 

Here, in the framework of the q-calculus of [6],  we will show the behaviors of some of the q-

functions. In particular we will plot the q-exponential and of the q-trigonometric functions. We 

will see that, in the limit where q → 1, these functions become the functions commonly used. 

Since these q-functions are not generally included as software routines, we prepared a Fortran 

program for giving them. Before showing the results, let us discuss shortly the q-difference 

operator and the related q-derivative. 

 

The quantum difference operator.  In the q-calculus, the q-difference is simply given by:  
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From this difference, the q-derivative is: 
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The q-derivative reduces to the Newton’s derivative as 1→q . We have also the h-derivative: 
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In the limit as 0→h , this reduces to the usual derivative.  

 



Taking xqh )1( −=  ,  we may see that: 
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From the two formulas for fDq and fDh  , we see that fDh  concerns how the function )(xf   

changes when a quantity h is added to x, whereas fDq  considers how it changes when the 

variable x is multiplied by a factor q.  

Let us consider the function 
nxxf =)( . If we calculate its q-derivative, we obtain: 
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Comparing the ordinary calculus, giving 
1)'( −= nn nxx , to Equation (1), we can define the “q-

integer” [ ]n  by: 
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Therefore Equation (1) turns out to be: 
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As a consequence, a n-th q-derivative of 
nxxf =)( , which is obtained by reperting n times the 

q-derivative, generates the  q-factorial: 
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Form the q-factorials, we can define q-binomial coefficients: 
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This means that we can use the usual Taylor formula, replacing the derivatives by the q-

derivatives and the factorials by q-factorials. 

 

The q-exponentials As given in [6], the q-analog of the exponential function is defined as 
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Since we have that [6]: 
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The q-exponential has the following expression too: 
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Another q-analog of the exponential function is [6]: 
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A property of the q-exponential functions is 
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Due to this commutation relation, x and y are not symmetric and therefore: 
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When q → 1, the q-exponentials become the usual exponential. We can see this in the 

following Figure 1. 
 

The q-trigonometric functions As given in [6], the q-analog of the trigonometric functions are 

defined as: 
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We have that:  

 

(2)   1SinsinCoscos =+ xxxx qqqq . 

 

In the Figure 2, we can see the graphs of the q-trigonometric functions for two different values 

of q. When  1→q , these functions become the usual ones. To check the calculation, in the 

Figure 2, it is shown also the value of xxxx qqqq SinsinCoscos + . It is equal to 1, as it must 

be because given by (2). From the plots, we see that the behavior of the q-trigonometric 



functions become more different from that of the trigonometric functions, when the value of x 

is large. Let us also note that when q is close to 1, the q-functions are close to cos x and sin x. 

 

Other q-functions It is necessary to note that other q-functions exist, which are linked to the 

formulation of the entropy given by Constantino Tsallis. In 1948 [7], Claude Shannon defined 

the entropy S of a discrete random variable Ξ as the expected value of the information content:   

∑= i ii IpS ∑−= i ibi plogp [8]. In this expression, I is the information content of Ξ, the 

probability of i-event is ip  and b is the base of the used logarithm. Common values of the 

base are 2, Euler’s number e, and 10. Tsallis generalized the Shannon entropy in the following 

manner [9]:  
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Let us note that, if we consider the q-derivative of the quantity ∑i

x
ip , we have: 
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Therefore, when 1→x : 
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Then, the Tsallis entropy is linked to the q-derivative. But, in the framework of the Tsallis 

approach to statistics, we have a deformation of the exponential function, the Tsallis q-

exponential function, given by [10]: 
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This is different from the q-exponential previously discussed. 

If the function in (3) is expanded in Taylor series, we have [11]: 
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In (4), we have ( )( ) [ ])1(23121)( −−−−⋅= nnqqqqqQn L . 

From the expression (4) of the Tsallis q-exponential, given for complex ix, we can obtain the 

Tsallis trigonometric functions: 

 

∑∑
∞

=

+
∞

=

−

+

−
=

−
+=

0

122

1

212

)!12(

)1(
sin;

)!2(

)1(
1cos

j

jj
j

q

j

jj
j

q x
j

Q
xx

j

Q
x  

 



 

References 

 

1. H. Jackson (1908). On q-functions and a certain difference operators, Trans. Roy. Soc. Edin., 

46 253-281 

2. T. Ernst (2012). A Comprehensive Treatment of q-Calculus, Springer Science & Business 

Media. 

3. M. H. Annaby, Z. S. Mansour (2012). q-Fractional Calculus and Equations, Springer. 

4. Ranjan Roy (2011).  Sources in the Development of Mathematics: Series and Products from 

the Fifteenth to the Twenty-first Century, Cambridge University Press. 

5. T. Ernst (2008). The different tongues of q-calculus. Proceedings of the Estonian Academy 

of Sciences, 2008, 57, 2, 81–99 DOI: 10.3176/proc.2008.2.03  

6. V. Kac, Pokman Cheung (2002). Quantum Calculus, Springer, Berlin. 

7. C. E. Shannon (1948). A Mathematical Theory of Communication. Bell System Technical 

Journal 2 (3):379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x 

8. M. Borda (2011). Fundamentals in Information Theory and Coding. Springer. ISBN 978-3-

642-20346-6. 

9. C. Tsallis (1988). Possible Generalization of Boltzmann-Gibbs Statistics, Journal of 

Statistical Physics, 52: 479–487. DOI:10.1007/BF01016429 

10. S. Umarov, C. Tsallis, S. Steinberg  (2008). On a q-Central Limit Theorem Consistent with 

Nonextensive Statistical Mechanics. Milan J. Math. Birkhauser Verlag. 76: 307–328. 

doi:10.1007/s00032-008-0087-y 

11. E. P. Borges (1998). On a  q-generalization of circular and hyperbolic functions.  J. Phys. 

A: Math. Gen. 31 5281  
  



 

 

 

 

 

Figure 1: Behavior of x
q

xx
q Eee ,,  for different values of q. 

 

 

 

 

 

 



 

 

 

 
 

 
 

Figure 2: q-trigonometric functions for two different values of q. 

 


