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A wearable EEG instrument for real-time frontal
asymmetry monitoring in worker stress analysis

Pasquale Arpaia1, Senior Member, IEEE, Nicola Moccaldi1, Roberto Prevete1, Isabella Sannino2,
Annarita Tedesco3

Abstract—A highly-wearable single–channel instrument, con-
ceived with off-the-shelf components and dry electrodes, is
proposed for detecting human stress in real time by electroen-
cephalography (EEG). The instrument exploits EEG robustness
to movement artifacts with respect to other biosignals for stress
assessment. The single-channel differential measurement aims at
analyzing the frontal asymmetry, a well-claimed EEG feature
for stress assessment. The instrument was characterized metro-
logically on human subjects. As triple metrological references,
standardized stress tests, observational questionnaires given by
psychologists, and performance measurements were exploited.
Four standard machine learning classifiers (SVM, k-NN, Random
Forest, and ANN), trained on 50% of the data set, reached more
than 90% accuracy in classifying each 2-s epoch of EEG acquired
from stressed subjects.

Index Terms—EEG, Stress, Brain-Computer Interface, Cobot,
Industry 4.0, Smart Manufacturing.

I. INTRODUCTION

Stress is a psycho-physical pathological response to emo-
tional, cognitive, or social tasks, perceived as excessive by an
individual. Many stimuli of different nature (physical, toxic,
emotional), external to individuals, could disturb their home-
ostasis and psychological well-being, bringing to an adaptive
or non-adaptive response [1]. In industrial work, stress has
negative impact on safety, on the quality of the outcome and,
thus, on the cost of the production process as a whole [2].
Technological innovation, indeed, has introduced new sources
of stress (stress 4.0). Intelligent automated systems in their var-
ious configurations, robots or cobots in collaborative meaning
[3], interact continuously with individuals in a constant rela-
tionship of cooperation and, at the same time, of unconscious
competition.

In literature, different indicators of stress status are pro-
posed, arising from products of neuroendocrine reactions af-
fecting sympathetic and parasympathetic nervous systems [4].
Some biochemical and biophysical markers are measured
usually by invasive methods: (i) Cortisol Concentration in
blood or saliva; (ii) Galvanic Skin Response; (iii) Heart Rate;
and (iv) Brain Activity.
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Cortisol is a hormone produced by the adrenal glands with
the aim of preserving homeostasis in all conditions tending to
alter the normal body balance. Cortisol concentration in blood
has been used as the first index of the individual’s response
to stress. It is measured through repeated blood samples, or
through saliva samples, by means of less invasive methods but
with less significance [2].

Skin conductance is a further parameter associated to the
activation of the sympathetic nervous system and, therefore,
to stress. Stress induces an increase in the epidermis moisture
and, therefore, a reduction in skin resistance.

Furthermore, stress generates peripheral vasoconstriction
that causes a decrease in wave amplitudes of electrocardiogram
(ECG) and an increase in the heart rate [4].

Brain activity produces electrical signals as a response to
all kind of internal and external stimuli. The signals are
recorded either through functional Magnetic Resonance Imag-
ing, Positron Emission Tomography, or electroencephalogra-
phy (EEG). All these techniques detect brain activity changes
in the limbic system and frontal regions.

EEG is the most widely used because it is easy to implement
and little intrusive; moreover, EEG signals can be classified
effectively through a frequency analysis. Some use cases of
stress recognition based on EEG are given in the literature[5],
[6]. Significant is a wearable EEG device for construction
workers [7]. High vulnerability characterizes the activities
on-site of the workers during a construction process; so,
they suffer from load stress. By including an EEG device
into their protective helmet, brain waves are monitored and
analyzed along the activity, by highlighting possible emotional
states and, therefore, actual attention levels [8]. However,
state-of-the-art solutions exhibit at least one of the following
weaknesses: (i) limitations for daily on-field use, e.g. due to a
large number of wet electrodes and use of wired systems; (ii)
accuracy less than 90%, even in case of simultaneous ECG and
EEG measurements [9]; and (iii) high cost, up to thousands
of dollars [10].

In this paper, a highly-wearable single-channel instrument,
conceived with off-the-shelf components and dry electrodes,
for human stress real-time detection based on EEG, is pre-
sented. The single-channel differential measurement aims at
analyzing the Frontal Asymmetry, a well-claimed EEG feature
for stress assessment. The differential channel, in fact, acquires
two signal from symmetric regions of the scalp and calculates
the difference [9]. The instrument exploit EEG robustness
to movement artifacts compared to other stress assessment
biosignals. In particular, in Section II, concepts related to



biosignals and stress, EEG for stress assessment, and frontal
EEG asymmetry are recalled. Instrument architecture and
operation are illustrated in Section III. Hardware, firmware,
and software are described in Section IV. In Section V,
the experimental psychological validation of the stressors
effectiveness, a Principal Component Analysis, and a noise
robustness assessment are reported.

