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Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
*ihtesham.khan@polito.it

Abstract: With the evolution of 5G technology, high definition video, virtual reality, and the
internet of things (IoT), the demand for high capacity optical networks has been increasing
dramatically. To support the capacity demand, low-margin optical networks engage operator
interest. To engross this techno-economic interest, planning tools with higher accuracy and
accurate models for the quality of transmission estimation (QoT-E) are needed. However,
considering the state-of-the-art optical network’s heterogeneity, it is challenging to develop
such an accurate planning tool and low-margin QoT-E models using the traditional analytical
approach. Fortunately, data-driven machine-learning (ML) cognition provides a promising path.
This paper reports the use of cross-trained ML-based learning methods to predict the QoT of an
un-established lightpath (LP) in an agnostic network based on the retrieved data from already
established LPs of an in-service network. This advanced prediction of the QoT of un-established
LP in an agnostic network is a key enabler not only for the optimal planning of this network
but it also provides the opportunity to automatically deploy the LPs with a minimum margin
in a reliable manner. The QoT metric of the LPs are defined by the generalized signal-to-noise
ratio (GSNR), which includes the effect of both amplified spontaneous emission (ASE) noise
and non-linear interference (NLI) accumulation. The real field data is mimicked by using a
well reliable and tested network simulation tool GNPy. Using the generated synthetic data set,
supervised ML techniques such as wide deep neural network, deep neural network, multi-layer
perceptron regressor, boasted tree regressor, decision tree regressor, and random forest regressor
are applied, demonstrating the GSNR prediction of an un-established LP in an agnostic network
with a maximum error of 0.40 dB.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The global data traffic demand will experience a dramatic increase over the next few years
[1], driven by the implementation of 5G technology and the expansion of bandwidth-hungry
applications; such as high definition video, virtual and augmented reality contents. To sustain
this remarkable rise in IP traffic the network operator demands the full exploitation of the
residual capacity of already deployed network infrastructure. In order to fully exploit the residual
capacity of any network infrastructure, the data transport layer needs to be driven to reach the
maximum available capacity. The primary key enabler for optimal data transport exploitation
is the dense wavelength division multiplexed (DWDM) transmission technique and network
disaggregation. These features kick-off a road map for state-of-the-art technologies such as
elastic optical networks (EONs) and software-defined networking (SDN) paradigm in optical
networks. The striking features of EON and SDN in optical networks are dynamic and adaptive
provisioning of network resources both in control and data plane. In the data plane, the EON
paradigm [2,3] has explored a unique optical network architecture able to provide LPs based
on the actual traffic demands. This flexibility makes the LP provisioning problem much more
challenging than traditional fixed-grid wavelength division multiplexing (WDM) networks. Apart
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from this in the control plane, the SDN controller can manage the working points of the various
network elements separately, enabling customized management.
Nowadays, optical networks are moving towards partial disaggregation, with a final goal of

full disaggregation. The network disaggregation’s primary step is to consider the optical line
systems (OLSs) that connect the network nodes. In the present scenario, the QoT degradation
depends on OLSs controllers’ capability to operate at the optimal working point [4,5]. The more
precisely this working point is achieved, the lower the margin for traffic deployment and, thus,
the larger the deployed traffic rate. Therefore, to reduce the margin, it is essential to rely on a
QoT estimator that enables the reliable prediction of the performance of LP before its actual
deployment, i.e., the generalized SNR (GSNR), that includes the effect of both ASE noise and
NLI accumulation [6] in an agnostic network scenarios, i.e., the networks where the network
operator does not have an exact knowledge of the working point of network elements (gain and
noise figure ripples in amplifiers, insertion losses, etc.).

Themain purpose of this work is to explore the relaxation of uncertainty in the GSNR prediction
and enable the agnostic network controller to reliably deploy the LP with minimum margin. In
the present study, we suppose a completely blind scenario by relying only on available data of
in-service network, i.e., the network where the key operator does have an exact knowledge of the
working point of network elements. Typically, analytical models are used for the estimation of
QoT in the context of in-services network as the analytical approach requires the exact description
of system parameters that are not possible to achieve in the current context of agnostic network.
The current frame of work related to agnostic network concludes that the analytic approach is not
feasible to achieve prior provisioning of QoT of LP in such an agnostic scenario. Furthermore,
the uncertainty on the amplifiers’ working point, typically induced by a mixed effect of physical
phenomena [7] and implementation issues, marking that the analytic strategy failed to accomplish
in an open environment.

