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Entropy and logarithm of Kaniadakis calculus expressed by means of
an Euler infinite product expansion

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy

Here we show how an Euler infinite product expansion can be used to display easily the
link of  nonadditive Kaniadakis entropy to  Shannon entropy. At the same time we can

see how the natural logarithm is linked to the expression of  k-logarithm.
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In  2001,  Giorgio  Kaniadakis  proposed  a  formulation  of  entropy  based  on  his  new
approach to calculation which is today known as  k-calculus [1-3]. This entropy is a
nonadditive composable one [4]. In [5], we have consider some further properties of this
entropy, with the aim of applying it to the analysis of images [6] and theory of numbers
[7], among the many applications of this calculus.  Here we aim to show how an Euler
infinite  product  expansion can  be  used to  display  easily  the link  of  this  entropy to
Shannon entropy. At the same time we can see how the natural logarithm is linked to
the expression of the k-logarithm.

Kaniadakis entropy has the discrete form:

Sκ=−∑i

pi
1+κ−pi

1−κ

2κ

Integer i enumerates cases with probability pi  and  κ is a real number. 

Now, let us consider a term in the sum:

pi
1+κ−p i

1−κ

2κ =pi
pi
κ−pi

−κ

2κ

Let us use Euler number and logarithm:
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pi
2κ ( p i

κ−pi
−κ )=

pi
2κ (e

κ ln pi−e
−κ ln pi)=

pi
2κ (e

ui−e
−ui)

where  we define ui=κ ln pi .

In [8] we can find mentioned a useful formula [9], which is an Euler infinite product
expansion:

eu−e−u=2u(1+ u
2

π 2
)(1+ u2

22π 2
)(1+ u2

32π 2
)...=2u∏

j=1

∞
(1+ u2

j2π 2
)

Then the entropy can be written as:

Sκ=−∑i

pi
1+κ− pi

1−κ

2κ =−
1

2κ ∑
i

2 piu i∏
j=1

∞
(1+

ui
2

j2 π 2)

= − 1
2κ ∑

i
2 piκ (ln p i)∏

j=1

∞
(1+

(κ ln pi)
2

j2π 2 )=−∑
i

( p i ln p i)∏
j=1

∞
(1+

(κ ln p i)
2

j2π 2 )

So we can write:

Sκ=−∑
i

( p i ln p i)∏
j=1

∞
(1+

(κ ln p i)
2

j2π 2 )

And here we can see clearly that Kaniadakis entropy becomes Shannon entropy for
κ →0 :

SShannon=−∑
i

pi ln pi

Kaniadakis proposed a form of logarithm in the  k-calculus [1-3] so that:

Sκ=−∑
i

pi lnκ p i

where 

lnκ pi=
p i
κ−p i

−κ

2κ
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As a consequence, using Euler function we can tell that:

lnκ pi=( ln p i)∏
j=1

∞
(1+

(κ ln p i)
2

j2π 2 )

In the generalized additivity of Kaniadakis entropy, it appears another function [5]:

Iκ=∑i

pi
1+κ + pi

1−κ

2

In [8] we find another Euler formula [10]:

eu+e−u=2(1+ 4u2

π 2
)(1+ 4u2

32π 2
)(1+ 4u2

52π 2
)...=2∏

j=0

∞
(1+ 4u2

(2 j+1)2π 2
)

And then:

Iκ=∑i

pi
1+κ + pi

1−κ

2
=∑

i

pi
2

[ 2∏
j=0

∞
(1+

4 (κ ln pi)
2

(2 j+1)2π 2 ) ]

In the case that  κ →0 , we have Iκ=1 .

Let is remember that this function appears in the generalized additivity of Kaniadakis 
entropy. In the case of two independent systems A and B:

Sκ
A∪B=Sκ

A Iκ
B+Sκ

B Iκ
A

When κ →0 , we have :

Sκ
A∪B=SA+SB

where the entropies are Shannon entropies.

As a conclusion, using two Euler infinite product expansions we can rewrite Kaniadakis
entropy  and  discuss,  in  a  different  manner,  its  properties  with  respect  to  Shannon
entropy.
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