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Finite Formulation of Surface Impedance Boundary Conditions
Vincenzo Cirimele1, Fabio Freschi1,2, Luca Giaccone1, and Maurizio Repetto1,2

1Department of Energy, Politecnico di Torino, Turin 10129, Italy
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In several electromagnetic applications, field quantities are confined in layers that are thin with respect to other geometrical
dimensions. The numerical solution of these phenomena has led to the development of special formulations. Among these, the
surface impedance boundary conditions (SIBCs) have been extensively investigated in the past decades, often coupling them to
other techniques for the analysis of volumes, such as the finite-element or boundary element methods. In this paper, the SIBCs are
presented by the light of finite formulation and extended to include the considered magnetic nonlinearity.

Index Terms— Boundary element method (BEM), finite formulation, hybrid techniques, surface impedance boundary
condition (SIBC).

I. INTRODUCTION

THE ANALYSIS of physical problems has often to handle
different geometrical scales and sub-domains with dimen-

sions that are much smaller than the overall ones. The brute
force application of a volume-based numerical analysis can
lead to inaccurate and unaffordable results. The use of hybrid
numerical techniques, coupling together volume-based meth-
ods with the particular treatment of the smaller sub-domain,
has shown to be an efficient, even if non standard, approach
and related to the particular problem under study.

Among these techniques, the use of the surface impedance
boundary conditions (SIBCs) is a technique, which can be
used to treat electromagnetic phenomena in time-varying elec-
tromagnetics. Many works have discussed the main aspects
of the SIBC both from the theoretical and implementation
viewpoints, such as in [1]–[3]. The use of the SIBC is
generally limited to a linear magnetic material. An attempt
to extend the method to nonlinear magnetic materials is the
subregion sequence approach proposed in [4]–[6].

The main difficulty in dealing with nonlinear materials is
related to the strict dependence of the skin effect on the
effective material permeability, which is changing very rapidly
due to the boosting of the magnetic flux density close to the
surface [7].

This work develops a formalism based on the primal/dual
discretization of the surface, ideally linked to the concepts
of the cell method developed in [8] and [9], that naturally
leads to a circuit representation of the eddy-current phenom-
enon, and couples this formulation with the boundary element
method (BEM). Nonlinearity is, thus, treated not in terms of
local quantities, like magnetic permeability values, but directly
in terms of the resulting nonlinear surface impedance, which is
computed offline by means of the solution of a 1-D problem.

II. NONLINEAR SIBC FORMULATION

The considered domain is made by a magnetic and con-
ductive simply connected volume surrounded by space where
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Fig. 1. Local coordinate system on the surface of the conductive domain.
The y coordinate is along the depth.

sources, conductors with impressed currents, are present.
It is considered that the external region is studied by means
of the BEM formulated in terms of reduced scalar magnetic
potential. It is assumed that the penetration depth of the elec-
tromagnetic quantities is much smaller than the other geomet-
rical dimensions so that the volume is replaced by its boundary
surface. The electromagnetic phenomena inside the conductive
region are depending only on the depth coordinate y. A sketch
of the local coordinate on the surface of the conductive domain
and of the main field quantities is shown in Fig. 1.

A. Circuit Formulation of Eddy Currents

The boundary of the volume is discretized with two inter-
twined grids linked by duality relation, as shown in Fig. 2.
Instead of formulating the problems in terms of local quan-
tities, such as current densities and electric field, global vari-
ables are used, i.e., quantities associated with space entities.

Concerning the current formulation, electromotive forces e
are defined on primal edges, and magnetic fluxes φ are defined
on primal faces. Magnetomotive forces h and currents i are
defined, respectively, on dual edges and faces. The depth of the
dual face extends through the depth until the value where all
the field quantities vanish. Magnetomotive forces, in turn, can
be expressed as the gradient of the magnetic scalar potential ψ
defined on dual nodes. When considering a sinusoidal time-
harmonic formulation, the phasor quantities can be used.