II. BACKGROUND

A. EEG for Stress Assessment

Several methods for stress assessment, like self-assessment
scale, or questionnaires, follow a psychological approach [11].
As an example, in human-robot interaction, questionnaires to
analyze the psychological effect of cycle time on operators
[12] highlighted frustration, effort, and a dissatisfaction feeling
about own performance.

As more direct and objective tools for stress detection,
biosignals have been proposed in several studies [13]. Phys-
iological parameters, as EEG signals, blood volume pulse
(BVP), electro-oculogram (EOG), salivary cortisol level (SCL)
[14], heart rate variability (HRV) [15], galvanic skin response
(GSR), or electromyography (EMG) are assessed [4].

Compared to other biosignals, EEG proved better latency
and robustness to artifacts due to physical activity [6] [16].
In Industry I4.0 scenarios, EEG has been widely applied to
assess individuals’ stress in workplace in order to improve
workers’ safety, health, well-being, and productivity [7][17]
[18]. Thanks to the ease of application and removal, dry
electrodes are increasingly used to reliably search human
cognitive states in real-life conditions. They guarantee the
quality of the EEG signal which approaches the wet sensors, as
demonstrated in [19], [20]. Beside that, EEG is regarded as one
of the most reliable and effective techniques for identifying
fatigue and monitoring stress level in drivers [21], [5], [22].
Different classification methods try to face the main problems
of EEG signals, including the low signal-to-noise ratio, their
non stationarity over time within or between users, and the
limited amount of training data typically available to calibrate
the classifiers[23].

A large number of informative and measurable properties
(features) of EEG signals, can be used both in time and
frequency domains. Their accurate selection is crucial for the
accuracy and the computational cost of classification [24].
Both types of features reap the benefit from being extracted
after spatial filtering. Independent Component Analysis and
Canonical Correlation Analysis are useful methods for muscle
artifact removal in EEG data [25], [26]. Several supervised
learning algorithms could be exploited to assess workers
stress by using subjects’ EEG signals. The classification can
be assisted by: linear classifiers, neural networks, non-linear
Bayesian classifiers, nearest neighbour classifiers, random for-
est, naive bayes, and decision tree [27][28]. Linear classifiers
are the most popular algorithms for Brain Computer Interface
(BCI) applications, such as, Linear Discriminant Analysis
(LDA) and Support Vector Machine (SVM)The LDA is used
to assess mental fatigue in [29], it divides the data into
hyperplanes representing the different classes, with very-low

computational burden. A discrimination based on hyperplanes
was also used in SVM, with recognition rate of 75.2% to
identify three different level of stress out of four, using
EEG features and six statistical features in [30]. Meanwhile
a better prediction accuracy of 90.5% and 92%, combining
different acquired signals, were reported in [21], [22] for
drivers. Various supervised machine learning algorithms, using
sliding and fixed windowing procedures, were tested in [7]:
k-Nearest Neighbors, Gaussian Discriminant Analysis, SVM
with different similarity functions (linear, Gaussian, cubic, and
quadratic). Among the state-of-the-art classifiers, the SVM
yielded the highest classification accuracy of 90.1% [31], using
a single-channel EEG. As well as, the highest accuracy of
88.0% was reached by SVM in [32], where individuals’ stress
was recognized by exploiting only EEG signal as input of the
classifier. Tab I summarizes the reported accuracy of different
classifiers, including the numbers and type of EEG electrodes,
without reference electrodes, the numbers of different classes
according to the acquired bio-signals used as model input.

B. Frontal EEG asymmetry

Systematic alterations in frontal EEG asymmetry, in re-
sponse to specific emotional stimuli, can be exploited to an-
alyze emotional response [35]. In particular, EEG asymmetry
proved to be capable of predicting state-related emotional
changes and responses. For example, a greater self-reported
happiness or positively-valued stimuli might be expected to be
associated with greater relative left frontal activity. Therefore,
greater relative right frontal activity would be expected in
response to negative stimuli [36],[37]. However, fear or happi-
ness response to stimuli may either be attenuated or amplified
according to any given individual’s trait pattern of frontal EEG
asymmetry [36].

Different models were presented: Baron and Kenney lin-
ear model may predict individual’s response to fear relevant
stimuli. According to the relative difference between the left
and right hemisphere, the EEG asymmetry may serve both to
amplify and attenuate the effect of the fear relevant stimuli.
Some individuals show the increase of relative right versus left
sided activity in response to negative cues and the increase
of left versus right sided activity to positive cues [38]. Coan
and Allen [39] presented another linear model to predict
emotional experience using emotion type and trait frontal
EEG asymmetry. The frontal EEG asymmetry may serve as a
useful liability marker also for depression and anxiety [40].
Many works, using EEG caps with a limited number of
electrodes, demonstrated that stress causes changes in regions
of prefrontal and frontal areas [14] [6] [36].

