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Eddy Current Modeling in Multiply Connected Regions Via a
Full-Wave Solver Based on the Quasi-Helmholtz Projectors

Tiffany L. Chhim, Adrien Merlini, Member, IEEE, Lyes Rahmouni, John Erick Ortiz Guzman,
and Francesco P. Andriulli, Senior Member, IEEE

Eddy currents are central to several industrial applications and there is a strong need for their efficient modeling. Existing eddy
current solution strategies are based on a quasi-static approximation of Maxwell’s equations for lossy conducting objects and thus
their applicability is restricted to low frequencies. On the other hand, available full-wave solvers such as the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHWT) equation become highly ill-conditioned and inaccurate in eddy current settings. This work presents
a new well-conditioned and stable full-wave formulation which encompasses the simulation of eddy currents. Our method is built
upon the PMCHWT equation and thus remains valid over the entire frequency range. Moreover, our scheme is also compatible
with structures containing holes and handles (multiply connected geometries). The effectiveness of quasi-Helmholtz projectors is
leveraged to obtain a versatile solver, which is computationally efficient and allows for a seamless transition between low and high
frequencies. The stability and accuracy of the new method are demonstrated both theoretically and through numerical experiments

on canonical and realistic structures.

Index Terms—Eddy currents, preconditioning, full-wave, multiply connected, quasi-Helmholtz decomposition.

I. INTRODUCTION

HE Boundary Element Method (BEM) is among the

most widespread techniques to simulate scattering and
radiation phenomena in electromagnetics. Its main benefit is
the necessity to discretize only the surfaces separating the
different media, as opposed to the entire volume, thus greatly
reducing the size of the problem. Integral equation approaches
have been used to create a wide family of formulations to
accommodate different scenarios. For instance the Electric
Field Integral Equation (EFIE) [1] is commonly used to
simulate perfect electric conductors, while the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) equation [2]—[4]] has
been used to handle dielectric and conducting bodies.

The simulation of eddy currents, which are generated inside
conductors in the vicinity of a time-varying magnetic field,
is of major interest for many industrial applications [5]. In
particular, induced eddy currents are widely employed for non
destructive testing in various manufacturing areas to detect
the presence of material defects [[6]. As of now, the modeling
of this type of scenarios requires ad hoc solvers built on
the quasi-static approximation of Maxwell’s equations after
neglecting displacement currents [7]], [8]]. Unfortunately, this
simplification greatly reduces their range of validity. Since the
quasi-static approximation is only valid at low frequencies,
these solvers are particularly ill-suited for electrically large
conductors [9], [[10]. In addition, the simulation of multiply
connected geometries usually requires further preprocessing
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such as the introduction of cutting surfaces or structural loops
detection to guarantee the uniqueness of the solution [[11[], [12].

On the other hand, the PMCHWT formulation is valid
to model lossy conductors for moderate conductivities, but
for high conductivities the discretization density must be
increased to maintain the accuracy of the integrals [[13]] and
numerical instabilities may occur. Lamentably, in fact, the
PMCHWT formulation suffers from a severe breakdown at
low frequencies including in the eddy current regime. More
precisely, the finite electrical conductivity of the material
simulated at low frequencies causes a critical ill-conditioning
of the equation [14], which in turn impacts the performance
of iterative solvers typically used in fast methods by slow-
ing down or even preventing altogether their convergence.
In addition, at very low frequencies, a detrimental loss of
accuracy in the solution also occurs. This is the counterpart, for
frequency dependent material parameters, of the well-known
low frequency breakdown of perfect conductors or purely
dielectric objects, which has been treated thoroughly in the
literature using a variety of strategies [15]—[17]. Solutions to
the low frequency breakdown in lossy materials have also been
proposed, often leveraging loop-star/loop-tree decompositions
[18] that however have a significant computation overhead
caused by their conditioning and the detection of global cycles.
In addition, the augmented EFIE [19] has successfully been
extended to lossy conductors [20] and inhomogeneous media
[21] but these extensions require additional matrices to be
computed and stored, thus increasing their computational cost.
Among the different approaches, the use of quasi-Helmholtz
projectors [22]-[24] offers many benefits over previous tech-
niques, including an improved stability, an implicit handling of
multiply connected geometries, and a compatibility with fast
solvers operating with quasi-linear computational complexity
[25]], [26]]. However, the approaches developed in [22], [24]
are only available for perfectly conducting objects. Similarly,
the formulation introduced in [23]] has been derived for purely
dielectric (lossless) materials but the proposed low frequency
regularizer is not applicable to the lossy case because it cannot
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Fig. 1. Definition of relevant quantities and parameters. An exciting electro-

magnetic field impinges on the conductor immersed in the air medium.

rescale separately the upper and lower diagonal blocks of the
PMCHWT which do not follow the same frequency behavior
under eddy current conditions. This work extends the use of
quasi-Helmholtz projectors to the eddy current regime, which
requires an ad hoc analysis and preconditioning strategy due to
the peculiar low frequency behavior associated to the complex
permittivity of the material. Separate rescaling strategies need
to be established leveraging both standard and dual operators
to overcome the difference in scaling of the upper and lower
diagonal blocks in such a way that: (i) both diagonal blocks
are cured, (ii) the off-diagonal blocks are not corrupted by a
new source of breakdown, (iii) no null space is introduced by
the rescaling, and (iv) the accuracy is preserved at very low
frequencies.

The proposed full-wave solver is capable of handling eddy
current modeling while effectively attaining (i) to (iv). In fact it
shows a stable conditioning, is free from the loss of significant
digits at very low frequencies, steadily shifts between low
and high frequencies, and is compatible with both simply
and multiply connected geometries, while maintaining a low
computational complexity. Very preliminary results have been
presented in the conference contribution [27].

The paper is organized as follows. The background and
notation are set in Section [l A thorough analysis of the
PMCHWT equation low frequency behavior in our setting
is detailed in Section and is followed in Section [[V] by
the presentation of the new strategy employed to obtain a
robust full-wave formulation. Section [V] contains additional
details related to the implementation. The development is then
supported by several numerical results in Section after
which Section |VII| concludes the paper.

