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Abstract

This paper presents numerical results on the micromechanics linear analysis of representative volume el-

ements (RVE) containing voids. The modeling approach is the micromechanical framework within the

Carrera Unified Formulation in which fibers and matrix are 1D finite elements (FE) with enriched kine-

matics and component-wise capabilities. RVE models are 3D and consider all six stress components. Such

a modeling strategy leads to a twofold reduction of the degrees of freedom as compared to 3D FE. The

numerical assessments address the influence of the volume fraction and distribution of voids, including

comparisons with data from the literature and statistical studies regarding homogenized properties and

stress fields. The proposed modeling approach can capture the local effects due to the presence of voids,

and, given its computational efficiency, the present framework is promising for nonlinear analysis, such

as progressive failure.

Keywords: Voids, micromechanics, CUF, fiber reinforced polymers

2



1 Introduction

Fiber-reinforced composites are increasingly popular in many engineering fields to provide superior per-

formances as compared to metals [1, 2]. In addition to space and aeronautics industries, the automotive

and energy sector are making growing use of these materials due to the lightweight and the high spe-

cific strength and stiffness [3, 4]. Composites have a multiscale nature, and the proper prediction of

fundamental mechanical behavior requires modeling of the various scales. The present paper focuses on

the microscale in which the differences between constituent properties and the presence of interfaces and

defects lead to modeling challenges [5]. Defects stemming from manufacturing can significantly modify

the microscale characteristics and lead to various damage mechanisms, such as [2, 6] interfacial debonding

and sliding, matrix microcracking, delamination, fiber breakage, and fiber micro-buckling.

The present paper deals with the numerical modeling of voids in the matrix. Voids can influence the

matrix-dominated mechanical properties and lead to the localization of stresses [7]. Many works have

investigated the void formation, growth, morphology, and influence on structural performance. The work

of Mehdikhani et al. [8] is a comprehensive guide for the selection of these studies.

Computational micromechanics is a popular tool to study defects and related issues. By the direct model-

ing of the microscale components and defects, micromechanics can provide the homogenized macroscopic

mechanical properties and, via de-homogenization, the stress and strain fields at the microscale. Various

numerical approaches, e.g., finite elements (FE), can model the microscale via the use of a representa-

tive volume element (RVE) containing the typical architecture of the composite structure in hand [9–18].

Other works investigate the effect of voids in the elastic regime and strength prediction, embedding them

into the FE model and considering various loading conditions and failure modes [3, 5, 19–30].

The use of FE models can lead to very high computational costs. Such costs may be prohibitive when the

3D structure of the RVE is of interest, or nonlinear analyses are necessary. The present work falls within

the Carrera Unified Formulation (CUF) use for micromechanics [31–33]. One of the advantages of CUF is

the possibility of modeling multi-component structures as an ensemble of 1D finite elements with enriched

cross-section kinematics [34]. Such a capability significantly reduces the computational costs - as there are

no aspect ratio constraints - but retains 3D-like accuracy for all stress and strain components. Functions

adopted to model the structural behavior are independent of the shape functions. For instance, in a 2D

case, Lagrange or Legendre polynomials can be used as shape functions, and Mac-Laurin or harmonics
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can be used over the thickness. The latter defines the structural theory adopted with classical ones – CLT

and FSDT – as special cases. Similarly, in a 1D case, in which the shape functions act along one direction

and the expansion functions over the other two. Such a separation allows one to avoid the aspect ratio

constraints over one or more directions and retain the accuracy of 3D models by enriching the structural

theory, i.e., the expansion functions. In other words, the accuracy of the model is augmented via richer

theories rather than more refined discretizations. CUF for linear and nonlinear multiscale problems pro-

vided twofold reductions on computational costs as compared to 3D FE [35, 36].

The objective of the present work is to investigate the influence of microscale matrix voids on the macro-

scopic mechanical properties and the microscopic fields. For the first time, CUF is used to model 3D RVE

and voids. The modeling of voids includes their volume fraction and distribution. This paper is organized

as follows: Sections 2 and 3 describe the theoretical framework for FE and micromechanics, respectively.