The topological equations of the electromagnetic fields can
be written directly in terms of global variables. The discrete
version of Faraday’s law in a matrix form is

Ce = −jωφ (1)
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Fig. 2. Dual discretization of the conductive domain by considering the
depth coordinate. Blue lines: primal grid. Red lines: dual grid.

where C is the primal face-edge incidence matrix [8], e is the
vector of electromotive forces along primal edges, φ is the
vector of magnetic fluxes through primal faces, and ω is
the angular frequency. Ampère’s law becomes

h = i (2)

where h is the vector of magnetomotive forces along dual
edges and i is the vector of currents through the dual faces
defined in Fig. 2. This expression comes from the fact that, of
the four edges bounding the dual face, only the one lying
on the conductor surface leads to a non-null contribute to
the circulation of the magnetic field. On the opposite edge,
the field is null, because the face is extending to the depth
where all the field quantities disappear and the other two edges
are orthogonal to the magnetic field direction. By considering
a linear conductive material characterized by the magnetic
permeability µ and the electrical conductivity σ , the constitu-
tive equation tying together the surface electric field and the
surface value of the current density can be written as

i =
∫

L̃

∫ +∞

0
J0e− y

δ e− j y
δ dyd L = L̃

δ

1 + j
σe
L

= Y e (3)

where Y is the admittance linking e to the current i , L and
L̃ are the length of the primal and dual edges (Fig. 1), and
δ is the penetration depth, defined as δ = (2/ωµσ )1/2. The
circuit relation can also be written as e = Y −1i = Zi , where
Z is the impedance of the circuit element represented by the
primal edge-dual face couple. The impedances of all the primal
edge-dual face couples are collected in the diagonal matrix Z.

The relation defined in (3) links each electromotive force on
primal edge to the current flowing through the corresponding
dual face. Using Faraday’s law (1), a circuit representation can
be introduced as

Ce = −jωφ ⇒ CZi = −jωφ. (4)

Using the mesh current imesh [10], (4) can be written as

i = CT imesh ⇒ CZCT imesh = −jωφ. (5)

The system in (5) has a number of equations equal to the
number of primal faces on the domain surface, and can be
solved once the incident magnetic fluxes φ are known.

B. Nonlinear Eddy Currents

When the material magnetic characteristic is nonlinear, the
admittance, defined in (3), cannot be expressed in closed form.
Nonlinear effects are treated by means of an equivalent mater-
ial that, under a sinusoidal excitation, gives the same response
of the actual nonlinear material in terms of coenergy [11].

Fig. 3. Magnetic flux density along the depth of a material with the nonlinear
characteristic defined in (10) for different values of the surface magnetic field
with Bs = 1.5 T and µr = 1000.

This approach substitutes to the nonlinear ferromagnetic mate-
rial an equivalent B(H ) characteristic, based on a coenergy
equivalence, and has been efficiently applied to induction
heating problems, as, for instance, in [12]. The working point
on the characteristic depends on the peak value of the magnetic
flux density sine wave and not on its instantaneous value.

The 1-D diffusion equations in the frequency domain is
expressed as

∂2 H
∂y2 = jωσ (µFP H + R) (6)

H (y = 0) = H0 (7)

H (y → ∞) = 0. (8)

Equation (6) is numerically discretized by the 1-D finite-
difference method, while the magnetic nonlinearity is solved
by means of the fixed point technique as

B = µFP H + R (9)

where µFP is a constant permeability value and R is the
nonlinear residual that has to be updated iteratively [13]. The
solution of (6) gives the behavior of the field penetration inside
the material.

Using a simplified nonlinear characteristic expressed as

B = Bs tanh
(

µrµ0 H
Bs

)
+ µ0 H (10)

where the two parameters Bs and µr characterize the nonlinear
curve, and the pattern of the magnetic flux density along
the depth can be drawn for different values of the surface
magnetic field H0. The values in Fig. 3 are computed by
considering Bs = 1.5 T, µr = 1000, electrical conductivity
σ = 5.8 MS/m, and frequency f = 1 kHz, leading to a value
of penetration depth δ = 0.21 mm in the linear zone.

The corresponding solution for the current density is
obtained by the numerical differentiation of the solution of (6)

J (y) = −d H
dy

= −'H
'y

. (11)

The penetration of the field quantities increases together
with the saturation level, giving rise to a nonlinear increase
in the current flowing through the depth. This phenomenon is
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Fig. 4. Variation of the parameter |Yrel| as a function of the applied magnetic
field.

well appreciable by looking at the behavior of the admittance
as a function of the applied surface magnetic field H0 as

Y (H0) = i
e

= σ L̃
L J0(H0)

∫ +∞

0
J (y)dy. (12)

The resulting effect of the admittance can be seen in Fig. 4,
where the value of the admittance normalized with respect to
its value in the linear zone is shown |Yrel| = |Y (H0)/Ylinear|.
The nonlinear behavior of the admittance is changing with
the applied magnetic field, but its nonlinearity does not show
abrupt changes in slope, since the saturation effect, well visible
in the B values (Fig. 3), is smoothed out by the increase in
the penetration depth. The characteristic of Y (H0) is tabulated
for each nonlinear material and interrogated at each nonlinear
iteration.