II. BACKGROUND AND NOTATION

Let £2; C R3 be a lossy conductor with boundary I" = 92,
and outward pointing normal 7, residing in the outside
medium 2, = R3\ 2;. Throughout this paper, the indices
{0, 1} represent the exterior air medium of conductivity oo =
0 and the interior medium, respectively, as illustrated in Fig-
ure [T} The boundary I" can be either simply or multiply con-
nected, i.e. it can contain holes and handles. The conductor is
characterized by its constant permeability p1 = po -, constant
conductivity oy, and complex permittivity €; = ege,. — jo1 /w,
where €. is the real-valued relative permittivity and w is the

angular frequency. The Electric Field Integral Operator (EFIO)
is defined as

Tr=—kTar+ jikTgb’k’ (D

(Tanf)r) = i x / Gulr,v) F(r')dr | @)
r

(Toxf)(r) =7 x V /F Gi(r ) V' fr) ', (3)

and the Magnetic Field Integral Operator (MFIO) is defined
as

(1k f)(r) = 7 x /F VGi(r') x f(r)dr', ()

where k = w,/p€ is the wave number, and
o—ikR
4R

is the Green’s function with R = ||r — r’||. The eddy current
regime is characterized by the following conditions [10]], [28]

Gi(r,r’) =

&)

{weo <K 01 ©)

Lw. /o€ < 1

where L is the characteristic size of the conductor. In such
conditions, the wave number inside the object is

————— _1—]
kl ~ —Jwoipr = TJ, (7)

where § = /2/ (woqu1) represents the skin depth and influ-
ences the concentration of current densities near the surface

of the conductor [[10].
The PMCHWT integral equation reads [2]]—[4]

UOTko + ankl _(K:ko + ’Ckl) js
K:ko + K:kn H%Tko + W%Tkl ms
—n x E
- (—’f}, % H1> ’ (8)

where the unknowns are the electric and magnetic surface
current densities j;, = n x H and my; = —n x E, and
where 701 = +/po,1/€0,1 is the characteristic impedance of
the exterior or interior medium.

The next step towards obtaining a boundary element matrix
system is to discretize (§) by approximating the surface I" with
a mesh of planar triangular elements on which the divergence-
conforming Rao-Wilton-Glisson (RWG) basis functions [1]] are
defined between pairs of adjacent triangles ¢ as

_
ap e

Falry =4 =0 ©)
Ty T

where A is the area of the triangle c;” and =" is the position
vector of the vertex that does not belong to the common
edge (Figure ). The functions are normalized so that the
flux integral through their defining edges equals one [22].
These functions are then used to expand the unknown current
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Fig. 2. Notation used for the definition of RWG functions and Loop-Star
transformation matrices.

densities as

N

G =Y gnkn, (10)
n=1
Ne

mszzmn.fna (11)
n=1

where N, is the number of internal edges in the mesh. The
equations are finally tested with curl-conforming rotated RWG
functions {7 x f,,} to produce the linear system

T K\ (i) _ (e
(& ) @m)-() o
where
K= Kko + Kkl ’ (13)
Tupper = 770Tk0 + ankl
=— JkonoTak, — ik1mTax,
7o m
DT, N, 14
+ Tk T ko + Ty Tk (14)
1 1
-rlower = 7Tk0 + 7Tk’1
Mo m
k k
= Tk — i—Tam
7o m
1
T T 15
+ Thgry |2k + Ty P (15)
and
(Kk)mn = <’ﬁ/ X fmv’ck(fn»a (16)
(Tk)mn = <ﬁ X .frrL7Tk(.er)> 5 (17)
(TAJC)TH/I’L = <’I’L X .fm7TA k(fn)>7 (18)
(TQ5 k)mn = <ﬁ X fm7T¢,k(fn)> ) (19)
Wn = Jn s (20)
(m), =my, (21)
(€)m = (A X frm, — x EY), (22)
(W) = (A X frn, —0 x H'), (23)

in which (u,v) = [ u-vdl.

In the next sections, we will also have to use the Loop-
Star transformation matrices. For the sake of completeness
and to set the notation we define these matrices below very
briefly, but the reader interested in more details should refer
to [22]] and references therein. We denote with A, H, and X
the transformation matrices from the Loop, global Loop, and
Star subspaces, respectively, to the RWG space. We will also

3

denote with A= (A H X) the matrix used to perform the
complete decomposition. The matrices A and ¥ are defined
as

1 if node j equals v;r

(A)ij =< —1 if node j equals v; (24)
0 otherwise ,
1 if cell j equals c;°

(X)ij = —1 if cell j equals c; (25)
0 otherwise ,

where we have used the notation from Figure 2| To ensure
linear independence for both matrices, columns should be
appropriately eliminated: for each connected component of the
geometry, one corresponding column must always be removed
from X, and when the component is closed, another one must
be eliminated from A.

The matrix H corresponds to the harmonic subspace [22],
of dimension Nyoles + 2/NVhandles,» and it cannot be described as
simply as A and X; the reader is referred to [[15]], [22], [29]
for further details on its construction. An explicit definition
of H will not be given here, since the retrieval of the global
loops is a costly operation that would compromise the overall
complexity of the solver, and therefore will be avoided in the
scheme we present here. In fact in this work we will stabilize
the PMCHWT in the eddy current regime by using quasi-
Helmbholtz projectors as defined in [22]] which are capable of
bypassing the explicit definition of H, making the expensive
building of the harmonic subspace unnecessary. The quasi-
Helmholtz projectors are defined as

P> =5 (X7x)
pM = p*

TET (26)

27

where | is the identity matrix and the superscript * denotes the
Moore-Penrose pseudo inverse. The range of the P* projector
corresponds to the RWG non-solenoidal subspace, so that
by complementarity, P" projects on the entire solenoidal
subspace, which includes the harmonic functions. Additionally,
we will use the following dual quasi-Helmholtz projectors,
defined as [22]