The numerical results are in Section 4, and conclusions in Section 5.

2 Higher-order 1D structural theories

(b)(a)

Figure 1: (a) Beam with arbitrary cross-section oriented along the y-axis, and (b) the 9-node bi-quadratic
Lagrange expansion element in the natural coordinate system

Considering a beam oriented along the y-axis, as shown in Fig. 1(a), the displacement field in CUF is

u = Fτ (x, z)uτ (y), τ = 1, 2, . . .M (1)
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Where u is the displacement field and Fτ (x, z) is the expansion function across the cross-section. uτ is

the generalized displacement vector, and M is the number of terms in the expansion function. The choice

of Fτ and M is arbitrary. The present work utilizes the Lagrange Expansion (LE) class of expansions

to enhance the cross-section kinematics, resulting in a Component-Wise (CW) model. In this approach,

Lagrange polynomials explicitly discretize the cross-section geometry and displacement field. This work

uses 9-node bi-quadratic expansion elements (L9), see Fig. 1(b), in which the 3D displacement field is

ux =
9∑

τ=1

Fτ (x, z) · uxτ (y)

uy =
9∑

τ=1

Fτ (x, z) · uyτ (y)

uz =

9∑
τ=1

Fτ (x, z) · uzτ (y)

(2)

The use of Lagrange expansion results in a 1D numerical model that explicitly models the 3D domain

without the need of fictitious entities like the reference axis. The CUF formulation adopted in this

paper is 1D, as the unknown variables depend on the y-direction. In other words, the shape functions

are functions of y. Over the other two directions, x and z, the structural theory modeling acts via the

expansion functions. Given a node along the y-axis, a set of unknowns is defined by the expansion

functions. In the classical 1D models, e.g., Timoshenko, each node has five unknowns. In CUF, the

number of nodal unknowns, or degrees of freedom, can be changed freely depending on the structural

theory adopted. In the 1D case, a beam-axis has to be defined over the 3D body, and the unknowns are

placed over that axis. In the 2D case, a reference plane is defined for the same purpose. Such a task

may be difficult and lead to inaccurate modeling of the geometry, and weaker accuracy as the distance

from the axis grows. In the CUF formulation adopted in this paper, the use of Lagrange polynomials

over the cross-section allows one to model the geometry more accurately as the unknown variables can

be placed uniformly over the area and even over the edges. Furthermore, the displacement field consists

of only translational degrees of freedom (DOF), without involving rotations. Further details on the use

of Lagrange polynomials as expansion functions can be found in [37].
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The stress and strain fields in vector notation are

σ = {σxx, σyy, σzz, σxy, σxz, σyz}T

ε = {εxx, εyy, εzz, εxy, εxz, εyz}T
(3)

Assuming linear strains, the displacements are related to the strains as

ε = D · u (4)

where D is the linear differentiation operator given by

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


The constitutive law, considering an elastic material behavior, is

σ = Cε (5)

where C is the linear elastic material matrix. The structure is discretized in the axial direction using beam

elements, interpolated using the nodal shape functions Ni. In this work, four-node beam elements (B4)

were used. The combination of beam elements and cross-section expansions results in a 3D displacement

field defined as

u(x, y, z) = Fτ (x, z)Ni(y)uτi (6)
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where uτi is the nodal displacement field. Based on the principle of virtual displacements,

δLint = δLext (7)

where δLint is the virtual variation of the internal strain energy,

δLint =

∫
V
δεTσ (8)

Lext is the work due to the externally applied load,

Lext = FsNjδu
T
sjP (9)

where P is the external force vector. Using Eqs. (5), (6) and (8), the stiffness matrix is defined as

δLint = δuTsjkijτsuτi (10)

with

kijτs =

∫
l

∫
Ω

DT (Ni(y)Fτ (x, z))CD(Nj(y)Fs(x, z)) dΩ dl (11)

kijτs is the 3x3 Fundamental Nucleus (FN), and is invariant with respect to the applied structural theory.