To contravene this, we optate for an alternative way to use a data-driven ML paradigm, which
has already been effectively used in the various context of managing optical networks; see [8–11]
for performance monitoring applications. A comprehensive survey of ML applied in optical
networks can be found in [12]. Explicitly, coming towards a particular interest of this study,
i.e., QoT-E of LP before its deployment, some useful ML methods such as cognitive case-based
reasoning (CBR) technique are proposed [13]. Experimental results corresponding to [13]
achieved with real field data are discussed in [14]. In [15], the authors used ML techniques
for controlling OLS. A technique such as random forests (RF) is proposed to exploit the stored
database in [16] to reduce uncertainties on network parameters and design margins. In the
context of multicast transmission in an optical network, a neural network (NN) is trained to
predict the Q-factor in [17–19]. Several ML techniques for QoT-E of LP before its deployment
are also presented in [20,21]. An RF-based binary classifier is presented in [22] to predict the
bit-error-ratio (BER) of un-deployed LPs. In [23], an RF classifier, along with the potentiality
of two other techniques, i.e., k-nearest neighbor (KNN) and support vector machine (SVM)
is suggested. The authors exploit QoT as a label and also made a detailed comparison of the
proposed ML techniques. Finally, the analysis reported in [23], showed that the SVM is more
refined in performance but worst in computational time.
As compared to the previous literature, we study QoT-E of LP before its actual deployment

in an agnostic network. We supposed a more realistic approach to planning optical network
architecture by targeting the GSNR response to specific traffic configurations of a particular LP
of completely agnostic network in an open environment. A reliable estimation of QoT against
this particular LP of agnostic network is acquired by exploiting the data related to GSNRs
response of various traffic realizations of deployed LPs of in-service network. The exploited data
related to GSNRs response of deployed LPs of in-service network is perturbated by varying the
most delicate parameters of EDFA, noise figure, and amplifier ripple gain with insertion losses.
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This prior provisioning of QoT can be used in agnostic network planning and the wavelength
assignment in the online scenario.
The remainder of the paper is organized as follows. In Section 2, we briefly describe the

abstraction of the physical layer, along with the argument that an accurate QoT-E has a key
role in minimizing the margin. In Section 3, the simulation model, along with synthetic data
generation and analysis, are presented. In Section 4, the orchestration of ML engine is presented.
In Section 5, we illustrate the proposed ML methods in terms of QoT-E. Then, in Section 6, we
describe the results in detail. Finally, the conclusion and future research direction are drawn in
Section 7.

2. Abstraction of optical transport network

Typically, an optical transport network is a structure of connecting nodes with mesh topology,
where traffic request is added/dropped or routed, as shown in Fig. 1(a). The topology links are
bidirectional fiber connections from node-to-node, deployed as one or more fiber pairs with
single fiber for each particular direction that are generally amplified by specific span length using
combine and/or distributed amplification techniques: erbium-doped fiber amplifiers (EDFAs)
optionally assisted by some distributed Raman amplification. Furthermore, topology links are
commonly expressed as an OLS and a specific controller that has the characteristic to set the
working point of each in-line amplifier (ILA) and the spectral load fed at the input of each fiber
span.The current state-of-the-art optical network exploits DWDM for spectral usage of fiber
propagation and coherent technology for optical transmission. Further to this, the transport layer
routing operations are performed using reconfigurable optical add/drop multiplexers (ROADM)
technology. The spectral grid considered in DWDM technology can either be fixed or flexible,
according to the ITU-T recommendations [24], that define the spectral slots for both of the grid
architectures. Using any grid architecture, LPs are deployed, where LPs are the set of possible
connections between nodes according to the traffic requirements. Over each deployed LP, a
polarization-division-multiplexed (PDM) multi-level modulation format is used for propagation
from each source to the destination pair. During the transmission, LP suffers from several
propagation impairments such as amplifiers noise added as an ASE, fiber propagation, and
ROADM filtering effects. Additionally, the fiber propagation has been widely illustrated that
the fiber propagation on an uncompensated optical coherent transmission system impairs the
QoT of operated LPs by introducing amplitude and phase noise [4,25–27]. This introduced
phase noise is effectively compensated by the DSP module at the receiver, using a carrier phase
estimator (CPE) algorithm. This particular kind of noise can only be considered for very high
symbol rate transmission designed for short-reach [27]. In contrast to this, the amplitude noise,
typically defined as the NLI, always impairs the performance. It is a Gaussian disturbance that
accumulates with the receiver’s ASE noise. Finally, the ROADMs filtering effects also apply
some degradation level to QoT, generally considered an extra loss.