PA = A(ATA)T AT, (28)
PEH — PN, (29)

These projectors are the counterparts of the previous ones for
the Buffa-Christiansen (BC) basis functions which are defined
on the dual barycentric mesh [30]. In this case P projects
on the non-solenoidal subspace of the dual mesh, meaning
that by complementarity, the harmonic subspace is implicitly
contained in P* which projects on the solenoidal subspace.
These dual projectors also require the use of a mixed RWG/BC
Gram matrix with elements defined as

(G)mn = <ﬁ X fﬁwca f5C> :

The inverse of this Gram matrix bridges the operators dis-
cretized with primal RWG functions to the projectors acting
on the dual BC functions. The reader should note that the
above Gram matrix is the only instance in this work where the

(30)
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barycentric refinement is required. For this reason, the method
presented here will not suffer from the computational burden
of handling dense matrices on the barycentric refinement
since this Gram matrix can be obtained analytically without
expensive computations [22]. Moreover the projectors can
be built with a quasi-linear complexity [31], making them
perfectly compatible with fast solvers.

III. Stupy or THE PMCHWT 1N THE EDDY CURRENT REGIME
A. Low Frequency Asymptotic Analysis

In this section we present an in depth analysis for the
behavior of the PMCHWT matrix in the context of eddy
current modeling at low frequencies, as characterized by ().
The reader, however, should note that the regime we consider,
w — 0 with ¢ constant, is not the only possible regime for low
frequency lossy materials. An alternative could be the one in
which w — 0 with ow equals to a constant (i.e. constant skin
depth). The reader interested in this regime should refer to the
detailed analysis of Bonnet and Demaldent in [[14]. In this work
we have chosen to limit our solution strategies to the above
regime for the sake of brevity and its particular relevancy for
applications [5]. The use of quasi-Helmholtz projectors we
will propose here, however, can also be extended to other low
frequency regimes.

To investigate the conditioning behavior of the system
matrix, the latter is decomposed using the Loop-Star trans-
formation matrix A as

_ AT Topper —K A
ZAH}:—( AT>( K T a) - GD

This procedure is only done here for the sake of the anal-
ysis and it should not be employed in practice due to a
discretization related ill-conditioning introduced by the Loop
and Star matrices [31]. Applying this technique effectively
highlights the asymptotic scalings for the Loop, harmonic and
Star components of each operator block to better understand
the origin of the instability of the formulation in eddy current
conditions.

Let us start our analysis from the K block @, for which
the key property to determine its asymptotic scalings is that the
static part of the operator actually cancels out when solenoidal
functions are used simultaneously as testing and source func-
tions, unless both are harmonic (partial cancellations occur in
this last case) [32[], [33]. In other words,

ATKoA = HYKoA = A"TKyH =0. (32)

The reader familiar with these relationships should keep in
mind that in our definition the matrix Ky results from a
testing of the MFIO with curl-conforming functions (rotated
RWGs, see definition (T6)). These properties warrant a closer
inspection of the MFIO kernel. The gradient of the Green’s
function (3) can be expanded using the Taylor series as

1
VGi(r,r') ~ EV (—Jk——f—...

1 1 k2
NM(V<R> —QVRJr...) )

4

In the general case, the first term of the expansion constitutes
the static part of the operator and dominates as O(1) (here and
in the following we will always assume and omit “for w — 07).
However, every time one of the cases in @I) occurs, the O(1)
term will be canceled and the leading term becomes the one
containing the O(k?) factor. For the exterior and interior wave
numbers, we have

O(kj) = O(w?poeo) = O(w?),
O(k}) = O(—jworp1) = O(w).

(34)
(35)

Using the definition of K in (T3), when the static part is can-
celed, the remaining dynamic part scales as O(k3) +O(k?) =
O(w?) + O(w) = O(w).

For the T blocks, the expansions for Typper and Tigwer in (T4)
and (T3) are used to emphasize the different behaviors of the
vector and scalar potentials T4 j and T . This becomes clear
by rewriting the accompanying factors using the definitions of
k and 7 to obtain

kono = wpo = O(w) , (36)
kim = wpr = O(w), (37
ko/mo = weg = O(w), (33)
ki/m = wer = wegel. — jor = O(1), 39)

where the frequency term in (39) is dominated by the con-
ductivity term, differing from the case of regular dielectrics
[23]]. From the expressions (I4) and (I3), the electric operators
blocks can be shown to scale as

Taupper = O(w) + O(w) = O(w), (40)
T upper = O(w™1) + O(1) = O(w™1), (41)
Thtower = O(w) + O(1) = O(1), (42)
Tojower = O(w™ )+ O(w™h) = O(w™). (43)

The inverse scalings between T4 ; and Tg j in the upper and
lower blocks become evident and in particular, both T4 blocks
constitute the main reason behind the matrix conditioning
breakdown, since they diverge at the limit. Recalling that [22]

NTp =0 TeA=0 H" Ty, =0, Tp H=0, (44)

the Loop-Star decomposed PMCHWT matrix scalings can be
written in block form as

Zpus =
A H b A H 5
A Jwpo jwpo  jwio Jw jw 1
W demo jwmo  jwpe | e 11
0 s | jwpo jwpo  jlweg) T 1 1 1
A jw jw 1 c o o)
H jw 1 1 c o o
b 1 1 1 o o jlwpe) !

(45)

The pathological behavior of the matrix is caused by the
presence of scalings of different orders in w. Specifically, the
application of the Gershgorin circle theorem shows that the
singular value spectrum of the matrix has a branch which
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asymptotically diverges as O(w~!) and at least another which
is centered around zero, resulting in a clear degeneration of
the matrix condition number.

