
23 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the detection of always-on hardware trojans supported by a pre-silicon verification methodology / Ruospo, A.;
Sanchez, E.. - ELETTRONICO. - (2019), pp. 25-30. (Intervento presentato al convegno 20th International Workshop on
Microprocessor/SoC Test, Security and Verification, MTV 2019 tenutosi a usa nel 2019)
[10.1109/MTV48867.2019.00013].

Original

On the detection of always-on hardware trojans supported by a pre-silicon verification methodology

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MTV48867.2019.00013

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2845978 since: 2020-09-17T12:19:54Z

Institute of Electrical and Electronics Engineers Inc.

On the Detection of Always-on Hardware Trojans
Supported by a Pre-Silicon Verification

Methodology
Annachiara Ruospo, Ernesto Sanchez

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
{annachiara.ruospo, ernesto.sanchez}@polito.it

Abstract—Hardware-based vulnerabilities are becoming a se-
rious threat in the Integrated Circuit (IC) industry. Current
System-on-Chip (SoC) designs are comprised of many Intellectual
Property (IP) blocks coming from third-party vendors. These
can maliciously insert additional hardware, commonly known as
Hardware Trojans, aiming at degrading performance, altering
functionality or even leaking secret information. According to
their activation mechanism, Hardware Trojans are classified as
triggered or always-on. While the detection approaches for the
first class are widely explored even during the early stages
of the IC design flow, the detection of always-on type mainly
relies on side channel analyses, carried out after fabrication.
This work presents a methodology oriented to detect always-
on Hardware Trojans during the pre-silicon design stage. The
proposed approach is able to detect suspicious intrusions by
exploiting a signature mechanism developed during the RTL
verification phase. The activity of carefully selected signals is
spied to record and keep the state of the core. Finally, the efficacy
of the technique has been validated on an open-source IP core
with three different always-on Trojans.

Index Terms—Hardware Trojans, Pre-Silicon Verification, Se-
curity.

I. INTRODUCTION

In the recent years, the security assessment of commercial
computing platform has become a serious concern. With the
growing complexity of modern System-on-Chips (SoCs) as
well as the involvement of many entities is their develop-
ment flow, it is hard to control the potential threat posed
by hardware-based attacks. Hardware-Trojans (HTs) are ma-
licious and intentional modifications of the device, whose
aim is to alter the desired circuit behavior. Infected devices
may experience changes in functionality or specification, may
degrade their performance or even leak secret information [1].
Moreover, they can lower the device reliability by changing
physical parameters.

In the research community, a great effort has been spent on
classifying Hardware Trojans according to factors such as their
insertion phase, the activation mechanisms, the location and
the effects entailed by their intrusion. The authors in [2] [3]
provide a broad description of HTs as well as a wide category
of benchmarks. Depending on their activation mechanism,
they are ranked as triggered or always-on. The former are
activated under certain rare internal or external conditions,
while the latter as soon as their host designs are powered-on.
Both of them are silent and accurately hidden into the design

to avoid all the pre and post-silicon verification, validation
and testing mechanisms. However, their effect could seriously
compromise the correct functionality of the target device and
therefore it is of a paramount importance to develop accurate
strategies for their detection.

Regarding the state-of-the-art Hardware Trojans detection
techniques, much of research focuses on discovering the first
class of Trojans: the triggered-type [4] [5] [6]. Most of these
works try to trigger malicious logic by exploiting formal
methods such as theorem proving and equivalence checking.
Clearly, both the effort and the time required for implementing
formal techniques grow as the complexity of the target device
increases.
Concerning always-on Hardware Trojans, existing techniques
mainly rely on side-channel analyses. A design hosting an
always-on Trojan does not change its functionalities, pro-
ducing apparently the correct outputs. Therefore, it is hard
to detect them without observing side-channel parameters.
Indeed, an infected design evidences a change of physical
characteristics, in the form of power, delay or current. Tech-
niques addressing this class of Trojans, [7] - [8] - [9], usually
depend on a Trojan free golden reference model that is not
always available. The second main drawback is that side-
channel analyses are carried out after fabrication. A pre-
silicon verification and validation methodology is suggested
in [10], but from a formal perspective. They demonstrate
the use of theorem proving methods for providing high-level
protection of IP cores as well as the use of symbolic algebra
in equivalence checking.

