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Abstract
Clustering methods are increasingly applied to single-cell
DNA sequencing (scDNAseq) data to infer the subclonal
structure of cancer. However, the complexity of these data
exacerbates some data-science issues and affects clustering
results. Additionally, determining whether such inferences
are accurate and clusters recapitulate the real cell phylogeny
is not trivial, mainly because ground truth information is not
available for most experimental settings. Here, by exploit-
ing simulated sequencing data representing known phylo-
genies of cancer cells, we propose a formal and systematic
assessment of well-known clustering methods to study their
performance and identify the approach providing the most
accurate reconstruction of phylogenetic relationships.

CCSConcepts: •Applied computing→Computational
genomics.
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1 Introduction
Cancer cells accumulate genetic alterations at every cell
division, including both sequence variants and structural
variations with gross copy number changes of entire ge-
nomic regions (i.e. copy number alterations, CNAs). On these
premises, similarities in the genomic structure of individual
cancer cells can be exploited to estimate the phylogenetic
distance across different cells and consequently infer the
subclonal structure of a tumor. For this reason, scDNAseq is
becoming an increasingly popular technique [24, 28].

The most common way of inferring a single-cell CNA (sc-
CNA) phylogeny is by performing hierarchical clustering on
the CN profiles [3, 16], assuming that similar cells are very
likely to have experienced the same mutational events. How-
ever, a number of biases could affect this kind of approach
and vitiate the accuracy of the outcome. Specifically, cluster-
ing single-cell data exacerbates some biological data-science
issues [30]. Indeed, the increasing number of cells which can
be sequenced together expands the space of possible cluster
assignments and determining the most meaningful results is
not trivial without knowing the underlying biological truth.
Additionally, the high-dimensional nature of such data har-
bors the “curse of dimensionality" [20]: distance metrics stop
to behave as expected based on our low-dimensional intu-
ition and clustering algorithms fail in determining distance
between points. Moreover, the infinite-sites model does not
apply to cancer CNAs [17], which intrinsically diminish the
power of exploiting similarities in the genomic structure to
predict phylogenies.
Although some of these issues have been partially ad-

dressed in the context of single-cell RNA methodology [18],
in the case of scDNAseq, the extent of available data is still
limited and there is need for the development of dedicated
data analysis methods.

On these premises, the aim of the present work is to pro-
pose a first formal and systematic performance evaluation
of nine well-known clustering methods on scCNA data.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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We generated a synthetic scCNA dataset to evaluate the ac-
curacy, the stability, the run time and scalability of nine clus-
tering methods. Moreover, we compared the performance
of the algorithms following different pre-processing steps.
Finally, we tested the best performing methods on a real sc-
CNA dataset obtained from colorectal cancer cells. The code
used to perform our analysis is available at https://github.
com/mmontemurro/clusteringbenchmarking.

2 Materials and Methods
In the following, we will describe the procedure to generate
the simulated and the real scCNA datasets and the evaluation
methods we have used for this work.

2.1 Simulations
We designed a simulation experiment to compare the per-
formance of the clustering methods on datasets of three
different sizes (100, 200 and 400 cells). Each experiment was
iterated 50 times, for a total of 150 datasets.

Simulations were performed using the method presented
by Fan et al. [11] which generates a phylogenetic tree start-
ing from a reference genome, using a generalization of the
Beta-Splitting model [6]. When a new edge enters the tree,
a number of new CNAs is generated by sampling from a
Poisson distribution (default _ = 2). The CNA size is deter-
mined by sampling from an exponential distribution (default
mean=5Mbp), plus a minimum CNA size (default 2Mbp). The
kind of alteration (gain vs. loss) is decided by a binomial
distribution (default 𝑝 = 0.5). If a CN gain is sampled, the
number of copies to be gained is determined by means a geo-
metric distribution (default 𝑝 = 0.5). If a CN loss is sampled,
the whole sequence on that region of the allele is deleted. The
allele is chosen by drawing from a binomial distribution (de-
fault 𝑝 = 0.5). The chromosome and the starting position of
the CNA are sampled from a uniform distribution, bounded
between 0 and the genome size. The daughter cell inherits all
CNAs from the parent node, in addition to its unique CNAs.
In agreement with the finite-site model of CNA evolution,
newmutations may occur on alreadymutated sites. Addition-
ally, to mimic the behaviour of punctuated evolution [15],
at the edges to the root, whole-chromosome amplifications
may occur, in addition to focal CNAs. The probability of a
chromosome to be amplified at this step is set by means of a
binomial distribution (default 𝑝 = 0.2). Finally, the number
of CNAs generated at this step may be increased by a given
multiplying factor. At the end, the leaves of the generated
tree represent the cells sampled from the patient, while the
internal nodes represent intermediate CN states, which do
not exist anymore.
In order to evaluate the ability of clustering methods to