B. Loss of Solution Accuracy

While it is necessary to address the conditioning issue of
the PMCHWT formulation, it is not sufficient to guarantee an
accurate solution. The loss of significant digits that occurs at
low frequencies needs to be taken into careful consideration
to prevent the corruption of the desired quantities of interest.
The rescaling process based on a quasi-Helmholtz decompo-
sition, whether using transformation matrices or projectors,
does not solely serve to cure conditioning breakdowns, but
also to preserve the needed components that would normally
be lost in finite precision arithmetic. Nevertheless, it is not
always possible to preserve every single component of the
solution, which is why an additional study is necessary to
determine which components actually affect the accuracy of
the quantities of interest. This stability is targeted for several
classes of excitations, for instance the plane wave, inductive,
and capacitive excitations [19], [22]]. The scattered far field
is usually the desired quantity in the case of the plane wave,
and thus should be preserved and computed accurately, while
circuit simulations with inductive and capacitive excitations
require the volumic current inside the conductor, derived from
the electric near field.

First, the scalings of the quasi-Helmholtz decomposition
of the excitations need to be obtained. For the plane wave,
both electric and magnetic fields behave identically [23]],
whereas they must be examined separately for the inductive
and capacitive excitations. These are frequently modeled with
a voltage delta gap, for which a magnetic frill around the
feed point is a more realistic equivalent [34] that creates the
following fields [35]]

E'(r) = f/ VGr(r,r') x m(r')dr’, (46)
fiill
) 1
H'(r)=—VV. Gi(r, v Ym(r") dr’
™) ané frill wl Jm(r)
K Gi(r,7")m(r") dr’ 47)
jwn% frill ’ 7

where m is the given magnetic current forming the frill.
These expressions show that the electric and magnetic fields
are determined, respectively, by the MFIO and the EFIO, for
which the reasoning to derive the scalings has already been
described in Section On a multiply connected structure,
the magnetic frill corresponds to a poloidal loop around the
feed point. Depending on whether there exists or not a toroidal
loop that passes through the frill, the problem becomes either
inductive or capacitive [19], and the behavior for the electric
field changes accordingly [33]]. Thus, the asymptotic scalings
for each type of right hand side are gathered in Table [I] (a),
separated into real and imaginary parts.

The next step, given the decomposition of the system matrix
Zus from @3, is to derive the scalings of the inverse matrix

Z,.5, for instance by using the Woodbury formula [36]

R (Zpas) =

A H by A H by
A w21 WB2 1 1 1
H 1 1 w? 1 1 w¥/?
O 5 w3/2 w2 w2 wQ wQ w2
A 1 1 w? 1 W32 32 ’
A 1 1 w2 w3/2 w3/2 w3/2
5 1 w3/2 w2 W3/2 W3/2 w3/2
(48)
3 (Z/TI-}Z) =
A H X A H N
A w1 Wwl/2 w wl/2 L2 172
H wl/? w w w w w
) b3 w w w w Wh/2 Wh/2
A wl/? w w w w w
A wl/? w w?/2 w w w
A wl/? w w?/2 w w w
(49)

This inverse is then multiplied by the right hand side following
the relation x = Z,,;sb, where x is the solution coefficients
vector and b is the right hand side vector. Taking the dominant
terms of each block of x leads to the asymptotic scalings of
the electric and magnetic surface current densities, presented
in Table [[] (b). As an example, the scaling of the loop part of
the electric current density induced by a plane wave excitation
is obtained by multiplying the first line of @8)) and @9) by

the corresponding scalings in Table [I] (a):

. T
w2 4 jwt w? +jw

1 ;;‘wl/? w? + jw

w4 4 jw 1+jw | . 1)2

1+ jwl/? w? + jw

1+ jw!/? 14 jw

The distinction between real and imaginary parts of the
different elements is made to determine precisely which are
the dominant components, listed in the last column of Table [}
that should be preserved to correctly retrieve the corresponding
quantities.

The electric far and near fields computed from the electric
and magnetic surface current densities can now be derived.
The far field is obtained from the following expression [37]]

jwpg eiFor

E(’r) s y . Aejkor’-ﬁjs(r/) dr’