The main intent of this work is to provide a methodology
to detect always-on Hardware Trojans in the early stages of
the design development process of pipelined processor cores,
i.e., the pre-silicon phase, without recurring to formal tech-
niques. The methodology relies on a fingerprint mechanism
implemented during the verification phase to secure either the
program execution and the processor behaviour. Moreover, it
provides a careful analysis on the most important processor
signals involved in the process. Experimental results show that,
the proposed approach is suited for detecting performance-
degrading Trojans before the fabrication phase.

The rest of the paper is organized as follows: Section II
provides a brief description of similar work. Section III first
gives an overview of the typical SoC development flow and

then describes the considered threat model. The proposed
approach is presented in Section IV. Section V details the
case study and shows the experimental results. The overall
methodology is completely delineated and validated in this
section through three always-on Hardware Trojans. Finally,
Section VI concludes the paper with final remarks and future
works.

II. RELATED WORK

In [11], a behaviour-based protection scheme is proposed to
secure program execution by introducing a validation mecha-
nism over the control flow of the instructions. The mechanism
aims at extracting the normal program’s behavior by means of
a signature process in order to check at run-time the execution
paths. The paper proposed an enhancement of the Branch
Target Buffer (BTB) entries to secure the program execution.
In [12], the authors describe an encryption key mechanism
based on measurable properties, named ICmetrics, of a given
hardware device. Such characteristics may take the form of
internal signal distributions or values derived from the highly
changing signals. However, in this paper, the security is
faced in one direction, i.e., to incorporate features that are
independent and highly multi-modal.
Finally, concerning the detection timing, a structured approach
to perform security validation at each stage of the product life-
cycle is proposed in [13] [14]. The security vulnerabilities
related to a stage are identified and fixed before moving to
the next one. This approach is based on formal techniques
for verifying hardware security during all the development
phase of the device, hereinafter named Security Development
Lifecycle (SDL). However, it is well known that the main
drawback when dealing with formal approaches is their in-
creasingly complexity.

III. THREAT MODEL

When analysing Hardware Trojans and developing new
techniques for their detection, it is necessary to first analyse the
attack model and study all the possible scenarios. A clear view
on how and when potential attackers could implant malicious
hardware in a SoC design is essential to develop a trustworthy
and strong methodology. Before outlining our threat model, a
brief overview of the SoC development flow is provided. In
[1], the authors identify three main phases in the flow:

• IPs Development: During the design specification phase,
to fulfill the System-on-Chip requirements, a list of IPs is
established. In order to comply with the compelling time-
to-market and lower research and development (R&D)
costs, some of them are built in-house, others bought
from third-party IP vendors (3PIPs). In this second case,
they could be provided in three forms: soft if only the
HDL description at RTL is provided; firm whether IPs
are delivered in a gate-level implementation; hard in case
IPs are delivered as Graphic Database System (GDSII)
representation of a fully placed and routed design.

• SoC Integration: The first assignment of a SoC Integrator
is to integrate all the soft IPs and to generate the RTL

specification of the whole SoC. It carefully traces all the
necessary steps coming from the whole RTL System-on-
Chip design up to the final SoC layout in GDSII format.
First of all, to find design bugs, the RTL is exhaustively
verified and tested. Once this step is completed, the SoC
integrator synthesizes the RTL description on a target
technology library by exploiting external EDA tools. Al-
ternatively, she/he can buy firm IPs and directly integrate
them into the netlist. The next step is the integration of
Design-For-Testability (DFT), Debug and Built-In Self-
Test (BIST) structures; they are typically entrusted to
third-party specialized vendors. Finally, the gate netlist is
translated in a physical layout in a GDSII format, which
is sent to the foundry for the IC fabrication.

• Foundry: The fabrication process is the more expensive
step of the SoCs development flow, therefore, their fab-
rication is usually granted to external foundries.

As underlined in [1], the reason behind the outsourcing
lies in the extremely high costs for maintaining such a long
supply chain from design specification to packaging. Clearly,
the adoption of third-party IPs, EDA tools [15] or foundries
poses serious security concerns. According to the threat model,
each of these three phases could be considered either trusted
or untrusted. A brief summary is shown in Figure 1.