produce group of cells phylogenetically related, we con-
verted the generated trees into easy-to-be-handled Newick
format [12] and defined a set of clusters, directly from the

trees, to be used as ground truth. The clusters are extracted as
proposed from Balaban et al. [5], by solving an optimization
problem that, given an arbitrary tree, returns the minimum
number of clusters such that the maximum pairwise cophe-
netic distance between leaves in each cluster is lower than a
given threshold. The threshold has been chosen according
to the empiric observation that using a value equal to the
height of each tree, a set of balanced clusters is obtained.

2.2 Clustering algorithms and evaluation methods
Since there is no formal evidence that hierarchical clustering
should be preferred to other clustering paradigms in this
scenario, we decided to take in consideration six among the
mostly used methods, which implementation is available:
Affinity Propagation [13], Agglomerative Hierarchical clus-
tering [19], Birch [31], DBSCAN [10], HDBSCAN [26] and
K-Means [23]. Additionally, we tested four variants of the ag-
glomerative method [19]: average linkage, complete linkage,
single linkage and ward linkage.
We applied each clustering method on every simulated

dataset in three different scenarios: (i) without any prepro-
cessing stage; (ii) after low variance feature filtering and PCA-
based dimensionality reduction and (iii) after low variance
feature filtering and UMAP-based dimensionality reduction.
The whole pipeline is fully automated. The Silhouette

score maximization heuristic [8] has been used to determine
the cluster number for the algorithms requiring it. Through
this, we simulated a real world scenario, in which the cluster
number is not known a priori and must be, arbitrary, chosen.
For each dataset, the optimal number of PCs has been defined
based on a randomization method, as described in Peres-
Neto et al. [29]. This method consists in shuffling the dataset
a number of times (default 𝑁_𝑖𝑡𝑒𝑟 = 50) and computing
the percentage of variance explained by the PCs at every
iteration. The significance of each PC is then defined as the
probability that the permuted variance is greater than that
observed one. Based on this, all the PCs characterized by
a a p-value equal or below the threshold significance level
(default 𝛼 = 0.05 ) are considered informative.

For each clustering method, we measured the execution
time and computed the following indices:

• (stability) the Average Proportion of Non-overlapping
(APN). This score measures the average incoherence
between full data clustering and clustering based on
data in which one dimension was removed. Values
closer to 0 indicate good algorithm stability.

• (accuracy) the Adjusted Rand index (ARI), the Adjusted
Mutual Information (AMI), the V-Measure (VM) and the
Fowlkes-Mallows Index (FMI). These indices measure
the similarity between the ground truth and cluster-
ing results. Values closer to 1 indicate good algorithm
accuracy.

https://github.com/mmontemurro/clustering benchmarking
https://github.com/mmontemurro/clustering benchmarking
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2.3 Single-cell sequencing
A real dataset has been generated by executing a scDNA-seq
experiment on the human non-metastatic colorectal cancer-
derived cell-line, SW480.
To this purpose, cells were cultured in L-15 medium sup-

plemented with 10% FBS and 1% penicillin–streptomycin.
To perform nuclei isolation, we proceeded accordingly to
10X Genomics protocol [1]. Briefly, 1 million cells were cen-
trifuged (300 rcf for 5 minutes, at 4°C). Cell membranes were
then lysed using a pre-chilled lysis buffer, and nuclei were
pelleted by centrifugation (850 rcf for 5 minutes, at 4°C). Su-
pernatantwas removed, and nuclei werewashed twice in PBS
(0.04% BSA). After it, nuclei were counted, and re-suspended
to a 1000 nuclei/ul concentration. Three thousand nuclei
were processed accordingly to manufacturer protocol [2], to
generate a barcoded DNA library from each nucleus. After
QC check, libraries were sequenced on a Novaseq 6000 S1
flow cell (Illumina).