III. HYBRID SIBC-BEM FORMULATION

The lumped parameters formulation of the eddy currents
inside the material is coupled to the BEM technique for the
analysis of the external domain where source conductors with
impressed currents are considered. The BEM problem is for-
mulated in terms of the reduced magnetic scalar potential ψ .
The magnetic field in the external region is given by

%H = −∇ψ + %HS (13)

where %HS is the magnetic field created by imposed current
sources. When the source currents are sinusoidal in time, all
the previous quantities can be expressed by phasors. The BEM
equations are then given by

Hψ + W
∂ψ

∂n
= 0 (14)

where matrices H and W are derived by the standard formu-
lation as in [14]. The two formulations are coupled by means
of the physical continuity of field at the conductor surface.

By imposing the continuity of the normal component of the
magnetic flux density at the interface, the normal derivative
of the magnetic scalar potential can be linked to the incident
magnetic flux present in (4) by

φ = µ0A
(

−∂ψ
∂n

+ HSn

)
(15)

where A is a diagonal matrix, containing the area of each
primal face. As a consequence, the circuit equation can be

Fig. 5. Tangential component of the magnetic field on the disk surface: 2-D
axisymmetric (FEMM) and SIBC-BEM at 10 kHz.

reformulated as

CZCT imesh = −S
(
∂ψ

∂n
− HSn

)
(16)

where S = jωµ0A. By exploiting Ampère’s law of (2), the
tangential component of the magnetic field is

i = CT imesh = −CTψ + hS. (17)

By coupling together the BEM and the circuit equations, the
hybrid formulation can be obtained as

[
H W

−CZCT S

]


ψ

∂ψ

∂n



 =
[

0
SHSn − CZhS

]
(18)

where impedance matrix Z can be nonlinear as described
in Section II-B.

The lower right block S of the coefficient matrix is diagonal,
and this characteristic can be exploited by calculating the
Schur complement of S and solving with respect to ∂ψ/∂n

∂ψ

∂n
= −HSn + S−1(CZCTψ − CZhS) (19)

then, substituting (19) in (18)

(H + WS−1CZCT )ψ = W(HSn + S−1CZhS). (20)

The system is solved using GMRES, avoiding the effective
assembling of H +WS−1CZCT but supplying the solver with
the matrix–vector product Hψ + WS−1CZCTψ . Due to the
smooth nonlinear Y characteristic, a simple nonlinear scheme,
where the value of Y (H0) is iteratively updated, is adopted to
solve (20) with nonlinear materials.

IV. RESULTS AND DISCUSSION

The proposed numerical scheme has been validated by
solving a nonlinear eddy-current problem in a cylindrical
conductive domain of radius 10 cm and thickness 3 cm with
electric and magnetic properties used to obtain the results
in Fig. 3. The source is a filamentary circular conductor having
a radius of 2.5 cm placed at a distance of 2 cm above the
conducting disk with a sinusoidal current of 5 kA. The results
are compared with a 2-D axisymmetric solution [15]. Fig. 5
compares the tangential component of the magnetic field on
the disk surface at 10 kHz when the material is saturated
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Fig. 6. Variation of the losses inside the conductive domain as a function
of supplying frequency.

Fig. 7. CPU times of different approaches to the solution of (18).

(compare the values of the magnetic field with the curves
shown in Fig. 3). The power losses at different saturation
levels, obtained ranging the frequency from 50 to 10 kHz, are
represented in Fig. 6. The two methods are in good agreement
when comparing local and global quantities. The nonlinear
scheme always converged in less than 25 iterations for a
maximum value of the applied magnetic field of ∼30 kA. The
benefits of the Schur complement technique are assessed by
looking at the solution time for two GMRES solutions: 1) con-
sidering the original scheme (18) and 2) using (20). As shown
in Fig. 7, the advantage of using the Schur complement
is to always reduce the computational cost of more than one

order of magnitude. The technique implemented has shown
good convergence capabilities and accurate results. This work
will continue in extending the technique to unstructured sur-
face meshes.
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