2.1. GSNR as quality of transmission estimation metric

It is well accepted that the metric of QoT for any candidate LP routed through a particular
OLSs is given by the GSNR, including both the effects of the accumulated ASE noise and NLI
disturbance, defined as Eq. (1), where OSNR= PRx/PASE, SNRNL = PRx/PNLI, PRx is the power
of the particular channel at the receiver, PASE is the power of the ASE noise and PNLI is the
power of the NLI. Considering a particular BER vs. OSNR back-to-back characterization of the
transceiver, the GSNR precisely gives the BER, as it has been extensively shown in multi-vendor
experiments using commercial products [6]. The non-linear effects during fiber propagation
generate PNLI, which depends on the power of the particular channel and the spectral load with a
cubic law [4]. In the above context, it is quite clear that for each particular OLS, there exists an
optimal spectral load that maximizes the GSNR [5]. Given the particular source and destination
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Fig. 1. (a) Architecture of optical network; (b) Abstraction of optical network.

separated by N optical domains, each one is characterized by a GSNRi, where i = 1, . . . ,N, the
following Eq. (2) clearly demonstrate the overall QoT. Analyzing the propagation effects on a
given LP over a particular source and destination, we abstracted the behavior as a cascading effect
of each optical domain that introduces QoT impairments. Along with ROADM effects, given LP
over a particular source and destination experiences the accumulation of the impairments of all
previously traversed OLSs, where each traversed OLS introduces some amount of ASE noise and
NLI. Therefore, besides the effects of ROADMs, each LP experiences the cumulative

GSNR =
PRx

PASE + PNLI
=

(
OSNR−1 + SNR−1NL

)−1
(1)

GSNR =

( N∑
i=1

1
GSNRi

)−1
(2)

impairments of all previously passed OLSs, where each introduces some amount of ASE noise
and NLI. For QoT purposes, the OLS can be abstracted by a unique parameter defined as SNR
degradation that, in general, is frequency-dependent (GSNRi(f )), if the OLS controllers can
keep the OLS operating at the optimal working point.Hence, considering the above scenario,
a network can be abstracted as a weighted graph (G), where G = (V, E) corresponding to the
particular topology. The G vertices (V) are ROADM network nodes, while the edges (E) are the
OLSs having GSNRi(f ) degradation as weights on the corresponding edges, shown in Fig. 1(b).
In particular, for an LP routed from source node A to destination node F that traverses through
intermediate nodes C and E, the QoT is:

GSNR−1AF(f ) = GSNR−1AC(f ) + GSNR−1CE(f )) + GSNR−1EF(f ) . (3)

After the availability of network abstraction, LPs provisioning can be possible through a particular
source and destination with the minimum margin, which depends upon the GSNR of a particular
source to the destination route.

2.2. Approaches for QoT estimation

In this section, we listed different possible approaches to getting knowledge of OLS characteristics,
with each allowing a different reduction in the GSNR uncertainty.

In the first approach, the data available from the system and network components such as
static characterization of devices (e.g., amplifier gain and noise figure in the frequency domain,
connector loss, etc.) is used to implement an accurate QoT-E in vendor-specific systems.
Regarding this particular approach, a considerable number of analytical models are available for
calculating the GSNR by using the data and characterizing the OLS components. However, this
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static data-based approach may not be accurate as the components experience gradual degradation
due to the aging factor, leading to progressively unreliable QoT-E after a certain period.

A second approach is based on the telemetry data considering only the present network status.
Deducing an OLS agnostic functioning in an open environment, the OLS controller mainly
depends upon telemetry data actualizing from the optical channel monitor (OCM) and the EDFAs.
In this particular approach, it is workable to utilize the telemetry of the network’s current state to
estimate an accurate QoT. In contrast to the previous approach, this circumstantial approach does
not rely on the static characterization of devices’ parameters and thus removes the uncertainty in
the QoT-E accuracy due to the device aging factor discussed in the former approach. Nevertheless,
this particular method’s problem is that the GSNR response, mainly its OSNR component, is
highly dependent upon the spectral load configuration, which deduces a considerable uncertainty
in the QoT margin [15].
The third approach considers a data set that collects the QoT responses against random

spectral loads of in-service network. This data is generated during the operative phase of the
in-service network by measuring the OLS response in terms of GSNR for various spectral load
configurations. This particular case provides an ideal playground to apply ML. An ML method
using a training data set composed of spectral load realizations of an in-service network yields an
accurate QoT-E for each newly generated spectral load realization of agnostic network scenario.
In contrast to the second approach, where only telemetry data is considered, this approach utilizes
the QoT-E based on the GSNR response to specific spectral load configurations of in-service
network, decreasing the uncertainty in GSNR predictions of agnostic network. Additionally, this
method does not need any knowledge of the OLS’s physical parameters in opposition to the first
approach. Thus, this method provides an ideal platform to apply ML methods in an agnostic
network scenario.

In this work, we focus on the third approach, the ML model’s training on the GSNR response
to specific spectral load configurations of the already deployed in-service network, and consider
its realization to predict the QoT of an agnostic network shown in Fig. 2(a).

Fig. 2. (a) Model orchestration; (b) EU network topology; (c) USA network topology.