III. DESIGN

In this Section, (A) the Basic Ideas, (B) the Architecture,
(C) the Operation, and (D) the Feature Extraction and Clas-
sification of the instrument are presented.

A. Basic Ideas

The concept design of the real-time stress monitoring in-
strument was based on the following main basic ideas.



Table I
STATE OF ART OF STRESS CLASSIFICATION

Classifier Reference Reported Accuracy% Acquired Signals Classes n◦ Electrodes n◦ Subjects

Artificial Neural Network (ANN) [21] 76.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
[28] 79.2% EEG,SCL,BVP,PPG 2 levels of stress 5 Wet 15

Cellular Neural Network (CNN) [21] 92.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
Decision Tree [21] 84.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
Fisher linear discriminant analysis (FLDA) [22] 90.5% EEG,EOG 2 alert and fatigue states 32 Wet 8
Gaussian Discriminant Analysis (GDA) [7] 74.9% EEG,GSR 2 high or low stress level 14 Wet 11
K-Nearest Neighbors
(k-NN)

[7] 65.8% EEG,GSR 2 high or low stress level 14 Wet 11
[30] 76.7% EEG 2 levels of stress 14 Wet 9

Linear discriminant analysis (LDA) [29] 77.5% EEG 3 low, medium, high mental fatigue 16 Wet 10
[6] 86.0% EEG,ECG,EMG,GSR 3 stress,relax,and neutral 4 Wet 10

Naive Bayes (NB) [21] 77.0% EEG,ECG,GSR 2 no-stress/stress 14 Wet 22
[32] 69.7% EEG,ECG,GSR 2 mental workload and stress 2 Wet 9

Random Forest (RF) [33] 79.6% EEG,EMG,ECG,GSR 4 cognitive states 8 Wet 12
[27] 84.3% EEG,ECG,BVP 3 mental stress states 14 Wet 17

Support vector machine (SVM)

[30] 75.2% EEG 3 levels of stress 14 Wet 9
[7] 80.3% EEG, SCL 2 high or low stress level 14 Wet 11
[34] 85.4% EEG 2 positive or negative emotion 14 Wet 11
[9] 87.5% EEG,ECG,HRV 2 stress and rest 2 Wet 7
[31] 88.0% EEG 2 levels of stress 14 Wet 10
[32] 90.1% EEG,ECG,GSR 2 mental workload and stress 2 Wet 9

• High wearability: a single differential channel allows the
use of only two frontal electrodes in the area FP1 e
FP2 according to the EEG International 10–20 system for
placement of EEG electrodes on the scalp. The reference
electrode is applied to the earlobe. These positions have
been used in reports of successful studies on stress [32].
Active dry electrodes avoid the inconvenient of elec-
trolytic gel. A wireless module allows the user to carry
out work activity during the EEG acquisition.

• High accuracy and low latency: Despite the use of a
single differential acquisition channel, a time-domain
based machine learning algorithm brings to an accuracy
of 98.3 ± 0.4 in stress detection. A time window of 512
samples guarantees a latency of 2 s.

• Off-the-shelf components: The measurement of frontal
asymmetry by EEG at very-low density (single channel)
allows high wearability, maximum accuracy, and low
latency by exploiting the lowest cost hardware on the
market (< 200 $) [10].

B. Architecture

The architecture of the proposed instrument is highlighted
in Fig. 1, in an example of interaction with a cobot. Prefrontal
asymmetry is measured by two Electrodes as the difference of
brainwaves from position FP1 and FP2, according to 10/20
system. The differential signal is referred to the earlobe.
Analog signal is digitized by the Acquisition Unit and is
sent, via wires, to the Wi-Fi Transmission Unit. Digital data
arrives at the Processing Unit through wireless communication
for real-time elaboration. Suitable features are extracted from
each EEG record to compress data and increase significance.
A Classifier receives the feature arrays, detects the stress
condition, and assess its level. The measured stress is sent
to the Cobot.

C. Operation

The instrument allows to detect the onset and to assess
the level of the stress arising from the concurrence of high

Figure 1. Architecture of the real-time stress monitoring instrument in Cobot
interaction.

mental load and negative emotional conditions, during the
interaction with a Cobot. Once the worker fixes the electrodes
on the forehead and on the earlobe, the Processing Unit
interface allows to check signal quality both in time and in
frequency domain. Subsequently, the stress measurement starts
and the acquired data are sent in real time to the Processing
Unit, by updating the user condition assessment every 2 s.
Measurement results are sent to the Cobot in order to adapt
its behavior to the worker stress conditions.

