POLITECNICO DI TORINO
Repository ISTITUZIONALE

On-line Testing for Autonomous Systems driven by RISC-V Processor Design Verification

Original

On-line Testing for Autonomous Systems driven by RISC-V Processor Design Verification / Ruospo, Annachiara;
Cantoro, Riccardo; Ernesto, Sanchez; Pasquale Davide Schiavone, ; Angelo, Garofalo; Benini, Luca. - ELETTRONICO. -
IEEE The 32nd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems:(2019). (Intervento presentato al convegno The 32nd IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems tenutosi a Noordwijk, Netherlands, Netherlands nel October 2 —

g\(l:g%g%{”e[ly_zow) [10.1109/DFT.2019.8875345].
This version is available at: 11583/2751345 since: 2020-09-16T14:52:227

Publisher:
The 32nd IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Published
DOI:10.1109/DFT.2019.8875345

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

19 April 2024

On-line Testing for Autonomous Systems driven by
RISC-V Processor Design Verification

Annachiara Ruospo, Riccardo Cantoro,
Ernesto Sanchez
DAUIN, Politecnico di Torino
Torino, Italy
{annachiara.ruospo, riccardo.cantoro,
ernesto.sanchez} @polito.it

Abstract—In the last decade, a growing number of electronic
devices have been designed to be deployed in safety-critical
autonomous systems. Many application domains, such as au-
tonomous vehicles, robots, nano-drones, are exploring artificial
intelligence solutions to handle the increasing computation re-
quirements. Besides, due to their safety-critical application sce-
narios, they are demanding for even more reliable and advanced
systems. These requirements clearly entail a growing complexity
in modern processors and System-on-a-Chip design, leading
to new efforts in verification and testing phases. These new
devices must be also compliant with emerging functional safety
standards that regulate their usage during the entire lifetime.
The main intent of this work is to improve the reliability of
autonomous systems, providing a strategy to link the verification
methodology with the testing one. Starting from an almost
exhaustive verification set, it is possible to derive a different set of
patterns intended for on-line testing. This achievement is gained
by taking into account the constraints due to the final system
application and the common requirements of the embedded
devices used in autonomous systems. Experimental results are
provided on an open-source RISC-V processor assembled on an
autonomous nano-drone.

I. INTRODUCTION

Autonomous Systems (AS) have been a subject of great
interest over the last decade. Several domains, ranging from
automotive industry, transport robotics, smart homes, up to
Internet-of-Things devices are moving to autonomous solu-
tions with a growing computational complexity. One of the
biggest area being involved in this transition regards Un-
manned Aerial Vehicles (UAV) or more commonly referred
to as drones. It is not always possible or wanted to have a
pilot controlling the drone: with the market growing faster,
there is the need for drones to be operated autonomously
[1]. Recently, UAVs have been involved in several critical
tasks such as crisis situations, safety inspections and search
operations. However, the real challenge is that autonomous
systems must operate in areas shared by humans most of the
time. Within the next couple of years [2], autonomous vehicles
are expected to completely share the road with human drivers.

The increasing impact with autonomous systems in our daily
life underlines the need to guarantee that these systems behave
correctly even during their mission life. For this purpose,
two big issues need to be addressed: AS Reliability and AS

Pasquale Davide Schiavone*,Angelo Garofalof,

Luca Benini*f
ETH Zurich, Switzerland™
Universita di Bologna, ItalyJf
{pschiavo@iis.ee, Ibenini @iis.ee}.ethz.ch*
{angelo.garofalo } @unibo.it'

Dependability. In the context of UAVs, dependability studies
and analysis for autonomous systems are presented in [1] [3].
In [1], the authors show a holistic approach for developing a
dependable autonomous systems based on a cage that monitors
the systems and its correctness at operation time. They argue
that, since autonomous systems are exposed to constantly
changing and uncertain environments, the system cannot be
completely designed, constructed and tested only during the
development phase.