Ω and l represent the cross-section domain and beam length, respectively. The stiffness matrix changes

as the structural theory do so. Changes are due not only to the different approaches, i.e., beams or

plates, but also to the order of the structural theory, e.g., Euler-Bernoulli, Timoshenko, Third Order

Shear Deformation. Most of the literature’s approaches require ad hoc formulations as soon as a new

structural theory is developed; whereas, CUF avoids the need for such problem-dependent matrixes via

a unified approach based on the use of the expansion functions and indexes τ and s. As the fundamental

nucleus of the matrix is derived via the Principle of Virtual Displacements, the order of the structural

theory can be changed, and the effect is the use of additional values of the indexes. A detailed explanation

of the fundamental nucleus and the assembly of the global stiffness matrix is found in [34].
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z,3

y,1

x,2
(a)

(b)

Figure 2: Modelling the RVE using the CW approach. (a) 3D domain of a square-packed RVE and its
individual constituents, and (b) 1D-CUF model

3 Component-wise micromechanics framework

The CW micromechanics framework adopts 1D CUF models with Lagrange expansion functions. In

this approach, an RVE is modeled, as shown in Fig. 2. Beam elements are used in the RVE thickness

direction, and Lagrange expansion elements explicitly model the individual constituents of the RVE cross-

section. The formulation is based on the assumption of a periodic microstructure, and periodic boundary

conditions (PBC) are applied to the RVE. Such a process ensures the energy equivalence between the

heterogeneous material and the effective homogenized medium [9]. The periodic boundary conditions,

applied on opposite boundary surfaces, are formulated as

uj+i (x, y, z)− uj−i (x, y, z) = ε̄ik(x
j+
k − x

j−
k ) (12)

where ε̄ik is the applied macroscopic strain, indices j+ and j− represent the positive and negative

directions, respectively, along xk. Two PBC sets can thus be distinguished, which are applied in the

cross-section edges and the beam ends, respectively, as shown in Fig. 3. The homogenized stress (σ̄ij)
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(a) (b)

x

z

y

z

Figure 3: Application of the PBC on a square-packed RVE (a) on the opposite edges of the cross-section
and (b) at the beam end nodes

and strain (ε̄ij) response is obtained by volume averaging the microscopic fields (σij , εij) [9],

ε̄ij =
1

V

∫
V
εijdV (13)

σ̄ij =
1

V

∫
V
σijdV (14)

where V is the RVE volume. The constitutive relation for the homogenized medium reads as

σ̄ij = C̄ijklε̄ij (15)

where C̄ijkl is the homogenized elastic material matrix. A detailed explanation of the micromechanics

framework using the CW approach is given in [31].

Voids are modeled in the matrix constituent of the RVE by selecting a set of Gauss points (GP) within

the matrix domain and assigning them arbitrarily low elastic moduli. Such a process creates voids with

a domain equal to the volume associated with the selected GP. Matrix GP are iteratively selected as

void candidates until the void volume fraction, given as an input, is satisfied. Furthermore, the matrix

GP can be selected either randomly throughout the RVE, or be biased in the RVE thickness direction.

The former results in voids that are randomly and equally distributed within the RVE, while the latter
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results in voids clustered towards one end of the RVE. This methodology thus allows for the development

of a fully 3D cubic RVE with matrix voids of a required volume fraction as well as morphology. As an

example, a multi-fiber RVE with 1% randomly distributed voids has been schematically shown in Fig. 4.

Such a technique enables the efficient development of multiple configurations of the RVE for a given void

volume fraction, which is an important requirement for statistical studies on the influence of voids.

The void modeling in this paper exploits the 3D distributions of Gauss points within a beam element.

The distribution is 3D because of the superposition of the 1D distribution for the integration of the

shape functions and the 2D one of the expansion functions. The localized deformation inside the void is

not supported because it would require the explicit modeling of the morphology of the void by inserting

a geometrical discontinuity. Such a choice can be made in CUF as can be made in commercial FE

via brick elements. Although such a strategy would lead to more accurate local stress distributions, it

may be impractical as the number of void increases. It could present some numerical issues due to the

modeling of the transition between different scale regions when the size of the void is small compared to

the surrounding matrix and fibers.