3. Simulation model and synthetic data generation & analysis

A typical SDN empowered backbone optical network is considered, in which edges are modeled
by OLSs, while nodes are defined as ROADM sites. The given OLSs comprise of fibers
and amplifiers and are managed by a controller supposed to operate at the optimal nonlinear-
propagation working point. The random behavior of the physical layer is considered through the
amplifier gain ripple. To these fiber impairments such as fiber attenuation (α), dispersion (D), and
insertion losses are also considered. In order to make the simulation more realistic, the statistics
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of insertion losses are determined by an exponential distribution with λ = 4, as described in
study [28]. Because of the limitation of computational resources, the considered OLSs carry
only 76 channels over the standard 50 GHz grid on the C-band, having total bandwidth close to
4THz. We do not expect a substantial difference in results when considering standard 96 channels
on the entire C-band. We are supposed to rely on transceivers at 32 GBaud, shaped with a
root-raised-cosine (RRC) filter. The ILA, particularly EDFAs in the optical line, is configured to
work at a constant output power of 0 dBm per channel. All network links are supposed to operate
on standard single-mode fiber (SMF) with a span length of 80 km. The simulation parameters
are given in Table 1.

Table 1. Simulation Parameters

Launch Power/ Channel [0-0.006] dBm

Dispersion (D) 16.0 ps/nm/km

Attenuation coefficient (α) 0.3 dB/km

Channel Spacing 50 GHz

Average Span Length ≈ 80 km

WDM Comb (C-Band) 76

Baud Rate 32 Gbaud

Amplifier Noise Figure [6 - 11] dB

Amplifier Gain Ripple Variation of 1 dB

Fiber Type Standard SMF

Insertion losses Exponential Distribution (λ = 4) [28]

To retrieve a data set, in the absence of real field data, a reliable and well-tested open-source
network simulation tool GNPy [29,30] is used to generate the synthetic data against the proposed
scenario. Generally, this library outlines an end-to-end simulation environment that develops the
network models for the physical layer [31]. The QoT-E engine of the GNPy library is spectrally
resolved and is based on generalized Gaussian noise (GGN) model [30,32]. Characterizing
this particular capability, the GNPy is configured to mimic the spectral load configuration of
a network. The mimicked parameters are signal power at receiver, ASE noise accumulation,
and NLI generation during the propagation of LP, GSNR against each propagating LP from
a particular source to a destination. Finally, the number of spans traversed by candidate LP
from source to destination. Considering the ASE noise and NLI augmentation, the ASE is
more prominent, because it is twice the NLI when the system operates at optimal power [4,33].
Remarkably, it is also the most strenuous to measure. The ASE noise power depends on the
working point of EDFAs [34], which eventually depends on the spectral load [7].In the above
frame of reference, the generated data set is perturbated by varying the most delicate parameters
of EDFA; noise figure and amplifier ripple gain. The selection of noise figure is made by uniform
distribution varying between 6 dB to 11 dB while the amplifier ripple gain is varied uniformly
with 1 dB of variation. Additionally, the generated data set is further perturbed by insertion
losses figured by an exponential distribution [28]. The mimicked data set consists of two different
sub-set of data; one set refers to an in-service network while the other refers to an agnostic
network. The configuration used for an agnostic network scenario is the same as for the former
in-service network case except for perturbed EDFA noise figure, ripple gain, and insertion losses
in the OLS already described.
After concluding the basic network configuration, the most elegant part is the spectral load

configuration of simulated links. The proposed model is the subset of 276, where 76 is the
total number of channels. In the considered subset of spectral load realization, each source-to-
destination (s –> d) pair has 1024 realizations of random traffic ranging from 34% to 100%
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of total bandwidth utilization. The first data set generated against the European Union (EU)
Network Topology, used as an in-service network and for an agnostic network, the required
data set is generated against the USA Network Topology shown in Fig. 2(b) and Fig. 2(c). The
raw statistics of both network topologies are shown in Table 2. In order to mimic the proposed
behaviour, GNPy is configured to generate 4096 realizations of spectral load configuration for 4
(s –> d) pairs of in-service EU Network and 35,840 realizations of spectral load against 35 (s –>
d) pairs of an agnostic USA Network shown in Table 3 and Table 4.