We used 10XGenomics proprietary pipeline [3],Cell Ranger
DNA, to filter-out sequencing noise, align the reads against
the GrCh38 reference genome and assign them to valid
cell identifiers. We, then, demultiplexed the alignment file
into single-cell .bam files, filtering out poor quality reads
(𝑀𝐴𝑃𝑄 < 30), multimapping and secondary alignments. We,
finally, used a customized version of Ginkgo [16] to extract
scCNA profiles. The choice to use Ginkgo to call CNAs was
motivated by the need of flexibility which is not fully pro-
vided by Cell Ranger DNA.

The resulting dataset contained 399 scCNA profiles.

3 Results and discussion
3.1 Evaluating clustering
Weapplied each clusteringmethod on every simulated dataset,
in the three preprocessing scenarios. Each clustering algo-
rithm was therefore executed 450 times, for a total of 4050
clustering results. The evaluation metrics were computed
for each algorithm run and then aggregated to summarize
the results.
In the following, we will summarize the main results of

our analysis.

3.1.1 Computation time. Figure 1 shows how the mean
computation time increases as the input datasets become
larger, in the no-preprocessing scenario. When dealing with
small datasets, all algorithms achieve comparable perfor-
mance; as the dataset size increases, density based algorithms
(DBSCAN, HDBSCAN) behave worse than the others. This
result was expected since it reflects the complexity of the
algorithms.

3.1.2 Stability. Table 1 shows the mean APN score over
different sizes of the input datasets, for the three preprocess-
ing scenarios. All algorithm demonstrated good performance
(APN near to 0), in terms of stability, in all tested conditions.

Figure 1. Clustering algorithm evaluation: mean computa-
tion time on non-reduced datasets.

However, in the absence of any preprocessing stage, K-
Means and DBSCAN achieve the worse scores. Moreover, all
the algorithms were less stable when applied to data prepro-
cessed through PCA or UMAP. This is expected and coherent
with the notion that following dimensionality reduction all
the selected features are relevant for classification. As a final
remark, it is interesting to notice that increasing the input
dataset size, from 200 to 400 cells, improved the stability of
DBSCAN.

3.1.3 Accuracy. Figures 2, 3 and 4 summarize the results
of our analysis on clustering accuracy. We ranked algorithms
to identify the most accurate one, for each input dataset size
and preprocessing scenario. To this purpose, we first assigned
a rank to each algorithm based on each validation index and
then computed the overall performance as the average of
the ranks.
The only algorithm which demonstrated good accuracy

even in the absence of data preprocessing, is Affinity Prop-
agation (AP) clustering. This is reasonable since the AP al-
gorithm was already shown to perform well in various data-
science fields, dealing with various kind of high-dimensional
data [9, 14, 21, 22]. The reason of the good performance of AP
is likely related to the fact that it does not take random sam-
ples for cluster centers but considers all points as possible
exemplars [4].
On the contrary, it is interesting to notice that Agglom-

erative clustering based on single and average linkage con-
sistently performed worse than the others, possibly because
they are very sensitive to noise and, as a consequence, tend
to produce a high number of little, singleton, clusters. In
contrast, Agglomerative clustering with ward linkage per-
formed better, in accordance with the notion that it generally
produces more balanced clusters, and should be preferred
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Exp100 Exp200 Exp400
No preproc. PCA UMAP No preproc. PCA UMAP No preproc. PCA UMAP

affinity 0.0 0.061 0.246 0.0 0.052 0.345 0.001 0.051 0.33
agglomerative_average 0.0 0.019 0.106 0.0 0.019 0.148 0.0 0.006 0.209
agglomerative_complete 0.0 0.025 0.124 0.0 0.034 0.177 0.001 0.053 0.25
agglomerative_single 0.0 0.016 0.074 0.0 0.014 0.108 0.0 0.002 0.157
agglomerative_ward 0.0 0.028 0.119 0.0 0.026 0.172 0.0 0.023 0.24
birch 0.0 0.026 0.097 0.0 0.029 0.156 0.0 0.026 0.206
dbscan 0.003 0.123 0.459 0.089 0.087 0.388 0.042 0.081 0.225
hdbscan 0.0 0.046 0.001 0.002 0.052 0.0 0.003 0.057 0.0
kmeans 0.057 0.031 0.129 0.079 0.048 0.182 0.078 0.077 0.251