Concerning the reliability aspect, one of the most promising
techniques present in literature which is used to increase the
device functional safety capability is called on-line testing.
On-line testing can be performed resorting to hardware-based
or software-based approaches: the former consists in inserting
specific hardware modules in charge to monitor the different
elements of the devices (e.g., memory, processor core) during
the system power-on or power-off. It can reach really high
fault coverage at the cost of being invasive and costly. The
latter has been first proposed in 1980 by Thatte and Abraham
and improved in several research groups [4] [5]. It consists in
a software library made of several test programs. To reach a
given fault coverage, the processor core is asked to execute
each of these periodically, during the power-on, the power-
off, to test the processor core or peripherals around it. In this
second solution, it is not necessary to add additional hardware,
even though it is needed to allocate some flash memory space
to store the software library. The main features and constraints
of an on-line software test library are discussed in [6].

The end goal of this paper is to improve Autonomous
Systems Reliability, through the exploitation of an on-line
software test library tied to the running application software
for the device in field testing. This work presents a methodol-
ogy on how to derive an on-line software test library starting
from a set of verification programs of a processor core. This
step is performed by a tool generator that, making use of its
internal templates and an Instruction Set Architecture (ISA)
dependent database, yields the final test programs. Moreover,
the whole methodology starts from a preliminary process of
static analysis of the circuit in order to remove those faults
that cannot produce a failure during the device lifetime: the
Safe Faults. Reducing the fault list to the only faults excited by

the running software application, means decreasing the library
memory footprint as well as the effort required to raise the
library fault coverage.

Experimental results are gathered on an open-source RISC-
V core embedded on an autonomous nano-drone [7]. The work
experimentally demonstrates that it is possible to automatically
create test programs that fit for a given application software
with a high fault coverage. Two examples are provided for two
different processor units: the Multiplier with a 92% of fault
coverage, and the Hardware Loop Controller with about 80%
of fault coverage.

The rest of the paper is organized as follows: Section II
provides an overview on the main features and constraints
of an Autonomous System along with a background on the
Software Test Library and the concept of Safe Faults. Section
IIT describes the proposed approach, detailing all the steps
necessary to get the final results. Section IV discusses the case
study, showing the target application running on the nano-
drone and the architecture modules selected to demonstrate
the validity of the method. Section V details the experimental
setup and Section VI shows the experimental results. To
conclude, Section VII sums up the project and provides hints
for future work.

II. BACKGROUND

In this section, to ease the understanding of the methodol-
ogy, the key concepts of the work are deepened.

A. Autonomous Drones Constraints

Autonomous Systems stem from a basic concept: perform-
ing their tasks autonomously even in unknown environments
while at the same time satisfying dependability and reliability
requirements. Typically, most of the tasks that an AS must
schedule are performed by an external server that supports
the system elaboration. However, as reported in [8], it is
possible to implement a fully autonomous UAV by resorting
to an ultra low power system able to run an end-to-end closed
loop visual pipeline that exploits deep learning algorithms.
An autonomous drone has to fit within stringent constraints.
The most important requirement for a drone is the ability to
adaptively avoid obstacles in order to conclude the mission
without endangering people. Moreover, the battery has to be
large enough to ensure a sufficient long flight [1]. From an
implementation point of view, the drone application software
is required to respect the on-chip and onboard resources. The
drone application software is typically executed on a low-
power device with a limited amount of memory and a reduced
power budget.

B. Software Test Library

A Software Test Library (STL) is one of the most popular
solutions adopted by the industries concerning in-field testing.
If the in-field testing is performed during the mission life
(i.e., when the system is active and running), it is referred
to as on-line testing. It consists of a set of Software-Based
Self Test (SBST) programs; each test program is scheduled

as a normal system task, along with the mission application,
preferable during the IDLE phases. The coexistence with the
mission application introduces very strong limitations. The
main guidelines that a test program, intended for on-line
testing, has to follow are:

o No alteration of RAM memory.

o No alteration of Control and Status Registers.

« No interrupts or exceptions.

C. Safe Faults

Safe Faults identify a set of faults that can never produce
a failure in the system. Since they do not contribute to the
Failure Rate, they should be removed from the faults list. In
automotive domain, the standard ISO 26262 describes them
as "safe faults application dependent".

III. PROPOSED APPROACH

This section describes the different steps composing the
proposed methodology. The overall framework is made of two
main blocks (detailed in the following subsections):

« Autonomous Systems Safe Faults Classification.

e On-Line Test Set Generator.

The former aims to identify all the existing safe faults given
the target application software. The latter inherits the fault lists
and produces as a result the set of test programs tailored for
the considered system. This generation step exploits an already
existing verification test set to extract the basic functional
structure of the programs. Based on these inputs and following
some internal rules, it yields the final test programs.

