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Abstract

In this paper we examine the possibility of a Josephson AC effect between two superconductors

induced by the Earth’s gravitational field, making use of the gravito-Maxwell formalism. The

theoretical framework exploits the symmetry between the weak field expansion of the gravita-

tional field and the standard Maxwell formulation, combined with the Josephson junction physics.

We also suggest a suitable experimental setup, analysing also the related possible difficulties in

measurements.

1 Introduction

The simplest manifestation of the Josephson effect [1] is represented by a circuit closed on a

superconductor-insulator-superconductor (SIS) junction to which a constant potential difference ∆V

is applied. The voltage, in turn, produces a sinusoidal superconductive current across the junction

with pulsation ω = 2 e∆V /~. In the following, we use this formulation to highlight a possible inter-

action between a superconductive condensate and the gravitational field. Our idea stems from the

remarkable phenomenon known as gravity-induced quantum interference, where the Earth gravita-

tional potential is introduced in the Schrodinger equation [2]. The effect can be measured splitting a

nearly monoenergetic beam of thermal neutrons and then considering the produced interference paths:

a gravity-induced quantum mechanical phase shift is observed, due to the presence of the Earth’s grav-

itational field [3]. The experiment shows quantum effects originating from the interaction of quantum

particles with a classical, weak-field gravitational background. As in this case, measurable effects

can manifest themselves in different physical situations; in particular, the SIS Josephson junction is

proposed here as a promising framework for observing new experimental evidence.

For over half a century, the possible interplay between gravity and superconductivity has been

investigated, starting with DeWitt’s seminal work [4], continuing with the Podkletnov’s pioneering,

controversial experiment [5] and the theoretical work of Modanese, who first clarify the possible origin

of the gravity/condensate interaction [6]. In the same period there had been both theoretical [7] and

experimental [8, 9] works about generalized electric-type fields induced in metals by the presence of a
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gravitational field1. The fundamental result of those researches was the introduction of a fundamental,

generalized field of the form E = Ee + m
e Eg, sum of an electrical component Ee and a gravitational

one Eg, where m and e are the electron mass and charge.

Another way to achieve the same results is the use the gravito-Maxwell formalism [10, 11], that

we briefly develop in the following section.

2 Weak field approximation and generalized Maxwell equations

Let us consider an almost flat spacetime configuration (weak gravitational field) where the metric gµν
and its inverse gµν can be expanded as:

gµν ' ηµν + hµν , gµν ' ηµν − hµν , (1)

hµν being a small perturbation of the flat gµν Minkowski metric2. The Christoffel symbols, to linear

order in hµν , are written as

Γλµν =
1

2
gλρ (∂µgνρ + ∂νgρµ − ∂ρgµν) ' 1

2
ηλρ (∂µhνρ + ∂νhρµ − ∂ρhµν) . (2)

The Riemann tensor is defined as

Rσµλν = 2 ∂[λΓσν]µ + 2 Γσρ[λ Γρν]µ , (3)

while the Ricci tensor is given by the contraction Rµν = Rσµσν and, to linear order in hµν , it reads

[10–12]

Rµν ' ∂ρ∂(µhν)ρ −
1

2
∂2hµν −

1

2
∂µ∂νh , h = hσσ . (4)

The Einstein equations [12, 13] are written as

G
(E)

µν ≡ Rµν −
1

2
gµν R = 8πG Tµν , (5)

and the l.h.s. in first-order approximation reads [10–12]

G
(E)

µν ' ∂ρ∂(µh̄ν)ρ −
1

2
∂2h̄µν −

1

2
ηµν ∂

ρ∂σh̄ρσ = ∂ρ
(
∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ

)
, (6)

having introduced the symmetric tensor

h̄µν = hµν −
1

2
ηµν h . (7)

If we also define the tensor [10, 11]

Gµνρ ≡ ∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ , (8)

the Einstein equations can be rewritten in the compact form:

G
(E)

µν = ∂ρGµνρ = 8πG Tµν . (9)

1 for an updated summary on the subject, see [10, 11] and references therein.
2 here we work in the mostly plus convention, ηµν = diag(−1,+1,+1,+1), and natural units c = 1.
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We can impose a gauge fixing using the harmonic coordinate condition (De Donder gauge) [12]

2xµ = 0 ⇔ ∂µ
(√
−g gµν

)
= 0 ⇔ gµν Γλµν = 0 , (10)

that, using eqs. (1) and (2), in turn implies the Lorentz gauge condition

∂µh̄µν ' 0 . (11)

The latter simplifies the expression for Gµνρ in

Gµνρ ' ∂[ν h̄ρ]µ . (12)

Gravito-Maxwell equations. Now, let us introduce the fields [10, 11]

Eg ≡ Ei = −1

2
G00i = − 1

2
∂[0h̄i]0 , Ag ≡ Ai =

1

4
h̄0i , Bg ≡ Bi =

1

4
εi
jk G0jk . (13)