Fig. 1. Modern System-on-Chip supply chain.

A comprehensive analysis on a wide range of possible attack
models for potential hardware Trojans is presented in Table I.
In these seven possible models, one or more of the above-
mentioned entities (IPs vendors, SoC Integrator, Foundry) are
considered untrusted.

The proposed strategy applies to the G model of the Table
I, where the attacker can be an untrusted SoC Integrator,
untrusted EDA tool vendor, or untrusted foundy. However,
aiming at detecting Trojans in the Pre-Silicon phase, the
foundry as an untrusted entity is out of the scope of this
work. For a better understanding, this attack model refers to
companies who have designed their own proprietary IPs but
need to rely on an untrusted design house, external skilled
engineers and foundry to manufacture their final ICs [3].

In the considered threat model, the IP design team is respon-
sible for defending against attacks while the attacker is hiding
in the third-party entities that come into play during the Pre-
Silicon phase, i.e., before the fabrication. A common practice
is that IP designers turns to third-party skilled engineers for
the Design For Testability (DFT) insertion. When the IP is
provided for the DFT insertion to external entities, it is free
from Hardware Trojans. However, when it returns from the

TABLE I
COMPREHENSIVE ATTACK MODELS [1]

Model Description 3PIP Vendor SoC Developer Foundry
A Untrusted 3PIP vendor Untrusted Trusted Trusted
B Untrusted foundry Trusted Trusted Untrusted
C Untrusted EDA tool or rogue employee Trusted Untrusted Trusted
D Commercial off-the-shelf component Untrusted Untrusted Untrusted
E Untrusted design house Untrusted Untrusted Trusted
F Fabless SoC design house Untrusted Trusted Untrusted
G Untrusted SoC developer with trusted IPs Trusted Untrusted Untrusted

DFT process, it is necessary to establish whether someone
has maliciously introduced additional hardware.

IV. PROPOSED APPROACH

The proposed technique focuses on the detection of always-
on Hardware Trojans (HTs) maliciously inserted into the RTL
design, i.e., those starting as soon as their host designs are
powered on [3]. The methodology has been developed to
defeat the integrity of an Intellectual Property (IP) based
Central Processing Unit (CPU). It is assumed that, to escape
detection during the pre and post-silicon validation phase,
these always-on Hardware Trojans are silent and do not modify
the output of the computations. Changes mostly come in the
form of power, current or delay and, many times, the difference
due to the presence of HTs could be negligible and therefore
undetectable. The proposed methodology differentiates from
the side-channel analyses for always-on Trojan detection since
it applies in the pre-silicon phases of the supply chain.

The idea is to conceptually take a picture of the CPU
before supplying it to the third-party vendors of the SoC
development chain, i.e., the untrusted entities of the process.
This picture holds essential information of the HT-free CPU
performances. Basically, the activity of mindfully selected
signals is registered during the execution of a set of secure
programs. These signals are selected and picked up from the
CPU Data-path and from the CPU Control Unit. Depending
on the architecture of the processor, they are carefully selected
among those carrying on more advantageous information.
Section V provides a detailed analysis of this choice. A
secure program is an ordinary verification program featuring
a high code coverage. For sake of robustness, more than one
program goes through this process. These programs have not
other special requirements, except that they differ as much as
possible, targeting different units.

Once the target programs are selected, the procedure is
straightforward and consists on the following. A secure
program is executed in simulation as a normal verification
program. Meanwhile, the activity of the previously selected
signals is recorded by means of a secure monitor lying in the
Testbench. The goal of this module is to write at each clock
cycles the signals’ values in a text file.

At the end of the simulation, this file undergoes a fingerprint
process to compute a message digest for that secure program.
Clearly, these steps are repeated for each and every secure
program. For a better understanding, the fingerprint process

consists on a message digest algorithm which, starting from
a file, produces a fixed-length signature for that file. If the
file changes, then the message digest changes [16]. A digest
message algorithm relies on Cryptographic Hash Functions to
map bitstrings of arbitrary finite length into strings of fixed
length [17]. These are widely adopted in applications such
as digital fingerprinting of messages, message authentication,
and key derivation to guarantee the integrity of the data. The
spread of such technique is justified if considering the several
advantages of a Cryptographic Hash Function:

• The process is deterministic, i.e, the same message is
always translated in the same hash value.