A. Autonomous Systems Safe Fault Classification

APPLICATION
SOFTWARE

PROCESSOR
GATE NETLIST

v v

Toggle coverage of Input
ports (Comb Logic)

N

%

seq

—

CIRCUIT
STATIC
ANALYSIS

Signals that never toggle

Autonomous System
Signals Check

PROCESSOR FLATTEN
GATE NETLIST

ASFLAD

NEW
FAULT Autonomous-Systems
LIST Fault List Application
Dependent

Fig. 1. Autonomous Systems Safe Fault Classification Process

The safe fault identification process aims at putting empha-
sis only on those faults that could influence, i.e., resulting
in a failure, the behaviour and the outcome of a software
application. By means of a circuit Static Analysis, the safe
fault process is able to differentiate between faults excited
by the running software application and those that are never
stressed during the mission. Due to the complexity of the

analysis, recently researchers have proposed semi-automatic
and automatic [9] solutions intended for general application
software domain. The proposed fault classification is mainly
based on [9] but, in order to be compliant with autonomous
systems constraints, introduces additional steps on that basic
flow. The complete flow is depicted in Figure 1. The idea relies
on identifying the set of inputs of the CPU that remain at a
fixed value during the system operation. Once these signals
are picked out, they are propagated as constraints to the cone
of combinational logic, to extract the faults relative to the
bounded gates. As a result, the safe faults will be identified
and removed from the CPU fault list.

To determine all the safe faults for the application software,
the proposed process requires two inputs: the gate netlist of the
processor core and the target application software. Therefore,
the following steps are performed:

1) The hierarchical gate netlist is flattened in order to split
the combinational part of the circuit from the sequential
one.

2) To identify those signals that are fixed, the toggle activity
of the input ports of the combinational logic is registered
when the target application software is running. Then, a
logic value (0 or 1) is assigned to these signals.

3) Before creating the final list of fixed signals, a tailored
check is performed in order to identify all those signals
belonging to special units that must not be included
in that list. When dealing with Autonomous Systems,
even though a signal is fixed during the execution of
the application software, it does not mean that it will
be fixed in any case. For instance, signals that handle
interrupts coming from GPIOs, cannot be set to a fixed
value, since they can change in very particular scenarios
during the mission mode. Moreover, all the registers
devoted to keep the processor status, even if never toggle
during the application run, could change their value due
to a processor unexpected exception.

4) A Static Analysis of the circuit is performed by fixing
the constant value of the signals that never toggle.
This process is useful to identify all the faults in the
combinational logic of the processor core that, due to
that constaints, become untestable.

5) At the end of the Static Analysis process, all the faults
classified as undetectable and untestable will be con-
sidered safe and therefore could be removed from the
processor fault list.

As output, the Autonomous Systems Fault Classification pro-
cess provides an Autonomous Systems Fault List Application
Dependent (ASFLAD), the new fault list which will be the
target of the next test program generation process.

B. On-Line Test Programs Generator

Starting from the new fault list, the following step of the
proposed approach aims to create test programs suited for the
target software application. After the Autonomous Systems Safe
Fault Classification process, the amount of faults belonging
to each processor unit (e.g., load and store, ALU, multiplier)

changes. Considering this, the on-line test programs generator
awards higher priority to those units with the higher amount
of faults, i.e., units that are used more frequently by the
application software. Then, to create test programs, it exploits
an already existing verification test set to derive the basic
structure of a program used to verify the functionality of a
processor module or a set of rules in earlier phases. Clearly, the
structure of a test program is quite different from a verification
one. For this reason, the generator, named ver2test, takes only
the skeleton structure from verification programs and internally
applies some changes, resorting to internal templates as well
as to an internal ISA-dependent database. The goal of the
templates is to add common test program structures to the
verification program skeleton. Indeed, to be effective, a testing
program, must comply with the following structure:

o Stack frame creation: The content of the registers must
be saved before starting the execution.

e Register initialization: Registers are initialized with pat-
terns random or derived from an ATPG process.

o Core of the program: In the proposed approach, this part
is derived from verification programs.

e Store of the signature: In order to examine programs
behaviour in case of faults, register values are accumu-
lated on a signature and stored in memory. In [10], the
authors provide examples of signature creation for target
modules.

o Stack frame destruction: The content of the registers is
restored and the stack frame destroyed.