Table 2. Topologies Details

EU: Training USA : Testing

Average distance (Km) 2014.06 2541.75

Maximum distance (Km) 3051.10 5481.07

Minimum distance (Km) 669.30 568.33

Average number of spans 19.75 27.49

Table 3. EU: Training

Source Destination Spans Source Destination Spans

Vienna Warsaw 7 Brussels Bucharest 30

Amsterdam Berlin 8 Frankfurt Istanbul 34

Table 4. USA : Testing

Source Destination Spans Source Destination Spans

Milwaukee Minneapolis 6 Denver Detroit 29

Louisville Memphis 7 Kansas City Las-Vegas 30

Boston Buffalo 8 Las-Vegas Little Rock 30

Charleston Charlotte 8 Albuquerque Atlanta 33

Chicago Cincinnati 12 Birmingham Bismarck 33

Greensboro Hartford 14 Austin Baltimore 34

Atlanta Austin 20 Miami Milwaukee 35

Charlotte Chicago 20 Abilene Albany 36

Columbus Dallas 20 Bismarck Boston 36

Dallas Denver 20 Detroit El Paso 38

El Paso Fresno 21 Hartford Houston1 38

Minneapolis Nashville 21 Baton Rouge Billings 41

Buffalo Charleston 22 Billings Birmingham 41

Houston Jacksonville 23 Albany Albuquerque 45

Memphis Miami 24 Los Angeles Louisville 46

Baltimore Baton Rouge 25 Fresno Greensboro 54

Little Rock Long Island 25 Long Island Los Angeles 61

Jacksonville Kansas City 26

After retrieving the data set, the statistical analysis of the GSNR against different spectral load
configurations for particular (s –> d) is made to estimate the uncertainty in GSNR calculations.
We considered a single path {Milwaukee-Minneapolis} in the test data set for the statistical
analysis of the GSNR. We selected only one path for analysis as we do not expect a substantial
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difference in the statistical characteristics of GSNR for the other paths.Firstly, the distribution
of GSNR for this particular path is depicted in Fig. 3. In this regard, we selected channel under
test (channel number 10) for all the test realization in which this candidate channel is always
ON. Along with this analysis, few primary considerations arise by computing the average of the
GSNRs for every channel over all the test realizations of this peculiar path, presented in Fig. 4.
The average values of GSNRs present a characteristic figure of the OLSs component, which
comes to pass between 13.27 dB, and 13.90 dB, along with standard deviations from 0.233 dB to
0.33 dB respectively.

Fig. 3. GSNR distribution of acquired data set.

Fig. 4. Overall, GSNR measurements for a single path in the frequency domain. The green
dots are the mean values over each channel’s entire sample; the error bars are equal to the
standard deviations. In blue and orange, the maximum and the minimum for each channel
are outlined, respectively. The dashed red line indicates the overall GSNR minimum of
12.4 dB.

Considering the current scenario, if nothing is known about the GSNR dependency upon
frequency, the same GSNR threshold must be enforced for all channels with magnitude lower
than a global expected minimum. In this case, the GSNRp

i are fixed to the constant GSNR
threshold of 12.4 dB creating an average margin of up to 1.70 dB over a considered set of
realizations for this particular path. Moving towards the next scheme, consider the availability
of stored data that particularizes the frequency-resolved GSNR response, one can truncate the
margin by fixing a minimum value for each channel that must lie under the respective minimum
measurement (continuous orange line in Fig. 4). However, this solution is sub-optimal; it is the
most acceptable reachable result, conservative and agnostic with respect to the definite spectral
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load configuration against this peculiar path. This definitive solution yields a finite improvement,
compared to the first case having a value of 1.70 dB, as the average margin would be reduced to
1.51 dB. However, this second approach is strikingly dependent upon the sample space of GSNR
realization; acquiring a minimum reliable value for each channel requires a sufficiently large
number of instances. In the above context, both the considered scenarios are not feasible given
agnostic network, where the statistics of the GSNR against different spectral load configuration
is not available.

In contrast to this, an ML approach appears to be a promising candidate not only to predict the
GSNR against any particular path of a network but also aided a decrease in the uncertainty in
GSNR predictions, even if the dimension of the sample of in-service network is limited.

4. Machine learning model orchestration

The proposed models cognate the features and labels of the candidate LP of the in-service
network using ML. The manipulated parameters used to define the features for ML models
include received signal power, NLI, ASE, channel frequency, and distance between source to
the destination node (integral number of fiber spans traversed). In contrast, the exploit label is
manipulated by the GSNR parameter of the candidate LP depicted in Fig. 5. The total number of
input features for proposed ML models consist of 380 entries, as we have 76 entries against each
manipulated parameters (76 X 5 = 380). The considered models utilize ML’s functionality, which
is a powerful tool to find the relationship between the provided features and the desired label
[35].Typically almost all ML-based models perform better when they are trained on standardized
data sets [36]. Generally, the standardized data set has zero mean and unit variance.

Z =
X − µ
σ

(4)

MSE =

n∑
i=0

(
GSNRp

i − GSNRa
i

)2
n

, (5)

In the present work, standardization of data set is done using z-score normalization, expressed
in Eq. (4), where µ and σ is the mean and standard deviation of each particular feature vector
of data set. Along with this, model evaluation is done by mean square error (MSE) as a loss
function expressed in Eq. (5), where GSNRa

i and GSNRp
i are the actual and predicted values

of any candidate channel for the ith spectral load, respectively, and n is the total number of
realizations in the test data set.