D. Feature extraction and classification

Preliminary experiments in frequency domain highlighted
poor accuracy results. Therefore, data analysis was carried out
in the time domain. According to the state of the art [38], a
EEG time window of 2 s was chosen as the optimal solution
considering the trade-off accuracy vs latency. In time domain,
EEG tracks are divided into 2–s records of 512 samples. In
this way, raw data are composed of 512 features, i.e. each
feature corresponds to just one sample. Feature Extraction
was carried out by a standard machine learning technique, the
Principal Component Analysis (PCA). This allows to compress
data [41] and to approximate signals as a linear combination
of a restricted number of orthogonal components. Therefore,



data variance is most efficiently explained. Accordingly, a
multi-variable signal can be represented as a smaller number
of coefficients of the linear combination of the components.
PCA also performs a filter function, because it highlights the
components with maximum variance (information) of the data.
Therefore, selecting only the components with the greatest
variability improves signal-to-noise ratio.

For the classifier design, a linear separability test of the
data was carried out by an euclidean distance-based K-means
algorithm with low computational burden [42]. If a problem
is linearly separable, a nonlinear classifier complicates the
model unnecessarily and makes the correct learning of the
classifier parameters less effective [43]. K-means algorithm
estimates k means (centroids) in order to partition data into k
clusters where each observation belongs to the cluster with the
nearest mean. Then, in case of few outliers, a linear classifier
is justified. Therefore, a preliminary analysis was realized.

1) Preliminary Analysis: Ten subjects were divided into
two classes with different stress level: (i) control group, only
cognitive load, and (ii) experimental group, cognitive load but
with negative emotions. Data were recorded during all the
tests with a differential single-channel digitizer, sampling at
256 sample/s. The signal was elaborated in time domain and
without artifact filtering according to [34]. For each volunteer,
two EEG tracks of 20 s were processed and divided into 2–
s records of 512 samples. The resulting matrix 200x512 was
divided in two clusters using the standard K-means algorithm
with K = 2. In Fig. 2, the result of the clustering algorithm
is reported. The two experimental groups were separated by

Figure 2. K-means classification (white: class 1; black: class 2) among the
2 different time phases according to subjects belonging group.

K-means almost cleanly: on the first five rows, the arrays of
the experimental group records, and on the other rows, the
ones of the control group. These results suggested that also a
linear classifier can be used to discriminate the points of the
two groups adequately.

IV. REALIZATION

A. Hardware

1) Data Acquisition Unit: It is based on the differential
single-channel 10-bit digitizer EEG-SMT by Olimex, with
maximum sampling rate of 256 sample/s, an EEG amplifier,
and an Atmel ATmega16 Alf and Vegard Reduced Instruction
Set Computer processor microcontroller. The gain of the
analog-to-digital converter (ADC) of the transducer was set

to be 6427 V/V. A right-leg driver [driven rightled (circuit)
(DRL)] signal increases the common-mode noise rejection.
Universal serial bus is used for both data communication
and powering. Moreover, the EEG-SMT has an analog three
stages pass-band filter from 0.16 to 59.00 Hz. A previous work
proved its suitability for wearable, low-cost, and non-invasive
brain activity monitoring, by means of a single differential
channel [10].

2) Dry Electrodes: Brain signals are acquired by two dry
active electrodes (Olimex EEG-AE), coated with a thin layer
of silver chloride to guarantee the best contact impedance. The
contact surface is extended by pins of conductive material.
In this way, the quality of the acquired signal is preserved
even with the electrode on a thick layer of hair. The reference
passive dry electrode (Olimex EEG-PE) was applied to the
earlobe. The electrodes on the user’s forehead are fixed with
a tight headband. The electrode on the earlobe is fixed with a
clip, to ensure electrical connection.

3) Transmission unit: A Wi-Fi communication channel
was implemented to enhance wearability, throughout a Rasp-
berry Pi 3 single-board computer, used as server, connected
via UART to the EEG-SMT. The Raspberry Pi 3 uses a
BCM43438 wireless chip and operates at ISM frequency bands
(2.4 GHz).

B. Signal processing and classification

In time domain, EEG tracks are divided into 2–s records of
512 samples. In this way, raw data are composed of 512 fea-
tures, i.e. each feature corresponds to just one sample. Then,
a feature reduction process is realized by PCA. The first four
Principal Components are considered as input in the successive
classification step. As emerged in a previous exploratory
experimental campaign, the first 4 components guarantee at
the same time high accuracy as well as low uncertainty and
computational burden. The mean of accuracy obtained by the
first four Principal Components resulted significantly greater
than that of the first three Principal Components, with a
confidence level of 93.0% (one-tailed t test). machine learning
classifier distinguishes records of a stressed or no stressed
subject. The results of the preliminary experiments (Fig. 2)
show that the two groups are separated from the K-means quite
clearly. These results suggested that also a linear classifier can
be used to discriminate data of the two groups adequately. The
length of records determines the latency of 2 s.