The reason behind the creation and destruction of the stack
frame is linked to the signature usage: when executing a test
program, the processor state has to be preserved to avoid
signature corruption. Contrarily to test programs structure, a
verification test program is lacking of signature mechanisms.
The idea behind the adoption of an already existing test set
comes from the advantages that every verification program
holds. From a functional point of view, it is targeted for
perfectly excite the unit under consideration specially in its
corner cases. From a testing perspective, these corner cases
could be really helpful to reach hard-to-cover circuit areas.
Moreover, the other advantage with verification programs
is that they commonly feature really high code coverage,
meaning that almost all the instructions of the ISA are covered.

For the sake of completeness, what ver2zest is asked to do is
the following: reading the fault list obtained from Autonomous
Systems Safe Fault Classification process and selecting those
modules with the highest number of faults. Then, based on
an ISA-dependent database, it selects specific programs from
the verification test set and applies its templates to create an
on-line test program. The ISA-dependent database contains a
list of files; each one is related to a processor unit (e.g., ALU,
multiplier, divider) and includes all the instructions belonging
to the Instruction Set Architecture which are able to excite
that module. The generator behaves differently according to
the topology of the module. In case of Arithmetic units
(e.g., adder, shifter, multiplier) ver2test select from verification

programs each occurrence of each instructions (following its
database) and creates the final testing programs, by employing
its internal templates. When dealing with Control Modules
devoted to managing the pipeline, forwarding paths, or special
units dedicated to Exceptions or Load and Store, the proposed
approach requires a small effort from the verification team
during the creation of their functional programs. The idea is
to aid ver2test quickly finding the core of the program by
simply adding a special label at the beginning and at the end
of the skeleton program.

The reader should note that the approach can be applied to
any ISAs, any processors and any kind of application software
running on a system.

IV. CASE STUDY

To experimentally demonstrate the effectiveness of the pro-
posed methodology, the following choices have been done.

A. Application Software

The application software taken into account is a Deep Neu-
ral Network based Visual Navigation Engine for autonomous
nano-drones [8]. This application has been developed under
the Parallel Ultra Low Power Platform (PULP) project and
it originates from DroNet, a lightweight residual CNN archi-
tecture proposed in [11] for standard-sized unmanned aerial
vehicles (UAVs). In the target application software, DroNet
has been adapted to use only onboard resources as well as to
fit the computational requirements of nano-sized UAVs, such
as fixed-point computation. The efficacy of the approach has
been demonstrated on a parallel low-power GAPS platform,
an embedded RISC-V multi-core processor integrated on a
Printed Circuit Board named PULP-Shield.

Fig. 2. PULP Shield [8]

As case study, it is shown a methodology to create an on-
line library suited for the upgraded versions of the RISC-
V cores of GAP8 computing platform. RISCY [7] is one of
the eight cores of GAPS8. The simplified block diagram of
this RISC-V core architecture is shown in Figure 3. It is an
open-source, 32 bit, in-order core, based on the RV32IMFC
extensions of the RISC-V ISA and the RTL is described in
SystemVerilog. RISCY features 4 pipeline stages: Instruction
Fetch (IF), Instruction Decode (ID), Execution (EX) and Write

Back (WB). It has been extended with bit manipulation, HW-
Loop, fixed-point, and packed Single-Instruction Multiple-
Data (pSIMD) instructions to improve performance over IoT
applications. In this work, RI5SCY core has been synthesized
with a 45nm NangateOpenCell Library.

T
S
®
o
S

s RISC-V core
T Controller$-)
Prefetchoins RF
T3 wa|
"

A

S
o
]
=)

Debug Interface)[instr

Fig. 3. RI5CY Core Architecture [7]

B. Verification Set

In this approach, the adopted Verification Set has been
developed in [12] and reaches a 90.28% of code coverage. This
percentage has been achieved by exploiting an evolutionary
optimizer for the test programs generation and is computed
on six high level code coverage metrics: statement, branch,
expression, condition, FSM state, FSM transition.

V. EXPERIMENTAL SETUP

This section deepens the proposed methodology by pro-
viding results of the experimental setup. All the results are
gathered from RI5CY core described in Section IV.