1% void fraction

Figure 4: A multi-fibre RVE with 1% voids randomly distributed within the matrix

4 Numerical results

4.1 Mesh convergence study on hex-packed RVE

The current set of numerical assessments comprises an initial study investigating the influence of the

mesh on the quality of the homogenized stiffness and micro-stress response, for the case of both pristine
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RVE and those with voids, and their convergence characteristics. For simplicity, a hex-packed RVE with

a 60% fiber volume fraction is considered, and a series of CUF models are developed with an increasing

refinement of the cross-section mesh. The fiber radius is 3.6 µm, and each edge of the cubic RVE has a

length of 11.65 µm. The constituent material properties are listed in Table 1, and are obtained from [38].

A schematic representation of the cross-sectional meshes used in the assessment is shown in Fig. 5. For

each mesh, two models are developed, with 2 B4 and 4 B4 beam elements along the y-axis. For RVE with

voids, the void fraction is kept constant at 2%, and the voids are randomly distributed within the matrix.

Micromechanical homogenization is first performed to determine the effective material properties of both

types of RVE. The error of the solutions obtained by the various models, for the solution of the most

refined model (316 L9-4 B4), is plotted in Fig. 6(a). A dehomogenization procedure is then performed

on the RVE, loaded in transverse tension in the x-axis, and the maximum value of the local stress field

σxx is determined. The maximum stresses predicted by the various models are plotted in Fig. 6(b). The

following observations are made

� A converged solution is observed for the homogenized elastic properties using the 112 L9 model, as

seen in Fig. 6(a). Progressive refinement along the y-axis, keeping the cross-section mesh constant,

does not significantly influence the homogenized properties.

� The maximum value of the local stress field, σxx, approaches a converged value at the same level of

mesh refinement (112 L9). Variations in the maximum values in the converged state stem from the

randomness of the void morphology. The void modeling approach used in the present work, based

on assigning air-like elastic properties to selected matrix integration points, avoids issues of stress

singularities, and ensures convergence.

� The rate of convergence, for both homogenized properties and maximum local stresses, follows a

similar trend i.e., convergence occurs for the same level of refinement. This is true for pristine RVE

as well as RVE with voids.

� The introduction of matrix voids within the RVE does not cause significant changes in the conver-

gence rate and characteristics, compared to the case of the pristine RVE.
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Table 1: Properties of the constituent materials [38], the units of the elastic moduli are GPa

Material E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23

Fiber 223.987 18.534 36.898 7.232 0.258 0.282
Matrix 3.700 3.700 3.700 3.700 0.400 0.400

20L9 40L9 112L9 164L9 316L9

Figure 5: Cross-sectional discretisation used for the hex-packed RVE
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4.2 Pristine RVE

The RVE has 22 randomly distributed fibers, and the material system is carbon/epoxy with 60% of

fiber volume fraction. Figure 7 shows the randomly distributed fibers; the blue cylinders represent the

carbon fibers, and the white portion indicates the matrix. The side of the cross-section is 38.5 µm. The

thickness along the y-axis is 19.25 µm. The radius of the fiber is 3.6 µm. The material properties are

Figure 7: RVE with randomly distributed fibers

in Table 1 and retrieved from Sevenois et al. [38]. The longitudinal direction of the fiber coincides with

the y-axis, see Fig. 2. This section aims to evaluate the influence of the cross-section modeling on the

homogenized properties and select the discretization for all subsequent analyses. Figures 8 show two

examples of cross-section discretizations. The FE mesh along y is constant and has one B4 element; as

shown in previous works [31, 32], such axial mesh is sufficiently accurate. Figure 9 shows the homogenized

properties for various meshes. The reference value to compute the error is the one provided by the most

refined discretization, 3144 L9. The coarsest discretization has the highest error. However, such errors

are lower than 2%. Given that the use of the 314 L9 leads to a considerably reduced computational

cost for the statistical studies, the following numerical examples will use the same discretization. The

similar convergence trends observed in Section 4.1, for both homogenized properties and maximum local

stress fields, verify the suitability of the 314 L9 model for the accurate evaluation of the local stress fields

for the current numerical assessment. A further assessment focuses on the verification of the results via
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Figure 8: Cross-sections with 314 and 487 L9 elements
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a comparison with [38], see Table 2. The results show a good match. Figures 10 and 11 show stress

distributions given by an applied strain of 0.2%.