C. Software

1) Raspberry: The EEG signals, digitized by the EEG-SMT
Olimex, are acquired by the Raspberry via UART by means of
a dedicate software in C and installed on the Raspberry Pi 3.
The baud rate is set to 57600 bit/s, with packet size 8, without
parity bit. The Raspberry Pi 3 acts also as a Wi-Fi server,
receiving from the EEG-SMT the command of start of the
acquisition, and sending to the computer station the acquired
data. This allows the users to freely move during real life. In
view of a stand-alone device release, the computational power
guaranteed by the raspberry allows processing to be carried
out directly on board.



2) Processing Unit: A specifically designed Matlab graph-
ical user interface (GUI) allows easy interaction with Olimex
EEG-SMT, through graphical icons and visual indicators.
Moreover, by observing the display windows, EEG signal can
be monitored both in time and frequency domain. Meanwhile,
Matlab scripts implement the machine learning classifiers.

V. METROLOGICAL CHARACTERIZATION

A. Experimental Setup

Seventeen volunteers underwent an initial screening test
administered by the psychologist. Seven participants were
excluded from the experiment owing to excess in smoke, high
score in anxiety and depression at questionnaires, and low
performance at short memory tests. Therefore, ten healthy
young volunteers (average age 25 years) of whom five women
and five men, participated in the study. The informed consent,
containing all the information about the experiment, was pro-
vided and signed by the subjects. The protocol was explained
by the psychologist. Participants were divided equally into
control and experimental groups, to complete a task, which
induces mental load, together with (experimental group) or
without (control group) negative social feedback. In particular,
the Stroop Color and Word Test (SCWT) [44], a neuropsy-
chological test extensively used for both experimental and
clinical purposes, aimed to challenge subject using a complex
cognitive task. In this test, subjects are required to read as
fast as possible color-words printed in an inconsistent color
ink, and to name the color of the ink instead of reading the
word. This is to be done in a limited time punctuated by the
psychologist who also gave information about errors during
the performance. Environment was specifically designed in
order to stress participants, by means of an attractive prize
and an extremely out of range performance. Before and after
the Stroop Test, subjects were required to complete two ques-
tionnaires: (i) STAI State form [45], to evaluate current anxiety
state, and (ii) Rosemberg inventory [46], to assess participants’
self-esteem. In them, they had to reflect their emotions in
the specific moments during their exercise. Moreover, at the
end of experimental tests, participants filled a rating of the
experience in the Likert scale. The two groups, experimental
and control, were subjected to the same protocols, but only
the experimental group was stressed emotionally. During the
experiment, the device did not annoy or distract the subject.
After each trial, the psychologist asked for feedbacks in order
to ensure the safety of participants. They did not experience
any discomfort related to the electrode band; after a few min-
utes, they no longer noticed the device. The most significant 40
s were extracted from each individual test of 180 s. The initial
and concluding stages are potentially the most inhomogeneous
among them, that is, the most challenging in order to find a
regularity, intra individual and even more intra group. The
first 10 s of the test, regarded as cognitive warm up, were
excluded. Therefore, only the later 20 s were deemed. The final
10 s were discarded, due to observations of the psychologist.
The specialist noticed that some subjects showed a renouncing
attitude, once realized the impossibility to complete the task.
Hence, the previous 20 s were considered. Subsequently, for

each subject, the two 20-s EEG tracks were divided in 2-
s records. Each record is characterized by 512 time domain
features, i.e. the 512 samples contained in 2 s. The total
number of records were 200, namely 20 records for 10 subjects
of 2 s each. Five subjects were taken from control group and
five from experimental (stressed) group. In this way, the total
EEG-samples from each group were 51,200. A matrix with
200 records on the rows was obtained by placing the first 100
records referred to the initial and final 20 s stress of control
group and subsequently 100 records related to initial and final
20 s of experimental group.

B. Psychological validation

A unique stress index was estimated as sum of normalized
indexes to assess the general stress induced to participants. The
indexes of performance, anxiety, self-esteem, perceived stress,
and motivation, were obtained from parametric STAI and
Rosemberg tests, as well as from task performance. One-way
ANOVA was used to evaluate stress and motivation indexes
on groups with a significance level α=0.05. The experimental
group was more stressed compared to the control group,
as evidenced by the One-way ANOVA (F=7.49; p=0.026).
Instead, any significant difference between gender was noticed.
A relevant difference in motivation between groups (F=14.52;
p=0.005) showed that control group was more motivated than
experimental group at the end of the experiment. Tab. II shows
that, once arranged the stress index in decreasing order, the
experimental group is more stressed than control one.