The whole framework is composed of a set of tcl, python
and bash scripts and exploits a commercial fault simulator
for the fault simulations. The circuit Static Analysis has
been performed relying on an commercial ATPG tool. In the
performed experiments, the toggle coverage metric has been
extracted resorting to Modelsim® HDL Simulation.

From this moment on, all the presented results are in line
with the flow described in Figure 1. RISCY core has been
primarily unflattened to split sequential from combinatorial
cells. From a theoretical point of view, focusing on the inputs
ports of the combinational logic is equivalent to analyse the
core in a given state. Therefore, to filter those signals that are
fixed during the software execution, a gate-level simulation
of the DNN-based nano-drones application software has been
perfomed on the flatten gate netlist. The aim was two-fold:
register the Value Change Dump (VCD) of the combinational
logic to recover the last value assumed by the signals, and
record the toggle activity of the input ports. A 56% of toggle
activity on the 3,183 input ports of the combinational logic was
registered. Among these ports, 1,828 toggled more than once.
The remaining 1,355 were the candidates for the next never
toggle analysis. Then, to comply with Autonomous Systems
Constraints, from the never-toggle list (1,355 signals) all those
related to Interrupt logic (irg) and Control and Status Registers
(csr) have been removed for safety reasons. The remaining list
was composed by 1,327 signals and their logic value (0 or 1)
has been recovered by drawing on the VCD.

Finally, the constraints for the ATPG tool were applied.
After the ATPG process, all the faults marked as Untestable,

Undetectable or ATPG Untestable have been considered safe
and therefore removed from the RI5CY fault list. The reader
should note that the ATPG Untestable class was not due
to abort conditions: the ATPG process has been performed
several time increasing time to time the abort time.

By following the proposed procedure and by referring to
the application code of the DNN-based nano-drone, about
47% of safe faults in RI5CY core has been identified. Table I
summarizes this result.

TABLE I
STUCK AT FAULTS BEFORE AND AFTER THE AUTONOMOUS SYSTEMS
SAFE FAULTS CLASSIFICATION PROCESS (ASSFC)

After ASSFC
140,206

RISCY core
Stuck-at Faults

Before ASSFC
268,488

As evidenced in Table II, the reduction due to the nano-
drone application software varies considerably among the
units: the reduction is negligible for the Load and Store but
significant for Pulp Memory Protection. This means that the
former is greatly used by the software while the latter is
completely unexcited. The On-Line Test Program Generator
(ver2test) starts from this new fault list and selects those
units with the highest amount of faults (e.g., Execution Stage
and Decode Stage). According to its internal ISA-dependent
database and the selected modules, ver2fest adopts its tem-
plates to produce test programs.

TABLE II
STUCK AT FAULTS DETAILED FOR RISCY CORE UNITS BEFORE AND
AFTER THE AUTONOMOUS SYSTEMS SAFE FAULTS CLASSIFICATION
PROCESS (ASSFC)

RISCY core Faults | Before ASSFC | After ASSFC | Reduction
cs_registers_i 29,657 17,330 42%
ex_stage_i 69,214 50,533 27%
id_stage_i 66,348 52,783 21%
if_stage_i 18,618 13,345 29%
load_store_unit 5,774 5,260 9%
RI5SCY_pmp_unit 77,784 425 99%
VI. RESULTS

To experimentally demonstrate the procedure, two units
belonging to the selected modules (i.e., Execution Stage and
Decode Stage) have been chosen: the Multiplier and the
Hardware Loop Controller.

The multiplier unit lies in the Execution Stage. It holds
36,543 stuck-at faults but, after the ASSFC process, the 35%
has been considered safe. Thus, the amount of remaining faults
is equal to 24,063. To create an on-line test program suited for
the system, ver2test makes use of its internal database looking
for the multiplier file (rv32m_multiplier.txt). This file contains
a list with all the instructions linked to the unit. As shown in
Figure 4, each of these is sought in the verification set and
then expanded in a fixed block.