1 —jkor R ;o
7% <J1’60€/ eikor 'Tms(r’)dr/> NGIY)
T T r

Note that the solenoidal parts (loop and harmonic) of the
currents cancel the static term of the exponential inside the
integrals above, which is why the solenoidal scalings of the
physical currents are multiplied by jw compared to the non-
solenoidal part.
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TABLE 1
SCALINGS OF THE REAL AND IMAGINARY PARTS OF QUANTITIES OF INTEREST WHEN W —> 0
(a) Right hand side
Component | (R,3)(Ej)  (R9)(EL)  (R)(Ep) | RI)(H  R9)(Hp) (R (Hy)
Plane wave (w2, w) (W2, w) (1, w) (W2, w) (w2, w) (1, w)
Inductive (w2, w3) 1, w3) 1, wd) (W, w) (W, w) (W, w)
Capacitive (w?,w?3) (w?,w?) 1, wd) (W, w) (W, w) (W, w)
(b) Surface current density
Component | (R, )(5a) R, ) (gn) R, ) (Ix) (R, ) (my) R, ) (my) (R,)(myx) | Current dominant components
1/2 3/2 2 3/2 3/2 3/2 R(3n, mp, mpy, ms)
Plane wave (1, wl/?) (W32, w) (W=, w) (W%, w) W%, w) W%, w) S(Ja, ma, mp, my)
i : R(Ga, IH, mp, Mp)
Induct 1, wl/2? 1, 2, 1, 1, 3/2, : ’
nductive (1, w’#) (1, w) (w*, w) (1, w) (1, w) (w w) 3(]'/|7m/hmH,m}:)
Capacitive | (w*/%, w) @?, w) W?, w) @2, w) @ W% W W) %@ﬁfﬂﬁﬂ?
(c) Electric far field
E(Rjn) E(Rjn) E(Rjs) E(Rm,) E(Rmy) E(Rmy) .
Component E(37p) E(37r) E(3j5) E(Smy) E(Smay) E(Smy) Current dominant components
Plane wave @2, w?) WT/2, w?72) W, w?) W72, w2 (W2, W% (W2, W52 R(Ga)
(W72, w/?) (W4, w?) (W%, wd) (W4, w?) W, w?) W%, w?) S(js, ms)
Inductive @2, w?) @?, w?) w?, w?) W2, w?) W2, w?) W2, w5/?) R, G, mp, mp)
W72, w5/?) (w4, w?) w?, w?) W4, w?) W, w?) W2, w?) S(js, mx)
N (W72, w972) (W, Wb W, wd) (W, w5 (w?, W) (W%, W) o~ s
Capacitive (W, w?) (w*, W) (W2, w?) Wt W) WI/2, 4,972y (WT/2, (,9/2) S(Is)
(d) Electric interior near field
E(Rja) E(Rjn) E(Rjx) E(Rm,) E(Rmy) E(Rmy) : .
Component E(37p) E(37n E(3j5) E(Imy) E(Smy) E(Smy) Current dominant components
Plane wave @ @) W2, W% w?, w?) @372, W52 (W32, W) (W, Wh/?) R(Gn)
(w372, wd/2) (w2, w?) (w2, wh) (w?, wh) (w?, wh) (w?, wh) S(Js, ma, my, myx)
4 W, wh (W2, wh) (W2, W) W%, wh) W0 wh (W32 W72
Inductive @32, w32 @2 o) @2 W) @2, wh) @2 wh) @2 wh R(mp, my)
iy W2, W7 (W W) W2, w3) W2, w3) W?, W) W% W% (s
Capaeitive | (w2 wi) w2 W) w2, w) R B L i W e i) Sz, ma)
(e) Rescaled right hand side
Component arLEY bLE}, cLEBL dr Hj, e HY, frHL
Plane wave | (W3/2, wl/2)  (w3/2, wl/2) (w172, W3/2) | (W3/2, Wl/2) W32, W3/2)  (Wl/2, W3/2)
Inductive (W32, WB/2) (W12, 572y (W1/2, WT/2) | (W72, Wl/2) W%/2, W3/2)  (W9/2, WB3/2)
Capacitive | (w32, w5/2) (W32, w5/2) (W12, w7/2) | (W72, wl/?) W9/2, W3/2)  (W9/2, W3/2)
(f) Rescaled current density
Component aglj/l béle cglj;_— dglmA eglmH fglm;_— ;ce(c?vered component)s
1/2 2, .3/2 3/2 ,,1/2 1/2 1/2 1/2 Jn, mp, My, My
Plane wave (w4, w) (w*, w>/#) (w24, w/?) (w,w/*) (w,w7?) (w,w/*) 3(js, mp, M, my)
: — - R(Gn, IH, mp, M)
Induct 1/2 1/2 ,,3/2 3/2 ,,1/2 1/2 ,,1/2 1/2 ,1/2 1/2 A )
nductive (w/ =, w) (W=, w2 (w5 w ) | (w W) (W w7 (w,w™%) g(J.}_',m/l:mvaZ)
Capacitive W2,w3/2)  (@W/2,03/?)  (W32,wl/2) | (w32, u1/2) @32, ) @32, w?) %(Jzé;{;;z%mz)
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imaginary terms will yield the low frequency behavior of the

The electric near field inside the conductor is instead
calculated with the EFIO and MFIO [37]
E(r) = &vv-/ Grlr,r') jo(r') dr’

g1 r

~ gt [ Gulrr) () dr

r

—/ VGr(r,r') x mg(r')dr'. (52)

r

The contribution from the solenoidal part of j, induces a com-
plete cancellation of the first term and a partial cancellation in
the second term similarly to the far field above. Performing a
Taylor series expansion of the Green function in and
when w — 0 and keeping the dominant real and dominant

near and far field scattering operators. To obtain the correct
behavior, however, the aforementioned cancellations should
be explicitly enforced in the expansion when considering the
solenoidal components (as is customarily done at very low
frequency [24]). Once the six scalings per operator have been
obtained, they can be multiplied with those of the physical
solutions (Table [[] (b)) to derive the far and near fields
asymptotic scalings that are presented in Table [I] (c) and (d).

To illustrate the relevancy of this analysis, we take the
example of the plane wave excitation. Table [I] (c) indicates
that R(js) and (jx) are required to compute the far field
from the electric current density, while Table [I| (b) shows that
the dominant component of the electric part of the solution
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is R(ja) only. Therefore, the electric scattered field cannot
be computed accurately at low frequencies since (js) is
lost from the electric current density when no specific cure
is employed. Consequently, the preconditioned equation must
produce a solution with leading components that include all
dominant parts of the quantities of interest, so that they can
be calculated with satisfying accuracy.

IV. StaBiLizaTION SCHEME BASED ON Quasi-HELMHOLTZ
ProJECTORS

Based on the analysis of the previous section, the
requirements to achieve a stable formulation consist in
preconditioning the system matrix as well as prevent-
ing undesired loss of significant digits in the solu-
tion. For this purpose, rescaling coefficients are selected
through a Loop-Star decomposition study, by defining diag-
onal matrices L = diag(aL br, ¢ dp eg fL) and
R:diag(aR br cr dr er fR),applied as follows

LZpysR =

arapwity arbrwig ar fr

o) bLaR.wuo (53)

foR(f:U,UO)il

The first condition to fulfill is the prevention of a matrix
breakdown. For that, the coefficients must be chosen so as to
remove diverging elements and without introducing new ones
nor creating null spaces caused by vanishing rows or columns.

As explained in Section the coefficients also need to
account for the loss of accuracy in the solution. When using
the Loop-Star method, the base equation Zx = b becomes
LZys Ry = L diag (AT AT) b, with x = diag (A A) Ry.
The asymptotic scalings of the rescaled solution y obtained
with the preconditioned equation are determined by the right
rescaling matrix R as

frar

y=R"'diag(A™! Al)x=

e}_%lmH)
O(fr'ms)

For each type of excitation, the dominant components of y
must comprise at least the elements necessary to accurately
compute the far (for the plane wave) or near field (for inductive
and capacitive problems), as indicated by the last columns of
Table [I] (c) and (d). In other words, the choice of rescaling
coefficients must simultaneously cure the matrix breakdown
shown in (43)) and allow an adequate retrieval of the solution.