• It is a one-way function: impossible to invert. Only
a brute-force approach could succeed in reversing the
message and deriving the unencrypted data.

• The hash value is fast and simple to obtain starting from
any kind of input data.

Among all the possible cryptographic algorithms, SHA-256
has been selected. It is noteworthy that SHA-256 is widely
used in security for the property of being collision resistant:
indeed, if compared to other two existing cryptographic
algorithms such as MD5 and SHA1, it has not been broken
yet. Moreover, it is very fast to compute and the length of
the message digest is acceptable for the target system.

Fig. 2. The proposed pre-silicon verification detection technique.

In case of malicious intrusions, the proposed approach,
highlighted in Figure 2, is able to recognize the presence of
always-on Hardware Trojans. So what happens is that, an IP
designer (the trusted entity of our threat model) gets back

the design from external teams, e.g., DFT engineers, then, he
executes the secure programs and checks the corresponding
digest messages. If the values are different, there is an high
risk of Trojans insertion. It is necessary to underline that DFT
elements could be introduced either at RTL or Gate Level, i.e.,
respectively JTAG blocks or Scan Chains. Unless signals name
changes, the behaviour of the IP must be the same. For sake
of clarity, depending whether the IP team provides an RTL
description or a gate level one, the HT-free digest message is
computed on the RTL or gate respectively.

V. CASE STUDY AND EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed approach,
an open-source RISC processor core has been selected. It is an
OpenRISC 1000 compliant processor IP core, named mor1kx.
It is a 32/64-bit load and store RISC architecture. Written in
Verilog Hardware Description Language (HDL), it provides
an elevated level of flexibility in terms of implementations
trade-offs such as area and performance. Being highly con-
figurable, it allows you to customize the core to your exact
needs. Thus, the IP core can be configured in three available
implementations: Cappuccino, Espresso, Pronto Espresso. In
the considered experiments, the IP core is configured with the
Cappuccino setup. Indeed, the CPU handles a 6 stage pipeline
with a delay slot on jump and branch instructions. Caches and
MMUs are optional but powered-on in our experiments. The
secure programs are 10 different high-coverage assembly pro-
grams targeting distinct hardware units. For the attacker point
of view, the choice of the programs must be unpredictable.
Finally, the secure monitor is a SystemVerilog task inside the
Testbench. Its role is to dump, at each clock cycle, selected
signals’ values on a file.

A. Always-on Hardware Trojans

To validate the methodology, three always-on Hardware
Trojans have been designed, albeit is a common practice to
use existing benchmarks [3] - [2] avoiding in-house Trojans.
The reason behind this choice lies in the fact that only
eleven always-on Trojans are available on Trust-Hub Trojan
Benchmarks [2] and none of these is applied to a pipelined
processor cores. From this arises the need of conceive and
apply custom Benchmarks. In particular, the devised Hardware
Trojans may allow a possible attacker to obtain information
from the normal operation process thanks to the unexpected
behavior of the processor core. In the following, the three HTs
are described, highlighting also the introduced weakness.

Hwtr1: The considered Trojan is a silent code modification
lying in the Branch Prediction Unit (BPU). In the target design,
the BPU is a Static Branch Predictor, therefore, all backward
branches are treated as taken while all forward as not taken. A
single line of the Static BPU has been maliciously modified so
that all the branches are predicted as not taken. This incorrect
behaviour clearly does not alter the functionality of the pro-
cessor itself while degrading performances; additionally, the
erroneous access to memory instructions that should not be
fetched modifies the bus behavior providing extra information

to the external world. Without resorting to a side-channel
analysis based on a timing approach, this behaviour would
never be discovered before the fabrication.

Hwtr2: This second Trojan does not sit on a special unit. It
origins from the decoding phase and changes a condition flag
wiring the execute phase with the control unit. Specifically,
each time a nop operation is decoded, the Overflow Flag is
unset. As in the previous case, the functional behavior of the
processor is not altered, i.e., the output of the computation is
correct while provoking issues in the control unit as well as
falsifying the content of the Special Purpose Registers. In this
particular case, a branch could be wrongly taken thanks to this
HT making to execute a wrong piece of code.