Typically, to be exhaustively tested, an arithmetic unit
requires more than one patterns per instruction. The generated
block follows this structure: first randomly initializes its source

li x26, $RANDOM
li x29, $RANDOM
p.muls x25, x26, x29
sw x25, Ox(addr)
sub x26, x0, x26
sub x29, x0, x29
p.muls x25, x26, x29
sw x25, Ox(addr)
p.muls x25, x29, x26
0 sw x25, Ox(addr)

rv32m_multiplier.txt

1 or x8, x12, x7
2 p.muls x25, x26, x29 f

3 pv.abs.b x4, x8

4 slli x3, x1, 0x2
5 mul x3, x8, x18
6 divu x23, x26, x6

HOONOUEWNKE

VERIFICATION
PROGRAMS

ON LINE TEST
PROGRAM

Fig. 4. Ver2test Procedure for the Multiplier Unit

registers (lines 1 and 2), then, negates their contents (lines 5
and 6) and finally flips the order (line 9). Since the Verification
set features high code coverage, the final test program includes
all the instructions linked to the multiplier block, and for
each of them, 3 blocks are produced. Once ready, this test
program has been fault simulated employing a commercial
fault simulator, reaching a 92.26% of fault coverage.

TABLE III
VER2TEST GENERATED PROGRAM

RISCY | Instructions | Blocks/Instructions
mult_i 66 3

Fault Coverage
92.26%

The Hardware Loop Controller is inside the Decode Stage
and owns 3,392 faults. The Hardware Loop logic aims at
increasing the efficiency of small loops: the Instruction Set
is extended with a set of instructions able to execute a piece
of code multiple times, without resorting to branches or a
counters. Following the ASSFC process, only 1,576 faults
remain to be covered: the 54% has been classified as safe.
As described for the multiplier, ver2test taps into its internal
database looking for the target module. Being a non arithmetic
logic module, ver2test needs to derive not only the single line
of code but a logic block with a clearly defined beginning
and end. In the drafting of verification program, it is asked to
specify this cut by means of labels (e.g. TESTON-TESTOFF
as in Figure 5) or defines.

Ip.starti

Ip.count
Ip.endi

REGISTERS INITIALIZATION

CORE

STORE OF DEST REGs

STORE OF CSR REGs

Ip.starti x0, Istart : rv32x_hwloop.txt
Ip.endi x0, lend
Ip.count x0, 5

Istart:slli x28,x28,1

sub x27x28x7 i

ver2test

VERIFICATION
PROGRAMS

ON LINE TEST
PROGRAM

Fig. 5. Ver2test Procedure for the Hardware Loop Controller
The resulting on-line test program covers all the Hardware
Loop instructions and reaches a 80.41% of fault coverage.

TABLE IV
VER2TEST GENERATED HWLOOP PROGRAM

RISCY | Instructions
hwloop_i 8

Fault Coverage
80.41%

A. Testing Overhead: when schedule the library

When developing an on-line test set it is essential to
evaluate the overhead introduced by the library test programs.

As mentioned before, they are executed as normal tasks
interleaved with the running application software. This paper
clearly exposes an on-going work which purpose is to deliver
the entire on-line library covering all the processor modules.
The IEC 61508, an international standard for managing Func-
tional safety of electrical/electronic/programmable electronic
safety-related systems does not expressly fix an interval time
to schedule the on-line test library. However, a reasonable
example comes from the autonomous road vehicles domain:
the ISO 26262 standard is an adaptation of the IEC 61508
for Automotive Electric/Electronic Systems and claims that
the Diagnostic Time Interval (DTI) for fault detection in a
CPU can be around 10ms [13]. For the target autonomous
nano-drone it is reasonable to execute the on-line test library
after each frame elaboration. The application can scale up to
18 fps at 250MHz [8], thus, it can elaborate a frame about
every 55 ms. Since the average execution time of a single
test program is about 10us @250MHz (2,500 clock cycles),
we estimate that the overall test library will last from 500us to
600us (@250MHz). By enabling the library during the normal
execution of such application, the user can tune operational
conditions (system frequency and voltage) to choose between
same performance or same power budget according to the
safety requirements of the system. For instance, supposing
to execute a test phase after each frame elaboration (55 ms
@250MHz), in order to keep the same frame-per-second (fps),
the frequency of the system has to be increased up to 253MHz
to avoid that the introduced overhead down-performs the appli-
cation. This extra power overhead and shorter battery lifetime
is traded by a higher level of reliability ensured by the on-line
test library. Due to the coexistence between the application and
the safety mechanism, autonomous systems have the ability to
take appropriate actions when some functionality is lost due
to failures.