Table 1. Clustering algorithm evaluation: Mean APN scores.

when performing hierarchical clustering on non-reduced
scCNA data.
However, for all dataset sizes, a better performance was

achieved when clustering was applied following feature se-
lection and dimensionality reduction. This confirms that the
high-dimensional and noisy nature of this data negatively
affects clustering results. In this scenario, PCA preprocess-
ing was more effective when dealing with smaller datasets,
while UMAP worked better with the larger ones. It is gener-
ally believed that clustering following UMAP embeddings
should be avoided, since UMAP affects the global data struc-
ture, while maintaining the local relationships between data
points [27]. UMAP can also create false tears in clusters,
resulting in excessively fined grained clustering. Despite
these concerns there are still valid reasons to use UMAP as
a preprocessing step before clustering. Specifically, UMAP is
particularly effective in uncovering the underlying signals
from data with a very large number of dimensions, most of
which are noisy or redundant. When this is the case, UMAP
preprocessing may be therefore beneficial, provided that a
manual inspection of the results is performed [25].

Indeed, at least in our experiment, on average the best per-
formance was obtained when applying UMAP preprocessing,
particularly when combined with density-based clustering
approaches, which suggests that UMAP preprocessing may
be useful to reduce scCNA data dimensionality before clus-
tering.

In general, it is worth noting that the clustering methods
which provided, on average, the most accurate results are
those which does not require to be seeded with the cluster
number. This may be a consequence of the automatic selec-
tion of the K, determined by maximizing the Silhouette score.
This led us to conclude that, when dealing with large-scale
and high-dimensional data, where the number of clusters
is unknown, clustering methods which are able to infer the
number of clusters, from the data, are always the best choice.

Moreover, to obtain an indication of the average accuracy
of each algorithm in the three preprocessing scenarios, we
rescaled the indices to the interval [0, 1] and computed a

No preproc. PCA UMAP
dbscan 0.401 0.715 0.783
kmeans 0.467 0.627 0.556
hdbscan 0.435 0.606 0.698
affinity 0.723 0.658 0.390
agglomerative_ward 0.465 0.602 0.557
birch 0.462 0.572 0.546
agglomerative_complete 0.351 0.460 0.550
agglomerative_average 0.164 0.364 0.547
agglomerative_single 0.141 0.298 0.538

Table 2. Clustering algorithm evaluation: overall mean ac-
curacy scores.

mean accuracy score across the dataset sizes. Table 2 shows
that UMAP should be preferred over PCA, especially, when
used before running DBSCAN, or HDBSCAN. On the other
side, to exploit the full resolution of the data, AP is the most
accurate algorithm.

3.2 Test case: SW480 cells
We tested the algorithms which achieved the best perfor-
mance in the experiment with 400 cells, on SW480 cell data.
As a general preprocessing step, we filtered out the cells
characterized an high MAD (> 90th percentile). The MAD is
the median absolute deviation of all pair-wise differences in
read counts between neighboring bins and reflects the bin
count dispersion due to technical noise. After that, we ap-
plied Affinity Propagation (AP) clustering to the non-reduced
dataset and HBSCAN to UMAP-preprocessed data. In order
to determine the model with better separation between the
clusters, we computed the Davies-Bouldin score [7] (lower
values signifies better cluster separation).

Figures 5a and 6a show AP results. Clusters composed
of less than 10 items were excluded and only the 7 major
clusters were kept for the further analysis. The scatter-plot
(Figure 6a) shows that the clusters were well separated, with
the exception of a few cells which have been mis-classified.
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(a) No preprocessing (b) PCA (c) UMAP

Figure 2. Clustering algorithm accuracy on 100 cells dataset: mean external validation indices scores. Clustering algorithms
are sorted according to the average ranking computed on all indices.

(a) No preprocessing (b) PCA (c) UMAP

Figure 3. Clustering algorithm accuracy on 200 cells dataset: mean external validation indices scores. Clustering algorithms
are sorted according to the average ranking computed on all indices.

The heatmap shows that clusters were internally cohesive
and each of them contained CNA profiles which were clearly
distinguishable from those of the other clusters. The Davies-
Bouldin score had value 9.933.