Table II
STRESS INDEX DISTRIBUTION (DESCENDING SORT)

Subject Stress Index Group
1 1,68 Experimental
2 1,66 Experimental
3 1,52 Experimental
4 1,38 Control
5 1,21 Experimental
6 0,77 Experimental
7 0,69 Control
8 0,54 Control
9 0,14 Control
10 -0,06 Control

C. Stress Classification

Four different machine learning classifiers were used for
validating the proposed method, by distinguishing stressed
subject signals from no-stressed subject signals: (i) SVM
(linear Kernel), (ii) k-nearest neighbors (n_neighbors = 9),
(iii) Random Forest (criterion = ’gini’, max_depth = 118,
min_samples_split = 49) , and (iv) ANN (one hidden layer,
activation function for hidden node = hyperbolic tangent, loss
function = cross entropy cost, post processing = soft max,
training algorithm = Resilient Propagation). In tab III the
optimized iperparameters for each classifier are reported.

The behavior of each classifier was also evaluated when the
input was pre-processed by PCA.

Importantly, a subject-wise leave-two-out cross-validation
evaluation was uniformly conducted in all the experiments



Table III
CLASSIFIER OPTIMIZED IPERPARAMETERS AND RANGE OF VARIATION

Classifier Iperparameter Variation range
SVM Cost parameter (C) [0.1, 10.1] step = 1.0

Random Forest n_estimators {90, 180, 270, 360, 450}
k-NN n_neighbors [5, 15] step = 2
ANN number of internal node {25, 50, 100, 200}

in order to build a model capable of generalizing to new
subjects. In case of small dataset according to [47], the Leave-
p-out cross-validation (LPOCV) guarantees better statistical
significance with respect to Leave-one-out cross-validation
(LOOCV). Applying LOOCV to our dataset, the cross-
validation process is repeated for k = 10 times, i.e. k = n (the
number of subjects in the original sample). Instead, LPOCV
requires training and validating the model Cn

p times, where
Cn

p is the binomial coefficient, n the number of subjects in
the original sample, and p is the number of subjects reserved
only for the test. In our case (leave-two-out) the two subjects
always belong to different groups (experimental vs control).
In this way, a higher statistical significance was obtained (k =
25), by keeping training and test datasets balanced concerning
the two classes. Therefore, for each iteration, one subject for
group was left out from training set and used in the test set.

Figure 3. Cumulative Explained Variance in the PCA.

1) PCA Analysis: Each classifier was fed with both raw
data (2-s EEG epoch) and PCA pre-processed data. In partic-
ular, for each iteration of the LPOCV method [47] the first p
principal components were computed on the training set. Then
both training and test set were projected on them. Finally, the
reduced representations of both data sets were input to the
classifiers. The number of principal components p was varied:
p ∈ {0, 1, 2, . . . , 9}, where p = 0 corresponds to consider
original data without PCA. The cumulative explained variance
by the first nine components is greater than 99%, when PCA
is applied on the dataset as a whole (Fig. 3). Therefore, this
result highlights an intrinsic dimensionality of the data actually
equal to no more than 9 (with respect to 512) and, in this case,
the use of PCA for features extraction is validated. The results
of the cross-validation strategy are shown in Tab. IV, as mean
and uncertainty, with and without PCA. The lowest average

Table IV
CLASSIFIERS ACCURACY (MEAN AND UNCERTAINTY PERCENTAGE) IN
ORIGINAL DATA (O.D.) AND PRINCIPAL COMPONENTS HYPERPLANES

SVM Random Forest k-NN ANN
O.D. 97.5 ± 0.6 98.5 ± 0.3 98.5 ± 0.4 99.2± 3.1
PC1 90.5 ± 5.3 98,6 ± 0.3 98,9 ± 0.3 98.5± 3.8
PC2 78.5 ± 7.1 98,8 ± 0.2 98,0 ± 0.5 98.8± 3.9
PC3 93.2 ± 3.4 98,4 ± 0.5 98,5 ± 0.4 98.7± 4.3
PC4 98.3 ± 0.4 98,9 ± 0.3 98,5 ± 0.4 99.1± 2.4
PC5 97.8 ± 0.4 98,8 ± 0.5 98,5 ± 0.4 99.2± 2.8
PC6 97.4 ± 0.6 98,4 ± 0.5 98,5 ± 0.4 98.9± 3.3
PC7 97.8 ± 0.5 99.0 ± 0.4 98,5 ± 0.4 98.9± 3.6
PC8 97.4 ± 0.6 98,6 ± 0.5 98,5 ± 0.4 99.0± 3.5
PC9 97.9 ± 0.5 98,9 ± 0.5 98,5 ± 0.4 98.9± 4.1