We first start with eliminating the diverging blocks of the
matrix that scale as O(w™!) by setting c;, = cp = (weg)'/?
and f;, = fr = (wpo)'/?. Doing this, however, provokes the
loss of the Loop and harmonic parts of the magnetic current
density for the plane wave excitation (1m 4 and mp). Therefore,
we choose to adjust them by selecting dp = ep = (w/o1)"/2.

Omitting the factors g, €9, and o; for increased readability,
the system matrix now scales as

N H b ) H b
A w w w2 W32 W32 L1/
u w w w2 W32 W2 G1/2
b w32 w3/2 1 w w w
o A w v w2 o2 G2 12
o w 1 wl/2 w2 G2 12
b w2 W2 W w w 1

(55
Since several rows and columns vanish as the frequency
decreases, the following step is to fix rows 1, 2 and 4, choosing

ar, = by = (wpo)~? and d = (wo1)~'/2, which results in

y/ H by A H by
A wl/2 wi/2 w w w 1
H wl/2 W1/2 w w 1 1
0 b w32 w3/2 1 w w w
Al w22 1 1 1

H w 1 wl/2 w2 G2 12
b3 wl/2 Wi/2 w w w 1

(56)
We then select ar = (wpo)~/? to adjust the vanishing first
column. At this point, all requirements are fulfilled and two
coeflicients are left to choose. Both pertain to the harmonic
functions, which in the context of quasi-Helmholtz projectors,
should always share the same rescaling coefficient as either the
adjacent Loop or Star component. Therefore, two possibilities
arise that do not compromise the already stable matrix,

br = (w,uo)_l/2 br = (U.}E())l/Q (57)
er, = (wpo)'/? er, = (woy) /2

Choosing the second set results in the second column
of the matrix exhibiting a single non vanishing scaling
which is unfortunately excessively small (coefficient (5,2) =
O((e0/o1)'/?)), thus worsening the condition number. Addi-
tionally, the first set allows the retrieval of the surface current
densities for the inductive excitation as well. Consequently,
after retaining the first pair of coefficients, the complete set of
left and right coefficients reads

ar, (who) 12 ar (wpo) /2

by, (who) 12 br (wpo) /2

cr | (weo)l/2 cr | _ (w60)1/2

dr, o (WJl)_l/z ’ dgr o (w/01)1/2 ’
€L (who)*/? €R (w/a1)'/?

fr (wpig)/? Ir (wpo)'/?

(58)
which gives the preconditioned system matrix in (39). Using
the Gershgorin circle theorem shows that it is effectively
freed from any conditioning breakdown. Moreover, Table [[] (f)
contains the scalings for the rescaled solution and, as expected,
the last column of the table includes all dominant elements
needed for the far and near fields for each type of excitation,
confirming the validity of the selected rescaling coefficients. In
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A H b2 A H b2
A 1 1 w(poeo)'/? w(poo1) ™ w(poor) 2 1
H 1 1 w(poeo)'/? w(poo1) ™2 (poon) /2 1

LZpsR = O b w(uoeozl/2 w(,uoeozl/Q 1 w(eo/o)V?  w(eo/o)V? wlpgen)'/? (59)
A | (oon) 2 (oon) T2 (eo/on)'/? 1 1 (Hoo1)*/?
H w 1 w(poeo)/? w(poo1)? w(poor)*/? WHoO1
z 1 1 w(poeo)'/? w(poo1)'? w(poor)'/? 1

addition, the current densities are also correctly retrieved for
the plane wave and inductive excitations. The reader should
notice that, as mentioned above in the coefficient selection
process, each coefficient pertaining to the harmonic subspace
in has been chosen to always be shared by either the
Loop or Star adjacent coefficient. Depending on whether the
harmonic coefficient matches with the former or the latter,
the corresponding projector will be P or PZH | respectively.
Therefore, the rescaling of the projectors, which is compliant
with our analysis above, reads

My = (wpo) 2P 1 (wep)/2PE (60)

My = (wop) Y2 P + (wpo) /2 PEH (61)
for the left side, and

Ms; = (w,uo)_l/zPAH + (weo)l/QPz, (62)

My = (w/o)Y?PM + (wpo)' /2 PT (63)

for the right side. As described in Section [[I, the inverse of
the Gram matrix (30) is needed to apply the dual projector,
which results in the final formulation

M 0 M; 0 (M 0
( 0 M2G1>Z< 0 M4>y_ ( 0 M261>b’
(64)
where y is the rescaled solution, from which we derive the

current density solution
y— Ms 0
Lo m)”

V. IMPLEMENTATION DETAILS

(65)

When dealing with quasi-Helmholtz decompositions and
related projectors, careful attention is also required on the
implementation side to ensure an accurate computation of the
operator matrices and right hand sides. Specifically, several
terms fail to cancel out exactly in limited precision, leaving
residual errors which can be amplified at very low frequencies.
Such cancellations should therefore be implemented manually
to guarantee the stability and correctness of the formulation.

In particular, the relations P"HTy ;. = 0 and Ty P =0
must be explicitly enforced, as well as PG *1T¢7 = 0 [22],
which results for the diagonal blocks in

M, Tupper Ms; = M, TA,upper Ms;

+weo P* T upperP* (66)
IMIQ-I-lowerIV,4 = M2 TA,lowerM4
+ wo PZHG?IT{P,lowerPZ (67)

Likewise, the static component of K} needs to be canceled
out since PAG 1Ky, P M = 0 [23], which leads to

MK M; = My KyMs
+ w(0160)1/2 IPAG_IKQPZ
+w(poeo) 2 PEHG T K P>

+ ]P;ZHG—I KOPAH (68)

for the lower off-diagonal block of the system matrix, where
K is the dynamic part of the discretized operator. In (68)),
K should be computed by explicitly omitting the static term
of the kernel @, instead of calculating Ki — K, to avoid
numerical cancellation. Note that in the case of the upper off-
diagonal block, no cancellation is enforced since HTK\H #0,
and so PMHK,P M £ 0.