If we consider the divergence and curl of the above quantities, we obtain, restoring physical units, the

set of equations [10, 11]:

∇ ·Eg = 4πG ρg ;

∇ ·Bg = 0 ;

∇×Eg = −∂Bg

∂t
;

∇×Bg = 4πG
1

c2
jg +

1

c2
∂Eg

∂t
,

(14)

where we have used (12), (9) and introducing the mass density ρg ≡ −T00 and the mass current

density vector jg ≡ ji ≡ T0i . The above equations are formally equivalent to Maxwell equations, with

Eg and Bg gravitoelectric and gravitomagnetic field respectively. For example, on the Earth surface,

Eg is simply the Newtonian gravitational acceleration, while Bg is related to angular momentum

interactions [14–16].

Generalized Maxwell equations. Now let us introduce the generalized electric/magnetic field,

scalar and vector potentials, containing both electromagnetic and gravitational terms:

E = Ee +
m

e
Eg ; B = Be +

m

e
Bg ; V = Ve +

m

e
Vg ; A = Ae +

m

e
Ag , (15)

where m and e are the mass and electronic charge, respectively, the subscripts identifying the electro-

magnetic and gravitational contributions.
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The generalized Maxwell equations for the fields (15) then become [10, 11, 17]:

∇ ·E =

(
1

εg
+

1

ε0

)
ρ ;

∇ ·B = 0 ;

∇×E = −∂B

∂t
;

∇×B = (µg + µ0) j +
1

c2
∂E

∂t
,

(16)

with ε0 and µ0 electric permittivity and magnetic permeability in the vacuum, ρ and j electric charge

density and electric current density, respectively, and writing the mass density and the mass current

density vector as

ρg =
m

e
ρ , jg =

m

e
j , (17)

while defining the vacuum gravitational permittivity and the vacuum gravitational permeability as

εg =
1

4πG

e2

m2
, µg =

4πG

c2
m2

e2
. (18)

We have shown how to define a new set of generalized Maxwell equations for generalized electric E and

magnetic B fields, in the limit of weak gravitational field; similar strategies, for example, can be used

to conjecture a gravitational-analogue Aharonov-Bohm electric effect [18]. In the following sections,

we are going to use these results to study the behaviour of a suitable oriented Josephson junction.

3 Josephson effect induced by gravity

If two superconductors are put in contact and the critical current in the contact region is much lower

than that of the individual constituents, the configuration is called weak link. The superconductors,

if taken separately, have phase φ1,2 and amplitude |ψ1,2|, with wave functions

ψ1,2 = |ψ1,2| exp (i φ1,2) =
√
ρ1,2 exp (i φ1,2) , (19)

where ρ1,2 are the probability amplitudes of Cooper pair densities. Once the weak link is formed,

coherence is established across the barrier, with a phase difference ∆φ = φ2 − φ1 causing interference

between the previously independent wavefunctions, so that the system can be described with a single

wavefunction as a whole.

A typical realization of a weak link is a SIS tunnel junction, consisting of two superconductors

(that we take equal for simplicity) of thickness L and surface A, separated by a very thin oxide layer

of thickness `� L. The evolution of the system can be then described using the time dependent

Schrodinger equation

i~
∂ψ

∂t
= E ψ . (20)

Once the contact is created, we can state that there exists an overlap between the left ψ1 and the

right ψ2 wavefunctions. This means that an additional term must be added to take into account

this wavefunctions’ interaction, so that the rate of change of ψ1 is proportional to the amount of the
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coupling to ψ2 in left side. Similarly, a symmetric equation must also exist for the change rate of ψ2,

so that one globally has [19]

i~
∂ψ1

∂t
= E1 ψ1 +K ψ2 , (21a)

i~
∂ψ2

∂t
= E2 ψ2 +K ψ1 . (21b)

If the superconductors are of the same type (SIS case) the probability amplitudes of Cooper pair

densities are equal, ρ1 = ρ2 = ρ. The quantities E1 and E2 are the ground state energies of the

unperturbed system when K = 0. The relevant quantity of course is just ∆E = E2−E1 and we choose

the zero of energy to be halfway between E1 and E2.

Now, we can insert in (21) the wavefunctions ψ1,2 =
√
ρ exp(i φ1,2), where each function is assumed

to have a well-defined macroscopic phase, constant in space, and a well defined Cooper pair density.

If we separate the real and imaginary part, we can write the two following equations:

∂γ

∂t
=

∆E
~

= 0 , (22a)

∂ρ

∂t
=

2K

~
ρ sin(γ) , (22b)

where γ = φ2−φ1 and that hold in the absence of applied voltage of any kind (electric or gravitational-

like)3. The supercurrent across the contact has the form

Js = −2 e
∂ρ

∂t
= −4 eK

~
ρ sin(γ) = J0 sin(γ) , (23)

and it suggests to us that a supercurrent is driven across the thin layer separating the superconductors,

depending on the superconducting phase difference across the barrier itself.