Table V
F-MEASURE TEST RESULTS FOR SVM (MEAN AND UNCERTAINTY

PERCENTAGE)

Precision (%) Recall (%)
O.D. Hyperplane 96,5 ± 1,0 98,4 ± 0,7

PC1 89,2 ± 5,1 92,2 ± 5,3
PC2 81,1 ± 6,2 81,1 ± 6,7
PC3 96,4 ± 1,5 93,6 ± 3,1
PC4 98,2 ± 0,5 98,5 ± 0,7

P.C. Hyperplanes PC5 97,2 ± 0,5 98,5 ± 0,7
PC6 96,4 ± 1,1 98,5 ± 0,7
PC7 97,2 ± 0,8 98,5 ± 0,7
PC8 96,4 ± 1,1 98,5 ± 0,7
PC9 97,2 ± 0,8 98,7 ± 0,6

accuracy for data without PCA is obtained by SVM and is
equal to 97.5%. An F-measure test was carried out to assess
the classification performance of the worst classifier (SVM).
Results are reported in Tab. V.

SVM classification output when p=2 is shown in Fig.
4 in PCs space. The PCs plot shows vectors distribution
with respect to Support Vector. In that, the diamonds are
associated to the control group, while the circles represent
the experimental group.

Figure 4. SVM data distribution in PCs space, p=2, 92,6% of explained
variance.

Even with a temporal resolution of 2 s, satisfying results
can be obtained in discriminating stress conditions. Generally
PCA allows to obtain comparable or better average accuracy



Table VI
ACCURACY (MEAN AND UNCERTAINTY) IN ORIGINAL DATA (O.D.) AND

PRINCIPAL COMPONENTS HYPERPLANES AT VARYING AMPLITUDE OF
RANDOM GAUSSIAN NOISE

Noise σ percentage value
4 8 12 16 20

O. D. 97.9 ± 0.5 97.0 ± 0.7 96.1 ± 0.8 95.2 ± 0.9 92.2 ± 1.2
PC1 90.1 ± 5.3 89.7 ± 5.2 88.2 ± 5.2 86.4 ± 5.1 84.1 ± 4.8
PC2 79.0 ± 7.0 77.9 ± 7.1 77.5 ± 6.7 74.7 ± 6.6 74.5 ± 6.5
PC3 93.2 ± 3.4 92.4 ± 3.5 88.7 ± 3.4 85.7 ± 3.3 84.4 ± 3.4
PC4 98.2 ± 0.4 97.1 ± 0.7 95.9 ± 0.7 92.7 ± 0.9 90.8 ± 1.1
PC5 97.6 ± 0.4 97.2 ± 0.5 94.6 ± 0.7 91.6 ± 0.1 89.9 ± 0.1
PC6 97.7 ± 0.6 96.6 ± 0.7 95.1 ± 1.0 93.3 ± 1.0 90.4 ± 1.1
PC7 97.9 ± 0.5 96.8 ± 0.7 96.2 ± 0.8 93.7 ± 0.9 91.6 ± 0.1
PC8 97.5 ± 0.6 96.8 ± 0.6 96.3 ± 0.7 93.5 ± 0.1 90.5 ± 0.1
PC9 98.1 ± 0.5 97.2 ± 0.6 96.6 ± 0.6 93.7 ± 0.9 91.9 ± 0.1

when p > 3 and, correspondingly, a lower uncertainty. This
last result suggests a better noise robustness with PCA.

In bi-dimensional case, PCA highlights that the variance of
the control group is lower. Among the two groups, a significant
difference in dispersion around the mean value as well as
amplitudes comes out. Results of Fig. 2 confirm the data
separability, even using only the first principal component,
capable of explaining almost the 90% of variance. The good
correlation between psychometric data and the exposure to
different experimental set up (emotionally stressful and not)
founds the experimental set up reliability in conditioning par-
ticipants with regard to the study variable. The high accuracy
level suggests that the signal acquired through a single channel
preserves the information concerning the frontal asymmetry
elicited from an emotional stress condition.

2) Noise and Bias Robustness: Noise robustness was tested
on the worst classifier (SVM) in order to assess the robustness
of the proposed method. The subject-wise leave-two-out cross-
validation strategy was repeated but with a further noise
parameter, both (i) to make more generic the proposed method,
and (ii) to verify the occurrence of possible bias during
acquisition. The second evaluation is aimed to test the noise
robustness of classification accuracy after PCA. In particular,
two different kinds of noise were considered. In the first test,
aimed at generalization, a random Gaussian noise with zero-
mean and σ ∈ {0.04, 0.08, 0.12, 0.16, 0.20}, multiplied by the
absolute value of the data maximum, was added. Results are
reported in Tab. VI.