Table 2: Homogenized properties for the pristine RVE via 314 L9 and results from [38], the units of the
elastic moduli are GPa

Model 1D-CUF FE ref. [38]

E11 135.88 135.74
E22 9.96 9.66
E33 9.91 9.66
G12 5.19 5.31
G13 5.02 5.31
G23 3.15 3.23
n12 0.31 0.31
n13 0.31 0.31
n23 0.47 0.48

10

40

6.1e+01

50

0.0e+00

30

20

300

0.0e+00

400

200

100

4.5e+02

Figure 10: Axial stress contours, σxx, σzz, and σyy, with applied εxx, εzz, and εyy, respectively, pristine
RVE

4.3 RVE with voids

The analysis of voids considers two RVE configurations. The first one - referred to as RVE-1, has the

same material and geometrical characteristics seen in the previous section. The second one, RVE-2,

differs only for the dimension along y; that is, 38.5 µm. From the modeling standpoint, the cross-section

discretizations are the same, whereas two B4 are employed in RVE-2. Figure 12 shows both RVE and the

beam meshes in which the reported mesh over the matrix is not representative of the numerical model,

but it serves postprocessing purposes. Table 3 summarizes the main characteristics of the models. The

shape and void percentages considered in this paper are consistent with those from the literature [8]. The

analysis considers two void distributions as follows
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Figure 11: Shear stress contours, σxz, σxy, σyz, with applied εxz, εxy, and εyz, respectively, pristine RVE
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Figure 12: RVE-1 and RVE-2 and beam meshes

� The first distribution - referred to as VD-1 - is random within the RVE. Figure 13 shows an example

of this void arrangement for the RVE-2.

� The second distribution - referred to as VD-2 - is random along the cross-section but follows a linear

distribution of the void percentage along y. By considering Fig. 14, the first segment along y has

5% of the total voids, while the last one has some 30%. The aim is to simulate a configuration with

moderate clustering.

In both cases, 100 distributions per each void volume fraction were considered to evaluate statistical

parameters. Table 4 presents the main characteristics of each distribution. VD-2 was applied only to

RVE-2 due to the small y-dimension of RVE-1. Furthermore, VD-2 considers the random variation of

the slope of the distribution; that is, the maximum of voids can be either on the last segment or the first
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Figure 13: Random distributions of voids with increasing contents, VD-1
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Figure 14: Clustering of voids, VD-2
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Table 3: Structural and FE modeling of RVE-1 and RVE-2

Discretization DOF

RVE-1
314 L9 on the cross-section,

one B4 along y
15876

RVE-2
314 L9 on the cross-section,

two B4 along y
27783

one. The results consider homogenized properties and local distributions of stress. For the latter, all six

Table 4: Summary of VD-1 and VD-2

VD-1
RVE considered RVE-1 and RVE-2

Void volume fractions 1, 2, 3, 4, 5 %
Subcases per void volume fractions 100

VD-2
RVE considered RVE-2

Void volume fractions 1, 2, 3, 4, 5 %
Subcases per void volume fractions 100

strains were applied separately, and, in each case, the strain is 0.2%. The statistical parameters employed

are the following [39, 40]: mean value x̄, median q2, standard deviation s, minimum value min, maximum

value max, first quartile q1, third quartile q3. Such parameters were computed on the maximum values

of stress components of a given void distribution and content.

4.3.1 Influence of void distribution on homogenized properties

The first numerical assessment focuses on the homogenized properties. Tables 5 and 6 present the results

regarding VD-1 and both RVE. Table 7 shows the results for RVE-2 and considering VD-2. The results

suggest the following:

� As expected, the void content affects the mechanical properties with the degradation that can reach

4%. The standard deviation is very low in all cases.

� The use of a deeper RVE does not affect the mean values; that is, there is no significant influence

on the homogenized properties. Likewise, the adoption of different void distributions does not lead

to significant modifications of the properties.