Hwtr3: The Trojan is hidden inside the Data Cache. It
is implemented through a simple counter which invalidates
the content of the cache every 100 clock cycles. It is a
silent hardware modification whose aim is to slow down the
execution time of a program and downgrade the related perfor-
mances. As in the previous cases, this HT makes the system
bus to transfer information that may not be there, allowing
some external attacker to obtain additional information about
sensible programs.

B. Signals selection

The proposed technique relies on the choice of specific
signals to compute a fingerprint message. Which signals to
select is the spotlight of this subsection. For this purpose, seven
different experiments have been performed to fulfill the goal
with the least number of signals; Table II presents a detailed
description.

As one of the purposes of the pre-silicon verification is to
detect Trojans, one could think that the amount of dumped
signals is not a limiting factor. This is partially true. As
the complexity of modern processor core increases, checking
and dumping all the signals becomes costly and impractical,
requiring a considerable effort even from the verification point
of view. Moreover, supposing that the proposed technique is
to be extended to an on-line Trojan detection mechanism by
moving the fingerprint computation on the physical device, it
becomes even more critical issue. Dumping and elaborating
all the signals to produce a digest message with a hardware
module could be unfeasible. The goal of this work is two-fold:
not only proposes a strategy for Hardware Trojans detection,
but also suggests an analysis of those signals that aid that
detection process. This is valuable when considering possible
post-silicon hardware strategies. Therefore, all the experiments
have been performed by reducing the amount of signals step
by step.

The secure programs, i.e., the Verification Test Suite, are
represented in Table III and constitute the reference model
for those in charge of defending the designs from external
attackers. To validate the approach, a golden execution of
the entire verification suite was implemented in order to
determine the programs’ digest messages when no Trojans are
maliciously introduced. When the third-party vendors return
the design to the trusted entity (e.g., the DFT engineers to

TABLE II
CASE STUDY

Scenario A Scenario B Scenario C Scenario D Scenario E Proposed Approach
Units Involved 27 10 1 10 10 10
Number of Signals 1831 612 54 30 15 8
Selection Criterion 2-Level Hierarchy 1-Level Hierarchy CPU Top Random Random Custom
hwtr1 Detected Detected Detected Undetected Undetected Detected
hwtr2 Detected Detected Detected Detected Undetected Detected
hwtr3 Detected Detected Detected Detected Undetected Detected

the CPU developer in our threat model), the latter only needs
to rerun the secure programs and check the integrity of their
digest messages. If even one of these differs, the target design
is in all likelihood affected by an external intrusion.

TABLE III
VERIFICATION TEST SUITE

Verification
Programs (VP) [%] Code Coverage Golden Digest

Message
VP1 81.78 6437e6a...b38af63
VP2 85.20 4534343...acc4545
VP3 83.00 874c345...425ab56
VP4 82.89 a67a665...4323423
VP5 78.99 21243bb...c765546
VP6 85.02 7564563...5634634
VP7 86.01 b676456...5635645
VP8 80.54 6534253...2354543
VP9 83.22 2116576...ab44512
VP10 84.98 ac41244...4235457

A first experiment was implemented by selecting all the
input-output signals of the modules, up to the second level of
the hierarchy (Scenario A - 27 blocks). Due to the significant
number of observed signals, i.e., 1831, as expected, all the
Trojans have been detected. Indeed, a difference was observed
between the digest messages produced in the HT-free CPU
and in the one infected by the Trojan. Consequently, instead
of recursively selecting all the modules up to the second level,
only the first in the hierarchy was chosen. In this second
experiment (Scenario B), from 1831 only 612 signals have
been dumped. Also in this case, a discrepancy in the digest
messages was observed leading to a complete detection.

The same reasoning applies to the third Scenario (C)
where only the input-output signals of the CPU top entity
are considered. All the Trojans are discovered. Then, to
reduce additionally the signal number, a random approach was
attempted. The last two experiments (Scenario D and Scenario
E) were carried out with a different selection criteria; instead
of recording signals belonging to the target unit, a subset
is randomly selected among all the units of the design, i.e.,
the 10 in the first hierarchy level. In the first Scenario, only
two Hardware Trojans were detected with 30 random signals.
Finally, by halving randomly the number of signals (Scenario
E), all Trojans remained undetected.