Fig. 5. Machine learning module.
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5. Machine learning analysis

The paradigm of ML and especially deep learning concept allows the inference of useful network
characteristics that cannot be easily or directly measured. Generally, ML models’ cognition
ability is provided by a series of intelligent algorithms that learn the inherent information of the
training data. The inherent information is then abstracted into the decision models that guide
the testing phase. These trained decision models offer operational advantages by allowing the
network to draw conclusions and react autonomously.

In the present work, six ML models are proposed for QoT-E. Each proposed model consists of
three basic modules; pre-processing, training, and testing. The pre-processing module is used to
standardize the data set before applying it to the training module. The training module uses the
standardized data set of EU Network, which is considered as in-service network shown in Table 3
for the training of the proposed models. After training, the testing module explicitly starts testing
on the USA Network data set subset, considered as agnostic network shown in Table 4.

The proposed ML-based models are developed by using high-level python application program
interface (API) of two open-source ML libraries, scikit-learn© (SKL) [36] and TensorFlow© (TF)
[37], which provide a variety of learning algorithms as well as appropriate functions to refine
the data set before using as an input to ML model. Generally, SKL is a general-purpose or a
traditional ML library, while TF is considered a deep learning library. Unlike TF, SKL provides
a powerful feature engineering tool kit for data refining processes such as dimensional reduction,
standardization, transformation, etc. while TF automatically extracts useful features from the
data and does not need to this manually.
Using python API of SKL’s, three possible ML models; Decision Tree Regressor, Random

Forest Regressor, and Multi-Layer Perceptron Regressor, while using TF’s; Boosted Tree
Regressor, Deep Neural Network and Wide Deep Neural Network are developed.

5.1. Decision tree regressor

To estimate QoT, the Decision tree regressor (DTR) model is proposed, which provides direct
relationships between the input and response variables [38]. DTR constructs a tree based on
several decisions made by analyzing different aspects of data set features and eventually leads
to a response variable. The DTR has two main basic tuning parameters; min_samples_leaf
and max_depth. To get the optimum values of these parameters, we tuned the number of
min_samples_leaf = 3 and max_depth = 100 in order to achieve the best trade-off between
precision and computational time in the particular simulation scenario.

5.2. Random forest regressor

The Random forest regressor (RFR) is a type of ML algorithm that creates an ensemble of
regression trees using a bagging technique [39]. Bagging creates various subsets of data from the
training data set chosen randomly with replacement. The RFR is a step extension over Bagging.
It not only takes a random subset of data but also a random selection of features rather than using
all the features to train several decision trees. The final prediction of the RFR is made by merely
averaging the predictions of each individual decision tree. Similar to DTR parameter tuning,
we also do the same for RTR and decide min_samples_leaf = 3 and max_depth = 100 in the
particular simulation scenario.

5.3. Multi-layer perceptron regressor

The Multi-layer perceptron regressor (MLPR) is one of the most commonly used AI networks.
Generally, MLPR is not a single perceptron with multiple layers but multiple artificial neurons
(perceptrons) with multiple layers. Typically, MLPR has three or more layers of perceptrons. The
layers of the MLPR form a directed, acyclic graph where each layer of MLPR is fully connected
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to the subsequent layer [40]. The proposed MLPR is configured by several parametric values
such as training steps = 1000, loaded with back-propagation (BP) algorithm along with default
Stochastic Gradient Descent Algorithm (SGD) optimizer having default learning rate = 0.01 and
L1 regularization = 0.001 [41]. The basic function of L1 regularization is to prevent MLPR from
over-fitting. In addition to this, several non-linear activation functions such as Relu, tanh, sigmoid
are tested during model building. After testing all of these non-linear activation functions, Relu is
selected to empowered MLPR, as it outperforms others in terms of prediction and computational
load [42]. Finally, the most important is the hidden-layer, MLPR is tuned on several numbers of
hidden-layer and neurons to achieve the best trade-off between precision and computational time.
These two parameters are linked to the complexity of the MLPR, which is tied to the complexity
of the problem. Although the increase in the number of layers and neurons improves the accuracy
of the MLPR up to a certain extent, a further increase in these values has an adverse effect that
causes over-fitting and increases in the computational time. In this trade-off, MLPR for QoT-E
uses 3 hidden-layers, containing 20 neurons each.