� The influence of RVE and void content on the standard deviation is more evident, but, in all cases,

s is low.
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Table 5: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-1 and VD-1

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.771 135.734 135.697
E22 9.887 9.818 9.747 9.679 9.609
E33 9.836 9.765 9.695 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.993 4.964 4.935 4.906 4.877
G23 3.125 3.102 3.080 3.057 3.034

s (MPa)

E11 0.744 1.100 1.056 1.258 1.460
E22 2.641 3.425 3.480 3.755 4.471
E33 2.264 2.735 3.388 4.493 3.960
G12 1.869 2.132 2.508 2.733 3.039
G13 1.496 1.956 2.502 2.923 2.828
G23 0.571 0.953 0.887 1.026 1.316

Table 6: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-2 and VD-1

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.772 135.734 135.697
E22 9.887 9.818 9.749 9.679 9.609
E33 9.836 9.766 9.696 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.993 4.964 4.935 4.906 4.878
G23 3.125 3.103 3.080 3.057 3.034

s (MPa)

E11 0.508 0.680 0.784 0.850 0.963
E22 1.470 2.174 2.231 2.910 3.108
E33 1.307 2.036 2.761 2.405 3.127
G12 1.064 1.673 1.835 1.979 2.064
G13 0.969 1.304 1.894 1.790 2.165
G23 0.456 0.580 0.647 0.790 0.868

Table 7: Mean value (x̄) and standard deviation (s) of the homogenized properties, RVE-2 and VD-2

Void content (%)

1 2 3 4 5

x̄ (GPa)

E11 135.846 135.809 135.772 135.734 135.697
E22 9.887 9.818 9.749 9.679 9.610
E33 9.836 9.766 9.696 9.625 9.555
G12 5.156 5.127 5.098 5.069 5.040
G13 4.994 4.964 4.936 4.906 4.877
G23 3.125 3.103 3.080 3.057 3.034

s (MPa)

E11 0.511 0.682 0.686 0.825 0.919
E22 1.566 1.955 2.330 2.680 2.527
E33 1.540 2.047 2.339 2.692 2.794
G12 1.120 1.448 1.765 1.824 1.921
G13 1.064 1.194 1.585 1.816 1.970
G23 0.417 0.573 0.658 0.771 0.936
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4.3.2 Influence of void distribution on stress fields

The second numerical assessment concerns the influence of RVE and VD on the stress distributions. Table

8 shows the statistical parameters regarding the maximum values of axial stress found in the RVE-1 having

VD-1 and under various axial strains. The first column indicates the applied strain, the second one the

stress component, whereas the last one shows the void content. Similarly, Table 9 presents the statistical

parameters obtained by applying shear strains. Figure 15 shows the box plots of the RVE-1 with VD-1

and applied axial strains. The most relevant stress components are reported. The box plot displays

simultaneously several features of the data set [40]. The left side of the box is the first quartile (q1), and

the right side is the third quartile (q3). The difference q3−q1 is the interquartile range (IQR). The vertical

line inside the box is the second quartile or median (q2). The dashed horizontal line on the left of the box

connects q1 to the smallest data point within 1.5 IQR. Similarly, the one on the right side connects q3 to

the largest data point within 1.5 IQR. Data points falling beyond these ranges are indicated explicitly.

For example, considering the case of 5% voids and εxx for RVE-1, the highest maximum stress is 106.8

MPa. q1, q2 and q3 are 72.6, 77.6 and 84 MPa, respectively. The lowest minimum of stress is 62.8 MPa.

Figures 16, 17, and 18 are the box plots with applied shear strains for RVE-1 and both strains for RVE-2.

The results of VD-2 are in Figures 19 and 20. Figure 21 shows an example of stress distributions over a

cross-section of the RVE. The cross-sections are those in which the peak values were found. The results

suggest the following

� There is a general increase of stresses moving from RVE-1 to RVE-2 and VD-1 to VD-2. In other

words, by considering deeper RVE and clustering, higher stresses were found.