The last column of the Table II represents the proposed
methodology. It differs from the random approach, focusing
on a custom and rational signals selection. This process aims at
emphasizing the intrinsic power of target signals in detecting
unexpected alteration of the processors normal behavior. As

suggested in [12], the features of a hardware device are
extracted either from the highly changing signals or those
acting as a backbone of the system.

The proposed approach relies on 8 signals, hereinafter
named spy-signals, carefully selected for their interesting
properties. Their advantages are listed below:

1) Processor Program Counter (PC): Since the instructions
are unequivocally described by their Program Counters,
they offer a convenient way of recording the program
context. In [18], the authors present a system of program
identification with the use of the Program Counter (PC)
as an Integrated Circuit (IC) metric capable of uniquely
identifying the systems behaviour. Specifically, they in-
terpret the raw PC values in a form that can uniquely
recognize any particular program or application for se-
curity purposes. The PC represents the real cornerstone
of a processor core. In a slightly different context, the
PC is utilized to implement a predictor for dynamic
power management [19]. At each clock cycle it gives
information regarding the exact execution of the program.
Therefore, it represents the best selection choice.

2) Output of the EX Stage: The Execute stage (EX) repre-
sents the heart of the Datapath since it encloses all the
processor computation. Examples of these are:
• Effective Address computation for load and store;
• Effective Address computation for branches.
• Arithmetic Operations (additions, subtractions, multi-

plications and divisions);
• Logic Operations (shifts, rotates);
Commonly, between these different execution units and
the pipeline registers, there is a multiplexer that collects
the results. The output of this multiplexer, i.e., The Output
of EX stage, is normally a 32-bit signal (or 64 in 64-
bit architectures). Additionally, this signal carries all the
execution flow of the program, providing useful details.
Therefore, it is a suitable candidate for being added to
the list of target spy-signals.

3) Clk: The clock signal synchronizes the activities of the
entire processor core. It precisely marks the time of the
programs execution. For this reason it is appropriate for
detecting performance-degrading Trojans.

4) Supervision Register: The Supervison Register (SR) is a
special-purpose supervisor-level register accessible with
special instructions in supervisor mode only. By defining
the status of the processor, it brings important informa-

tion. The ones more relevant for the purpose of this work
are:
• SR[IEE]: Interrupt Exception Enabled
• SR[DCE]: Data Cache Enabled
• SR[ICE]: Instruction Cache Enabled
• SR[DME]: Data Memory Management Unit (MMU)

Enable
• SR[IME]: Instruction MMU Enable
• SR[F]: Conditional branch flag
• SR[CY]: Carry flag
• SR[OV]: Overflow flag

5) Instruction Register: It tracks all the instructions entering
the pipeline. Lying in between the Fetch and the Decode
stage, it prevents attackers to insert additional instructions
for being decoded but not executed.

6) Cache Hit-Miss Signal: This signal controls the behaviour
of this speculative unit. An attacker could force a cache
miss to load a given sequence of dangerous instructions.
They could enter the pipeline as a consequence of a
branch misprediction, with the intent of changing the pro-
cessor functionalities, degrading performances or leaking
secret information.

7) BPU Hit-Miss Signal: The same reasoning of the previous
point applies to Branch Prediction Unit (BPU). The miss
or hit signal helps tracking all the processor branches and
their respective prediction.

8) Register File Input Signal: In a pipelined processor core,
the last pipeline stage usually consists of writing into the
register file to update it with the content of a destination
register. Spying this signal means checking that all the
instructions have passed correctly through all the stages
of the pipeline.

VI. CONCLUSION

In recent years, a growing attention has been given to
potential threat raised by hardware-based attacks. The risk of
Hardware Trojans intrusion increases as the modern System-
on-Chips complexity increases. Moreover, due to the high
costs of in-house Intellectual Property (IP) block development
and fabrication, SoCs commonly make use of IP blocks
gathered from third-party vendors. Therefore, as a direct
consequence, even more entities have become more involved
in all phases of the SoC supply chain, posing serious security
concerns. In this paper, a detection technique for always-on
Hardware Trojans is presented. The goal of the methodology
is to discover malicious hardware intrusions by exploiting a
verification-based technique relying on a fingerprint process.
To keep track of the processor behavior, security checks are
performed already from the Pre-Silicon stages, each time a
trusted design is provided to external entities of the SoC
supply chain. The fingerprint process counts on a careful
selection of signals, those carrying more useful information.
The experimental results demonstrate the validity of the pro-
posed approach, albeit exploiting a limited amount of in-house
Hardware Trojans. Moreover, the approach is easy to integrate
in any SoC development flow since it is only needed to extend

the Testbench module with the Security Module.
Future work aims at extending the methodology to triggered-
type HTs too. Moreover, new benchmarks will be conceived
and validated.