The plane wave right hand side must also be computed with
the kernel extraction technique, by removing the static term of
the exponential in the integral (e 7%*'" —1). In fact, the static
part disappears with P"H and PAG~—! [22], which results in

M e . (wuo)_l/QPAH 0 Eext
M,G~'h) — 0 (wop)"2PAG ) \ hex

n ((weo)l/zP}: 0

e
0 (w‘uo)l/ZHDZHG1> (h) ’
(69)

where the subscript . refers to the extracted kernel right hand
side.

The new quasi-Helmholtz projector-based formulation, and
its discretization, can be accelerated using fast solvers [25],
[26] to reach a quasi-linear complexity O(N log N). Indeed,
the projector-based preconditioner is applicable in quasi-linear
complexity by leveraging multigrid preconditioners [38]]. The
stabilization and the framework presented here are designed
for the low-frequency limit. The scheme however is fully
compatible with high frequency simulations for frequencies
where a loop-star decomposition should not be used. In this
case, it is sufficient to set to 1 all coefficients multiplying the
projectors as is customary done in similar frameworks (see
[24] and references therein). A smooth and automatic transi-
tion between the two regimes is possible and will be the topic
of a future communication. At moderately low frequencies for
which the PMCHWT can still be used, albeit with a high
condition number, the overhead caused by the computation
and application of the preconditioner is rapidly offset by the
lower number of iterations required for the convergence of
the employed iterative solver, as will be illustrated in the
numerical results. At lower frequencies, the spread of the
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Fig. 3. Sphere of radius 1m with 1048 elements and o7 = 103 Sm~1!:
Condition number as a function of the frequency.

condition number would become even more severe and the
standard PMCHWT would fail to provide the correct solution.

Finally, the complex wave number k; (7) present in the
Green’s function exponential gives rise to a real exponential
which decays excessively fast as the skin depth becomes
smaller, typically due to a high conductivity and/or high
frequency. Therefore, the computation of the integral operators
becomes increasingly inaccurate when using schemes such as
the Gaussian integration. This is an issue characteristic of lossy
conducting media which requires specific treatment such as the
one found in [39]]. After the fast decay of the exponential has
been handled, the near-singularity of the right hand side and
matrix self- or near-elements require special treatment as they
cannot be obtained accurately using standard Gaussian quadra-
ture. In this work, we have opted for singularity extraction
approaches [40], [41] but other schemes such as singularity
cancellation [42] can be employed.

VI. NuMERIcAL REsSULTS

Several tests have been conducted to validate the stability
and accuracy of our scheme. For all experiments of this
section, we have used e/ = 1. The first experiment involves
a simply connected sphere of radius 1m and conductivity
o1 = 103Sm~'. The geometry is discretized with 1048
triangular elements, which corresponds to 3144 unknowns.
The condition numbers computed at different frequencies for
the PMCHWT equation, the Loop-Star PMCHWT method and
the new formulation are illustrated in Figure 3] It is clear that
the original PMCHWT matrix displays a rapid degeneration
of its conditioning, while both the Loop-Star PMCHWT and
our new method remain stable until very low frequencies.
However, the condition number achieved with the formulation
we propose is significantly lower than that of the Loop-Star
scheme, thanks to the well-conditioned nature of the quasi-
Helmholtz projectors.

We then compared the amplitude of the electric and
magnetic current densities against an eddy current specific
formulation [7]], obtained with a plane wave excitation and

— 10 p T T T T
N
g
=
2 107 5
E}
[
[a)
=
g
5 10728 8
Q
2
E Solhhrioioick folololololololelolen Sloklootidocbiciiolsk
M —a7 L | | | |
10 0 20 40 60 80
Cell
—&— Eddy Current —+— PMCHWT

—+—  Loop-Star This work

Fig. 4. Sphere of radius 1 m with 1048 elements and o1 = 103 Sm™!:
Electric current density amplitude on elements of constant longitude given
an exciting plane wave of frequency f = 10~ %0 Hz along —& and with
By =1T.

— 10739

—

10740

Magnetic Current Density [V m-

0 20 40 60 80
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—©— Analytical —<— Eddy Current —x— PMCHWT
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Fig. 5. Sphere of radius 1 m with 1048 elements and o7 = 103 Sm—!:
Magnetic current density amplitude on elements of constant longitude given
an exciting plane wave of frequency f = 10~ %0 Hz along —& and with
By =1T.

computed at the centroids of a subset of elements, shown in
Figures [] and [5] Analytical solutions are available for the
magnetic current density [43[]-[45], out of which we have
implemented the latter. The Loop-Star PMCHWT method
and our formulation are in good agreement with both the
analytical and eddy current solutions, whereas the PMCHWT
equation fails to return correct results. This shows the capacity
of the new strategy to maintain accuracy until arbitrarily low
frequencies.

The scattered far field is then verified against the Mie
solution in Figure [f] Like before, the PMCHWT method
delivers a wrong result while the Loop-Star and new methods
both result in a good match, as predicted by the theory.

To confirm the applicability of our new method to multiply
connected structures, we simulated a torus with circular cross
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Fig. 6. Sphere of radius 1 m with 1048 elements and o1 = 103 Sm™!: Radar
cross section given an exciting plane wave of frequency f = 1040 Hz along
—% and with Eg =1V m~—1.
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Fig. 7. Torus of major and minor radii 1.5m and 0.5 m with 1620 elements
and o1 = 103 Sm~': Condition number as a function of the frequency.

section, of major radius 1.5 m, minor radius 0.5m and con-
ductivity o, = 103Sm™!. The geometry is discretized with
1620 triangular elements, which leads to 4860 unknowns, and
the harmonic subspace contains 2 global loops. The condition
numbers are computed as before and are illustrated in Figure[7}
The same behavior observed in the case of the sphere occurs
for the torus, corroborating the theoretical development in the
presence of global loops.