Figures 5b and 6b showHDBSCAN results. The cellsmarked
as "noise" by the algorithm were excluded. Additionally,
HDBSCAN library implements the GLOSH outlier detection
algorithm which can detect outliers that may be noticeably
different from points in its local region (for example points
not on a local submanifold) but that are not necessarily out-
liers globally. So we took advantage of this feature to filter
out also the cells with a high outlier-score (> 90th percentile).
In the end, we obtained 5 clusters. The scatter-plot (Figure 6b)

shows that, in this case, all cells were assigned to the most
appropriate cluster. The heatmap (Figure 5b) shows quite
consistent cluster, even if clusters 2 and 3 could have been
splitted in two subclusters. The Davies-Bouldin score had
value 10.950.

Remarkably, the clusters returned by the two methods,
applied once on the raw dataset and once after an aggressive
dimensionality reduction, performed with UMAP, are very
similar. This means that UMAP may be used as a preprocess-
ing step for clustering, as long as some manual validation
of the results is performed. AP produced more clusters than
HDBSCAN, because it was able to separate the cells which
the latter algorithm put into clusters 2 and 3, as reflected
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(a) No preprocessing (b) PCA (c) UMAP

Figure 4. Clustering algorithm accuracy on 400 cells dataset: mean external validation indices scores. Clustering algorithms
are sorted according to the average ranking computed on all indices.

(a) AP (b) UMAP+HDBSCAN

Figure 5. SW480 clusters. We applied AP on the non-reduced dataset (5a) and HBSCAN on the UMAP-reduced one (5b). The
colored labels on the left-side of the heatmaps indicate the cluster which each cell was assigned to.

by the Davies-Bouldin score. On the other side, HDBSCAN
is cluster shape independent and is resilient to noise and
outliers.

4 Conclusion
The task of evaluating clustering algorithms performance
on scCNA data has shown to be challenging and insidious,
mainly because ground truth information about cell phy-
logeny is not available for public scDNAseq datasets.

Here, we exploited a synthetic dataset of single-cell CNA
profiles with a known underlying phylogeny to perform the
first formal and systematic evaluation of clustering algo-
rithms onto single-cell CNA data which raises some data
science issues. We have compared the performance of nine
well-known clustering algorithms highlighting the pros and
cons of the methods in predicting the structure of the real cell

phylogeny. We took in consideration three different dataset
sizes and both situations in which data are reduced to a lower
dimensional space (PCA/UMAP) and when they are not. For
each algorithm run we estimated the computation time, al-
gorithm stability (APN) and the algorithm accuracy (ARI,
AMI, FMI, VM). All of them showed to produce highly sta-
ble results, while density based algorithms are those which
computation time increases more rapidly by increasing the
dataset size. As for the accuracy, we ranked the algorithms,
based on the average of the four indices. The algorithms
which do not require to be seeded with the cluster num-
ber outperformed the others. Specifically, Affinity Propaga-
tion won when no dimensionality reduction was performed,
while density based algorithms had very good results on top
of PCA and UMAP results (DBSCAN for 100 and 200 cells
dataset, HDBSCAN for 400 cells dataset).
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(a) AP (b) UMAP+HDBSCAN

Figure 6. 2D representation of clustering results (without outliers). The 2D representation of the dataset shows that AP (6a)
assigned a few cells to the wrong cluster, while HDBSCAN (6b) failed in splitting cluster 2 and 3.

We tested Affinity Propagation and HDBSCAN on a real
scCNA dataset. AP was applied on the non-reduced dataset
while HDBSCAN was performed following UMAP prepro-
cessing. They both extracted cohesive and well-separated
clusters. Moreover, the clusters identified by the two algo-
rithms were similar, suggesting that UMAP may be effec-
tively exploited to perform dimensionality-reduction. AP
outperformed HDBSCAN in separating the items of two
subgroups, which may indicate that retaining the full set of
features may increase the resolution in subclones identifica-
tion.
The main limitation of the present work is that the al-

gorithm benchmarking was performed on synthetic data,
due to the lack of an available biological ground truth; for
this reason, we believe that an ad-hoc experiment should be
designed to produce real data and extend our analysis.
To conclude, we have proposed a framework to study

clustering algorithms performance on scCNA data, which
can be easily replicated to perform similar studies.
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