If now we apply a constant voltage ∆V across the junction, we find an oscillatory variation of

phase difference. This is motivated analysing the time dependence of the phase difference in (22a),

that has to be modified in order to take into account the applied constant voltage:

∂γ

∂t
=

2 e∆V

~
, (24)

that, after integration, gives

γ(t) = γ0 +
2 e∆V

~
t , (25)

where γ0 is an integration constant. Since the Josephson current depends on sin(γ(t)), the supercurrent

results in

Js = J0 sin

(
γ0 +

2 e∆V

~
t

)
. (26)

The amplitude of the tunnelling current I0 = J0A is temperature dependent, of course just for T < Tc,

3 equation (22b) is written in the standard Josephson formalism [20] with a little abuse of notation: the ρ-density
involved in the derivative on the l.h.s. refers to the density of superconducting current across the interface, while the
density on the r.h.s. refers to the global density of the Cooper pairs in the system, that is conserved (constant) being
the system in the superconductive state.
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and is described by Ambegaokar–Baratoff formula [21, 22] that gives

I0 =
π∆s(T )

2 eRn
tanh

(
∆s(T )

2 kb T

)
, (27)

where Rn is the junction resistance in the normal state and ∆s(T ) is the superconductive gap. Thus,

when a Josephson junction is biased into a finite voltage state, the AC Josephson supercurrent flows

across the junction, governed by the time evolution of the superconducting wave function phase.

The production of an AC signal from a DC voltage may be understood as the result of the energy

conversion of electron pairs into photons [23]. Let us remark that, in DC Josephson effect, the Joseph-

son tunnelling barrier behaves as a weak superconducting link between the two superconductors. The

phases of the superconducting wavefunctions become locked and, as a result, the two superconductors

behave as a single coherent system. The junction then acts as a global weak superconductor.

We have explained in Sect. 2 how a generalized electric field is expressed as E = Ee + m
e Eg, while

a generalized potential can be written in the form V = Ve + m
e Vg. Now, if we restrict to the particular

case

Ee = 0 , Eg = g , (28)

that is, a situation in which it is present only the Earth’s gravitational field, we also have that

∆V =
m

e
∆Vg =

∫ `

0

dz
m

e
g =

m

e
g ` , (29)

since the gravitational field is directed along the z-axis (see Fig. 1). The resulting Josephson current

reads

Is(t) = I0 sin

(
2 e∆V

~
t+ ϕ

)
= I0 sin(ω t+ ϕ) . (30)

Of course, if the junction is rotated so that the normal vector of the surface junction becomes perpen-

dicular to the Earth’s gravitational field, the effect disappears.

The pulsation ω = 2 e∆V
~ , for an insulating layer of thickness ` ∈ [1, 2] nm, turns out to be in the

range ω ∈ [1.69 · 10−4, 3.38 · 10−4] s−1, and the corresponding oscillation period of the Josephson cur-

rent results to be T = 2π
ω ∈ [3.71 · 104, 1.85 · 104] s. If one wants to observe the generated current, it is

necessary to have a stable junction, since the duration of the experiment turns out to be approximately

one day, see Fig. 2a.

If one wants to increase the voltage Vg, reducing this way the experiment duration, it is possible

to use a junction made with Al. The latter becomes superconductive below 1.2 K and has a coherence

length of 1.6 ·103 nm, so that we can take an insulating layer of thickness ` ' 103 nm. In this situation,

we obtain for the voltage Vg = 5.6 · 10−17 Volt, for the pulsation ω = 1.69 · 10−1 s−1 and for the period

T = 37.1 s. This gives us an experiment duration of about 4 minutes, as shown in Fig. 2b.

From a practical point of view, the difficulty turns out to be the need for an experimental setup

stable enough to allow accurate measurements. If we increase the junction thickness, the time duration

for the experiment decreases, but the Josephson current becomes weaker. Probably, the best choice

to observe clear experimental evidences is to realize the most stable setup possible, making long-time

measurements.
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4 Conclusions

We have seen that the described theoretical model realizes the possibility to investigate the interplay

between a superconductive condensate and gravitation. The difficulties lie in the experimental setup,

that has to be stable in time, to allow for accurate long-duration observations, and very sensitive

in the voltage. However, we think that experimental issues are not insurmountable and an effective

verification of this idea should be possible.

z

x

y

ground (z = 0)

S

I

S

Fig. 1: SIS junction directed in the z direction, the same of the Earth’s gravitational field [color online].

PSfrag replacements

time (hours)

I s

(t
)/
I 0

Fig. 2a: Time dependence of the Josephson current for insulating
layers of thickness ` = 2nm (red, dashed) and ` = 1nm
(black, solid) [color online].

time (min)

I s
(t
)/
I 0

Fig. 2b: Time dependence of the Josephson current for an insu-
lating layer of thickness ` = 1µm.
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