The electric and magnetic current densities (Figures [8|and[9)
were validated with an exciting plane wave, demonstrating
matching results between our new method, the Loop-Star
PMCHWT strategy and an eddy current formulation, while the
original PMCHWT gives erroneous results. The scattered field
(Figure [T0) was computed as well, with a similar outcome.

To demonstrate the full-wave capabilities of the new for-
mulation, i.e that it is stable and accurate beyond the eddy
current regime, we have compared the electric and magnetic
(Figures [IT] and [I2} respectively) current densities obtained
with the new formulation, the standard PMCHWT, and an
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Fig. 8. Torus of major and minor radii 1.5m and 0.5 m with 1620 elements
and o1 = 10% Sm—!: Electric current density amplitude on elements around
the handle given an exciting plane wave of frequency f = 1075 Hz along
—& and with Bp = 1T.
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Fig. 9. Torus of major and minor radii 1.5m and 0.5 m with 1620 elements
and o1 = 103 Sm~!: Magnetic current density amplitude on elements
around the handle given an exciting plane wave of frequency f = 10~° Hz
along —& and with Bp = 1 T.

eddy current solver to an analytical solution obtained from
vector spherical harmonics (VSH) at 10 MHz. As expected
the standard PMCHWT and the new solver provide the correct
solution, while the eddy current solver does not. This illustrates
the versatility of the new formulation that performs accurately
at low and higher frequencies.

The conditioning effect of the different formulations is di-
rectly reflected in the convergence rate of the solution obtained
via iterative solvers. Figure [T3] illustrates the decaying speed
of the residual error from the Generalized Minimal Residual
(GMRES) iterative method, using a plane wave excitation. Our
formulation successfully converged to the correct solution in
255 iterations, and the Loop-Star PMCHWT required 3410
iterations, whereas the original PMCHWT converged to a
completely incorrect solution.

We then injected a voltage of 1mV in a circular ring
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Fig. 10. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements
and o7 = 103 Sm™!: Radar cross section given an exciting plane wave of
frequency f = 10~40 Hz along —2 and with g =1V m~1,
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Fig. 11. Sphere of radius 1 m with 1048 elements and o7 = 1 mSm~!:
Electric current density amplitude on elements of constant longitude given an
exciting plane wave of frequency f = 10 MHz along —2 and with Ey =
1Vm~L

of major radius 1.0m, minor radius 0.2m and conductivity
op = 103Sm~! at 50 Hz. The object is discretized with
1750 triangular elements and 5250 unknowns. Using circuit
theory, we first obtain a resistance of R = 0.05€) from the
conductivity and dimensions of the conductor, which gives
a predicted current of I = V/R = 20mA after applying
Ohm’s law. This corresponds to an average eddy current
density of I/A = 0.159 Am~2, where A is the area of
the cross section. The eddy currents obtained with the new
formulation (Figure [I3) are constant along the axis of the
ring and vary linearly on the cross section, with an average
amplitude matching the above value, as shown in Figure [T4]

To illustrate that the computational overhead caused by
the preconditioning is alleviated by the significantly lower
number of iterations required for the new formulation, we have
performed a comparative run-time study between the standard
and preconditioned PMCHWT. In Table we summarize
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Fig. 12. Sphere of radius 1 m with 1048 elements and o7 = 1mSm™!:
Magnetic current density amplitude on elements of constant longitude given
an exciting plane wave of frequency f = 10 MHz along —2 and with Ey =
1Vm~L
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Fig. 13. Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements
and o1 = 10% Sm™1!: Convergence of the residual error for the Generalized
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Fig. 15. Torus of major and minor radii 1.0m and 0.2 m with 1750 elements
and o1 = 103 Sm~1!: Eddy current density given a voltage excitation of value
V =1mV at frequency f = 50 Hz.

TABLE II
SETUP AND COMPUTATION TIME COMPARISON BETWEEN THE NEW FORMULATION
AND THE PMCHWT
Formulation Setup time (s) | # of iterations | Total time (s)
PMCHWT 59 1062 150
New Formulation 68 276 98

the setup time, overall computation time, and number of
iterations required for the simulation of a homogeneous sphere
of conductivity o7 = 1073Sm™!, discretized with 2792
triangles and excited by a plane wave oscillating at 5 MHz for
both the new formulation and the standard PMCHWT. The
timings presented have been obtained without a fast matrix
vector product algorithm.

Lastly, we simulated a plane wave illuminating the outer
shell of a jet engine with an average aluminum conductivity
of 2 x 10" Sm™! to verify the applicability of our scheme to
a realistic example. The electric current density was computed
on the surface of the object, as shown in Figure [T6 The
same solution was obtained through the GMRES method
in 3241 iterations with the new formulation, against 18 317
with the Loop-Star PMCHWT, confirming again the improved
performance of our scheme.

[ 1.8e+06

— 2.0e+5

2.0e+4

ectric Current Density (A/m)

24e+03 2
Fig. 16. Jet engine outer shell of length 0.9 m with 9196 elements and

o1 =2 x 107 Sm™!: Electric current density norm given an exciting plane
wave of frequency f = 10~ %0 Hz along —2 and with Eg = 1V m~1.
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VII. CoNCLUSION

In this work we presented a novel boundary element method
for the simulation of eddy current scenarios which relies on
the quasi-Helmholtz projectors. The scheme is free from any
approximation of the Maxwell’s equations, and contrary to
existing eddy current models, it can handle frequencies in
the eddy current regime (which standard full-wave solvers
cannot do) but also beyond it (which standard eddy current
solvers cannot do). Furthermore, the formulation is valid for
both simply and multiply connected conductors and has a
stable conditioning and accurate solution until arbitrarily low
frequencies. Lastly, this scheme is compatible with fast solvers,
making it a versatile and attractive scheme. The precision and
reliability of the new technique have been confirmed through
canonical and realistic examples.
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