� By considering Fig. 21, it can be seen how the locations of stress peaks are in the proximities of the

interface between fibers and matrix. Moreover, according to the void distributions related to Fig.

21, the location of the peaks coincides with a void interface.

� The increase of void content leads to higher stresses and wider stress ranges. Several box plots show

rightward skewness of the data, i.e., quite high-stress peaks as compared to the mean value.

� By considering Table 8, it can be seen that, by applying a longitudinal strain (εyy), most of the load

is carried by the fibers as shown by the high values of σyy. Figures 15 and 17 show how the increase

of the void content, i.e., the deterioration of the matrix, causes a slight increase in fiber stress.
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Table 8: Statistical parameters of the axial stresses (MPa) for various void contents (%) with applied εxx,
εyy, and εzz, RVE-1 and VD-1

x̄ q2 s min max q1 q3 Voids

εxx

σmaxxx

56.670 56.197 4.841 47.949 75.549 53.463 59.128 1
63.619 62.368 6.083 53.205 83.828 59.979 67.256 2
67.209 66.043 6.359 57.859 93.672 62.654 69.749 3
72.385 71.975 6.880 60.132 93.625 67.939 76.037 4
78.668 77.614 8.927 62.752 106.830 72.615 84.004 5

σmaxyy

37.084 36.600 3.283 30.820 49.030 35.126 39.027 1
41.574 40.554 4.313 34.638 56.720 38.633 44.150 2
43.947 43.016 4.106 35.976 60.923 41.084 45.546 3
47.270 46.986 4.529 38.287 60.974 44.018 49.376 4
51.387 50.242 6.131 40.111 71.246 47.215 55.293 5

σmaxzz

36.775 36.527 3.384 29.576 48.887 34.566 38.607 1
41.407 40.373 4.579 34.433 58.128 37.979 44.188 2
43.690 42.999 4.356 36.284 59.424 40.579 45.822 3
46.611 46.085 4.604 38.434 60.719 43.152 49.202 4
50.750 49.705 6.247 39.652 71.785 46.245 54.809 5

εyy

σmaxxx

21.365 21.054 1.711 18.488 26.995 20.335 21.940 1
24.380 23.896 2.536 20.487 33.686 22.556 25.751 2
26.259 25.687 2.712 21.732 38.296 24.671 26.999 3
27.632 27.079 2.638 23.758 38.414 25.733 28.771 4
30.354 29.779 3.658 23.973 45.779 27.550 32.587 5

σmaxyy

456.784 456.729 0.793 455.612 459.420 456.152 457.119 1
457.711 457.614 1.069 456.125 461.168 456.913 458.224 2
458.522 458.341 1.130 456.457 462.539 457.818 459.155 3
459.116 458.877 1.216 456.268 462.540 458.293 459.875 4
459.767 459.580 1.315 457.277 463.191 458.828 460.451 5

σmaxzz

21.686 21.250 1.772 18.776 26.737 20.321 22.931 1
25.415 24.498 3.936 20.010 43.822 22.755 26.549 2
27.733 26.797 4.229 22.349 44.956 24.731 29.240 3
29.762 28.635 4.343 23.900 44.237 26.767 31.276 4
31.531 30.300 4.508 25.207 46.899 28.297 33.226 5

εzz

σmaxxx

37.967 37.228 3.636 30.741 49.088 35.709 39.420 1
43.580 41.379 7.155 35.145 80.370 39.059 46.015 2
47.999 46.647 7.202 35.386 72.759 43.037 50.447 3
51.617 48.708 8.836 39.474 81.787 45.579 55.250 4
53.271 51.648 8.195 39.851 79.988 47.618 56.238 5

σmaxyy

38.673 38.031 3.561 32.136 50.242 36.481 40.160 1
44.237 42.425 7.075 36.116 79.411 39.652 46.604 2
48.770 47.737 7.144 37.803 75.340 43.465 52.086 3
52.709 50.127 8.716 41.658 79.996 47.246 55.247 4
54.410 52.991 8.124 41.642 83.652 48.430 58.174 5