VII. CONCLUSIONS

Autonomous systems are on the rise and it becomes of a
paramount importance to test these systems and ensure their
safe behaviour during their mission life. Providing proper so-
lutions for safety and reliability is currently a crucial challenge
for the long-term societal acceptance of autonomous systems.
Moreover, utilizing deep learning algorithms for training and
inference introduces additional safety certification challenges
for these complex devices [14]. The end-goal of this paper
is to present a methodology to develop on-line test programs
to be executed along with the running software application.
This solution is mostly oriented to autonomous systems but
is extensible to every domain. Guidelines are provided to
identify the amount of safe faults, i.e., those faults that cannot
produce any failure due to the hardware and the software
constraints provided by the application environment. More-
over, experimental results prove that it is possible to reach
high fault coverage (80% - 90%) by exploiting an already
existing verification set of programs. The proposed approach
aims at significantly reducing the cost and the effort for
creating ad-hoc test programs by providing a fully automated

solution. The experiments are reported on a RISC-V processor
(RI5CY) when running a DNN-based visual navigation engine
for autonomous nano-drones application software.

Future work aims at running the complete on-line test
library in the field and on the fly, i.e., during the nano-drone
mission mode.

REFERENCES

[11 A. Devos, E. Ebeid, and P. Manoonpong, ‘“Development of autonomous
drones for adaptive obstacle avoidance in real world environments,” 08
2018, pp. 707-710.

[2] A. Aniculaesei, J. Grieser, A. Rausch, K. Rehfeldt, and T. Warnecke,
“Toward a holistic software systems engineering approach for de-
pendable autonomous systems,” in 2018 IEEE/ACM st International
Workshop on Software Engineering for Al in Autonomous Systems
(SEFAIAS), May 2018, pp. 23-30.

[3] B. Lussier, A. Lampe, R. Chatila, J. Guiochet, F. Ingrand, M.-O.
Killijian, and D. Powell, “Fault tolerance in autonomous systems: How
and how much?” 01 2005.

[4] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Sonza Reorda, “Micro-
processor software-based self-testing,” IEEE Design Test of Computers,
vol. 27, no. 3, pp. 4-19, May 2010.

[5] A. Jasnetski, R. Ubar, and A. Tsertov, “On automatic software-based
self-test program generation based on high-level decision diagrams,” in
2016 17th Latin-American Test Symposium (LATS), April 2016, pp. 177—
177.

[6] P. Bernardi, R. Cantoro, A. Floridia, D. Piumatti, C. Pogonea, A. Ru-
ospo, E. Sanchez, S. De Luca, and A. Sansonetti, “Non-intrusive self-test
library for automotive critical applications: Constraints and solutions,” in
2019 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2019, pp. 920-923.

[7] M. Gautschi, P. D. Schiavone, A. Traber, 1. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Giirkaynak, and L. Benini, “Near-threshold risc-
v core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700-2713, Oct 2017.

[8] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, and
L. Benini, “A 64mw dnn-based visual navigation engine for autonomous
nano-drones,” IEEE Internet of Things Journal, vol. PP, pp. 1-1, 05
2019.

[9] R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. S. Reorda, and
J. Mess, “An analysis of test solutions for cots-based systems in space
applications,” in 2018 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), Oct 2018, pp. 59-64.

[10] P. Bernardi, R. Cantoro, L. Ciganda, E. Sanchez, M. S. Reorda, S. De
Luca, R. Meregalli, and A. Sansonetti, “On the in-field functional testing
of decode units in pipelined risc processors,” in 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), Oct 2014, pp. 299-304.

[11] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, pp. 1088-1095, 2018.

[12] P. D. Schiavone, E. Sanchez, A. Ruospo, F. Minervini, F. Zaruba,
G. Haugou, and L. Benini, “An open-source verification framework for
open-source cores: A risc-v case study,” in 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Oct 2018, pp.
43-48.

[13] A. Nardi and A. Armato, “Functional safety methodologies for
automotive applications,” in Proceedings of the 36th International
Conference on Computer-Aided Design, ser. ICCAD ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 970-975. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3199700.3199834

[14] J. Athavale, R. Mariani, and M. Paulitsch, “Flight safety certification
implications for complex multi-core processor based avionics systems,”
in 2019 IEEE International Reliability Physics Symposium (IRPS),
March 2019, pp. 1-6.