In the second test, aimed to verify bias, a constant value
was added to each subject signal of the test sets. In this way,
the signal of each subject was treated with a different random
bias. Bias levels were chosen randomly within intervals of
increasing amplitude (σ ∈ [0.04−0.20], step = 0.04). For this
reason, the global effect on the entire data set is noise. Results
are reported in Tab. VII.

In both the cases, the instrument shows good noise robust-
ness. The classifier with PCA performs better if the noise
level is less than 12% of absolute value of the maximum
of data. Performance degrades in any case with higher noise
levels. In this study, the differential channel and the PCA
are exploited to face the problem of artifacts. A differential
channel intrinsically rejects the common mode noise. PCA
on the differential channel EEG acts like a pass band filter
owing to its intrinsic reduction of the signal dimensionality

Table VII
ACCURACY (MEAN AND UNCERTAINTY) IN ORIGINAL DATA (O.D.) AND

PRINCIPAL COMPONENTS HYPERPLANES AT VARYING AMPLITUDE OF
HOMOGENEOUS NOISE %

Noise Percentage value
4 8 12 16 20

O. D. 97.4 ± 0.6 97.4 ± 0.6 97.1 ± 0.7 92.6 ± 2.2 88.7 ± 3.3
PC1 90.7 ± 5.3 90.8 ± 5.2 90.5 ± 5.3 89.9 ± 5.4 88.0 ± 5.6
PC2 78.0 ± 7.2 77.4 ± 7.2 76.0 ± 7.4 73.4 ± 7.2 68.9 ± 7.0
PC3 93.0 ± 3.6 90.8 ± 3.8 85.1 ± 4.5 81.8 ± 4.5 72.0 ± 4.5
PC4 98.2 ± 0.4 97.4 ± 0.7 94.2 ± 1.8 89.7 ± 3.2 85.2 ± 3.2
PC5 97.5 ± 0.4 97.6 ± 0.4 93.5 ± 1.8 88.8 ± 3.1 85.3 ± 3.3
PC6 97.4± 0.6 97.8 ± 0.5 95.6 ± 0.1 91.1 ± 3.2 87.6 ± 3.4
PC7 97.8 ± 0.5 97.8 ± 0.5 95.4 ± 1.5 91.1 ± 3.1 87.6 ± 3.4
PC8 97.5 ± 0.6 97.4 ± 0.6 94.9 ± 1.5 89.9 ± 3.0 86.7 ± 3.4
PC9 97.8 ± 0.5 97.5 ± 0.5 94.9 ± 1.54 90.9 ± 2.9 88.1 ±3.3

in the PC domain. The combined effect of this two filtering
effects improves the signal-to-noise ratio significantly. The
experimental analysis of noise robustness validated, ex post,
the proposed method.

VI. CONCLUSIONS

A method to assess stress condition in real time trough
a high-wearable EEG-based device has been proposed. EEG
signal amplitudes variations between prefrontal right and left
zone were acquired through a single differential channel. The
induced stress status was verified by a psychologist through
(i) questionnaires administered before and after the stress test,
and (ii) performance assessment. Time domain features were
used in the classification procedure. Four standard machine
learning classifiers (SVM, k-NN, Random Forest, and ANN)
reached more than 90% accuracy in distinguishing each 2-
s epoch of EEG. Generally, PCA allows to obtain a better
noise robustness. The results show the adequacy of the pro-
posed solution based on a single-acquisition channel and time
domain-based feature selection. In the worst case, the SVM
Linear -Kernel classifier succeeded in discriminating stress
conditions with an accuracy of 97.5 ± 0.6% and a latency
of 2 s. For latency above 4 s the accuracy reaches 100%.
Noise robustness was tested in order to exclude the impact of
bias during signal acquisition and to empower generality to
the results. The proposed method gives a new way to detect
prefrontal asymmetry traditionally associated to emotional
stress condition. Further future experimental activity with a
larger number of subjects are necessary to consolidate the
statistical significance of these preliminary results. ). Electrode
scalp locations used in this study, FP1 and FP2, are considered
as sensitive to ocular artifacts. However, our experiments did
not highlight this problem. In any case, further experimental
campaigns will be carried out on new areas of the scalp.
In this way, the impact on the classifier of the information
produced by both the EEG signals and the eye movements
will be deepen. Alternative classifiers and strategies for the
feature extraction such as sparse dictionary learning will be
implemented.
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