5.4. Boosted tree regressor

The Boosted tree regressor (BTR) is also a type of ML algorithm that creates an ensemble
of regression trees using the Gradient-Boosting technique. BRT works by combining various
regression trees’ models, particularly decision trees, usingGradient-Boosting [43]. More formally,
this class of models can be written as in Eq. (6), where the final regressor f is the sum of

f (x) = r0 + r1 + r2 + · · · · · · .. + ri (6)

simple base regressor ri. Similar to other tree regressors parameter tuning, we also do the
same for BTR and decide min_samples_leaf = 3 and max_depth = 100. Further more, BTR is
also configured by several other parameters such as default learning rate = 0.01 along with L1
regularization = 0.001 for absolute weights of the tree leafs for the current simulation scenario.

5.5. Deep neural network

The Deep neural network (DNN) is a type of Artificial Neural Network (ANN) with multiple
layers between the input and output layers [44]. Each particular layer of DNN consists of multiple
neurons, the computational and learning unit of neural networks shown in Fig. 6. For the QoT-E,
the proposed DNN is configured by several parametric values such as training steps = 1000,
loaded with default Adaptive Gradient Algorithm (ADAGRAD) keras optimizer with default
learning rate = 0.01 and L1 regularization = 0.001 [45]. The basic function of L1 regularization is
to prevent DNN from over-fitting. In addition to this, during model building non-linear activation
function, Relu is selected that allows translation of the given input features into the prediction
label of our point of interest with less complexity [42]. Finally the most important is the number
of hidden-layers, DNN is tuned on several number of hidden-layers and neurons in order to
achieve the best trade-off between precision and computational time. In this trade-off, DNN for
QoT-E uses 3 hidden-layers, containing 20 nodes each.

5.6. Wide deep neural network

The Wide deep neural network (W-DNN) is a type of DNN architecture that combines the
strength of memorization with generalization [46]. Generally, W-DNN is synergically trained on
wide linear model such as Linear Regression (LR) for memorization and for generalization on
DNN. The output of wide LR and generalized DNN are combined at the output layer to get the
final prediction shown in Fig. 6(b). For the QoT-E, the proposed W-DNN is configured with
1000 training steps, loaded with default Follow the Regularized Leader (FTRL) keras optimizer
with default learning rate = 0.01 and L1 regularization = 0.001 against wide LR model [47],
while generalize DNN is loaded with default ADAGRAD keras optimizer with default learning
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Fig. 6. (a) Deep neural network architecture; (b) Wide deep neural network architecture.

rate = 0.01 and L1 regularization = 0.001 [45]. The Relu, nonlinear activation functions is
selected to empowered deep part, as it outperform others non-linear activation function in terms
of prediction [42]. The output layer is fed with sigmoid function, as sigmoid produces activation
values in a particular range so that the output layer will always be activated. During the training
of W-DNN, the wide and deep parts are jointly trained at the same time. The loss function over
training steps for W-DNN is observed in Fig. 12. The synergic training of both wide and deep
architectures optimizes all parameters and the related weights of their sum, taken into account
during the training time.

6. Results and discussion

The numerical assessment of various ML models developed by using python APIs of SKL and TF
libraries have been performed by considering 4 different paths of EU Network for training and 35
different paths of USA Network for testing. The prediction power of the each proposed model is
estimated by calculating the ∆GSNR, where ∆GSNR = GSNRPredicted - GSNRActual. The proposed
models are simulated on a workstation having specifications, 32GB of 2133MHz RAM and an
Intel Core i7 6700 3.4GHz CPU.

6.1. Comparison of SKL based learning methods for QoT-E

In this section, we exploit the proposed ML models’ prediction performance based on SKL’s
API: DTR, RFR, and MLPR. In Fig. 7 distribution of ∆GSNR, a prediction error metric is plotted
for DTR, RFR, and MLPR for the test samples of on channels realization only. For the given
simulation scenario, the DTR is unable to find the underlying relationship and irregularities. On
the other hand, the RFR took advantage of averaging various decision trees instead of a single
decision tree, trained on randomly selected subsets of the training samples. Therefore, the overall
performance of the RFR is much better than the DTR. Furthermore, the MLPR performed very
well due to its cognitional potentiality provided by internally configured neurons compared to the
DTR and RFR. The above descriptive results are verified by observing the mean (µ) and standard
deviation (σ) of ∆GSNR distribution against each proposed model in Fig. 7.
Furthermore, observing Fig. 9(a), the box plot of ∆GSNR also depicts that the prediction

performance of MLPR outperforms DTR and RFR. In Fig. 9(a), the central rectangle span
specifies the first quartile (Q1) to the third quartile (Q3). A segment inside the rectangular box
shows the median of ∆GSNR and "whiskers" around the rectangular box show the minimum
and maximum values of ∆GSNR. Focusing on MLPR, after observing Fig. 7 and Fig. 9(a),
we further analyze and elaborate the results related to the MLPR by showing the bean plot of
∆GSNR distribution against all the test paths of agnostic USA Network in Fig. 11. In Fig. 11, the
"whiskers" above and below the bean show the out bound of ∆GSNR, the black segments show
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Fig. 7. SKL based learning methods.

individual observation along with the µ value (red segment in each bean) of ∆GSNR for each test
path. After demonstrating prediction performance, we further analyze the training time for each
SKL based learning method shown in Fig. 10(a). The Fig. 10(a), depicts that the proposed MLPR
takes longer time duration during training as compared to RFR and DTR due to its internal fully
connected hidden perceptrons. The RFR takes a slighter longer duration than the DTR because
of its dependency over the bagging technique.