REFERENCES

[1] K. Xiao et al., “Hardware trojans: Lessons learned after one decade
of research,” ACM Transactions on Design Automation of Electronic
Systems, vol. 22, pp. 1–23, 05 2016.

[2] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), Oct 2013, pp. 471–
474.

[3] B. Shakya et al., “Benchmarking of hardware trojans and maliciously
affected circuits,” Journal of Hardware and Systems Security,
vol. 1, no. 1, pp. 85–102, Mar 2017. [Online]. Available:
https://doi.org/10.1007/s41635-017-0001-6

[4] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable hard-
ware trojan activation by interleaving concrete simulation and symbolic
execution,” in 2018 IEEE International Test Conference (ITC), Oct 2018,
pp. 1–10.

[5] S. Yao et al., “Fastrust: Feature analysis for third-party ip trust verifica-
tion,” in 2015 IEEE International Test Conference (ITC), Oct 2015, pp.
1–10.

[6] Y. Wang, T. Han, X. Han, and P. Liu, “Ensemble-learning-based hard-
ware trojans detection method by detecting the trigger nets,” in 2019
IEEE International Symposium on Circuits and Systems (ISCAS), May
2019, pp. 1–5.

[7] S. Narasimhan et al., “Hardware trojan detection by multiple-parameter
side-channel analysis,” IEEE Transactions on Computers, vol. 62, no. 11,
pp. 2183–2195, Nov 2013.

[8] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection through
golden chip-free statistical side-channel fingerprinting,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014,
pp. 1–6.

[9] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib, “On
detecting delay anomalies introduced by hardware trojans,” in 2016
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2016, pp. 1–7.

[10] Xiaolong Guo, R. G. Dutta, Yier Jin, F. Farahmandi, and P. Mishra,
“Pre-silicon security verification and validation: A formal perspective,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[11] Y. Shi and G. Lee, “Augmenting branch predictor to secure program
execution,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), June 2007, pp. 10–19.

[12] E. Papoutsis, G. Howells, A. Hopkins, and K. McDonald-Maier, “In-
tegrating multi-modal circuit features within an efficient encryption
system,” in Third International Symposium on Information Assurance
and Security, Aug 2007, pp. 83–88.

[13] N. Potlapally, “Hardware security in practice: Challenges and opportu-
nities,” in 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust, June 2011, pp. 93–98.

[14] H. Khattri, N. K. V. Mangipudi, and S. Mandujano, “Hsdl: A security
development lifecycle for hardware technologies,” in 2012 IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust, June 2012,
pp. 116–121.

[15] J. A. Roy, F. Koushanfar, and I. L. Markov, “Extended abstract: Circuit
cad tools as a security threat,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, June 2008, pp. 65–66.

[16] R. Mohanty, N. Sarangi, and S. Bishi, “A secured cryptographic hashing
algorithm,” 03 2010.

[17] A. H. M. Ragab, N. A. Ismail, and O. Allah, “An efficient message
digest algorithm (md) for data security,” Proceedings of IEEE Region
10 International Conference on Electrical and Electronic Technology.
TENCON 2001 (Cat. No.01CH37239), vol. 1, pp. 191–197 vol.1, 2001.

[18] K. Appiah et al., “Program counter as an integrated circuit metrics for
secured program identification,” in 2013 Fourth International Confer-
ence on Emerging Security Technologies, Sep. 2013, pp. 98–101.

[19] C. Gniady, A. R. Butt, Y. C. Hu, and Yung-Hsiang Lu, “Program counter-
based prediction techniques for dynamic power management,” IEEE
Transactions on Computers, vol. 55, no. 6, pp. 641–658, June 2006.