6.2. Comparison of TF based learning methods for QoT-E

In this section, we are doing the same analysis for TF based learning methods as we have done
for SKL based learning methods. Initially, we exploit the proposed ML models’ prediction
performance based on TF’s API: BTR, DNN, W-DNN shown in Fig. 8. Figure 8 demonstrates
the distribution of ∆GSNR for W-DNN, BTR and DNN for the test samples of on channels

Fig. 8. TF based learning methods.

Fig. 9. (a) Comparison of SKL based learning methods; (b) Comparison of TF based
learning methods.



Research Article Vol. 3, No. 10 / 15 October 2020 / OSA Continuum 2703

realization only. For the given simulation scenario, the BTR took advantage of the boasting
technique, combining various models of the regression trees and select the new tree that best
reduces the loss function instead of choosing randomly. On the other hand, the DNN outperforms
BTR due to its cognitional potentiality provided by internally configured neurons as compared to
BTR. Finally, the W-DNN gives more refined tuning to DNN as it combines the LR and DNN.
The wider LR gives more refined tuning to the DNN by characterizing features at the output layer.
The above-described results are verified by observing the µ and σ of ∆GSNR distribution for
each proposed model in Fig. 8.
In order to better visualize the comparison among W-DNN, BTR and DNN, Fig. 9(b) shows

the box plot of ∆GSNR distribution for each TF based learning method. Focusing on W-DNN
after observing Fig. 8 and Fig. 9(b), it is quite obvious that W-DNN is the best TF based learning
method in the present simulation scenario. We further analyze and elaborate the results related to
W-DNN by showing the bean plot of ∆GSNR distribution of all the test paths of agnostic USA
Network in Fig. 13. Furthermore, we also analyze the training time for each TF based learning
method shown in Fig. 10(b). Figure 10(b) depicts that the proposed W-DNN takes a long time
duration during training compared to the DNN and BTR due to the synergic training of LR

Fig. 10. (a) Training time of SKL based learning methods; (b) training time of TF based
learning methods.

Fig. 11. Distribution of ∆GSNR for the simulated links of USA network using MLPR.
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and DNN. The DNN takes a longer duration than the BTR because of its internal hidden-layers
containing several neuron units.
Finally, we analyze the prediction ability of the finest models of the two libraries; MLPR

and W-DNN against all the test lightpaths. Observing Fig. 13 and Fig. 11 the W-DNN shows
maximum ∆GSNR = 0.40 dB against against Buffalo-Charleston lightpath while the MLPR shows
maximum ∆GSNR = 0.62 dB againstMemphis-Miami lightpath. The remarkable performance
of W-DNN is because of the synergic training of LR and DNN, which enables it to outperform
the traditional MLPR and DNN. Furthermore, the classical MLPR shows a large deviation of
∆GSNR because it is based on the gradient-based local search technique, which at some point
during training gets stuck in an unwanted local minimum.

Fig. 12. W-DNN loss function over the training steps.

Fig. 13. Distribution of ∆GSNR for the simulated links of USA network using W-DNN.

7. Conclusion

In summary, we proposed and exploit the ability of several different ML models for QoT-E,
considering the scenario of cross-training of these ML techniques on in-service EU Network and
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tested on completely agnostic USA network. The proposed ML models are developed by using
higher-level APIs of SKL and TF libraries. The developed models are cross-trained and tested on
the synthetic data generated by the GNPy library.

Exploiting the ability of ML,W-DNN performs barely better than DNN due to the enhancement
provided by synergic training of generalize (DNN) and wide (LR) architectures. The prediction
performance of the applied DNN is marginally more refined than the MLPR since the back-
propagation algorithm used by the MLPR is based on the gradient-based local search technique,
which at some point during training gets stuck in an unwanted local minimum [48].

In addition to this, the BTR and RFR prediction is better than DTR due to the use of
ensembling techniques; boosting and bagging. Finally, results demonstrate that ML techniques
are an undeniable alternative for faster and precise provisioning QoT of an LP in an agnostic
optical network scenario. Remarkably, the W-DNN proved to be the model achieving the best
generalization with maximum prediction error smaller than 0.40 dB.
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