σmaxzz

59.310 58.232 5.392 50.047 76.481 56.026 61.267 1
67.781 65.093 10.457 54.467 118.228 60.751 71.349 2
74.608 72.414 10.733 60.051 115.875 66.339 79.398 3
80.906 77.128 13.076 61.675 122.699 73.160 84.118 4
83.825 81.378 11.946 63.852 129.370 75.342 89.852 5
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Figure 15: Box plots of axial stresses with applied axial strains, RVE-1 and VD-1
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Figure 16: Box plots of stress components with applied shear strains, RVE-1 and VD-1
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Figure 17: Box plots of axial stresses with applied axial strains, RVE-2 and VD-1
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Figure 18: Box plots of stress components with applied shear strains, RVE-2 and VD-1
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Figure 19: Box plots of stress components with applied axial strains, RVE-2 and VD-2
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Figure 20: Box plots of stress components with applied shear strains, RVE-2 and VD-2
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Table 9: Statistical parameters of stresses (MPa) for various void contents (%) with applied εxz, RVE-1
and VD-1

x̄ q2 s min max q1 q3 Voids

σmaxxx

30.805 30.050 3.415 25.565 46.629 28.635 32.427 1
34.537 33.835 4.170 26.272 48.472 31.461 36.653 2
38.093 37.324 5.138 28.982 54.148 34.863 40.916 3
39.908 39.397 4.557 31.828 53.213 36.679 42.068 4
42.705 41.544 5.721 32.111 60.232 38.208 46.298 5

σmaxyy

22.234 22.371 2.278 18.175 31.514 20.228 23.627 1
25.130 24.513 2.889 20.277 35.152 23.448 26.018 2
27.535 27.161 3.586 21.789 38.993 25.277 29.220 3
29.044 28.498 3.446 22.878 39.533 26.713 30.997 4
31.553 30.680 4.652 23.472 46.079 28.268 34.002 5

σmaxzz

27.696 27.621 2.648 21.492 36.014 26.165 29.158 1
31.258 30.426 3.326 25.948 41.815 29.317 32.955 2
33.543 32.692 4.062 27.929 48.693 30.819 35.393 3
35.801 34.934 4.262 28.906 48.680 32.539 39.023 4
39.403 37.604 6.398 30.211 57.848 34.744 42.619 5

σmaxxz

23.332 22.787 1.310 22.086 30.339 22.477 23.749 1
25.533 24.852 2.831 22.225 35.063 23.441 26.449 2
25.883 25.173 2.420 22.469 33.916 24.117 27.093 3
27.396 26.760 3.137 23.077 38.418 24.836 28.798 4
28.870 28.518 3.390 23.295 39.246 26.260 31.173 5

100

1.5e+02

50

-8.0e+00

Figure 21: Cross-section distributions of stresses in which peak values were found, void content 5%,
applied εzz, RVE-2 and VD-2
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� σxx and σzz is the stress component with the highest values in the matrix. In some cases, the

increase of this component reached three times the value of the pristine RVE.

Further analyses can make use of the probability density function [39] as shown in Figs. 22 and 23. The

aim is to show the major differences in the results stemming from the three modeling approaches, namely,

RVE-1 and VD-1, RVE-2 and VD-1, and RVE-2 and VD-2. As stated above, there is an increase in both

the mean and peak values as deeper RVE and clustering are considered. By moving from RVE-1/VD-1

to RVE-2/VD-2, the mean values increased by some 10%.
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Figure 22: Fitting of the probability density function of σmaxzz with applied εzz (a) RVE-1 and VD-1, (b)
RVE-2 and VD-1, (b) RVE-2 and VD-2, void content 5%
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Figure 23: Fitting of the probability density function of σmaxyz with applied εyz (a) RVE-1 and VD-1, (b)
RVE-2 and VD-1, (b) RVE-2 and VD-2, void content 4%
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5 Conclusions

The present work has investigated the influence of matrix voids on the prediction of the homogenized

properties and stress fields in RVE for fiber-reinforced polymer composites. The assessments are numerical

and based on a numerically efficient FE framework and refined 1D structural models from CUF. The RVE

models have randomly distributed fibers and voids within the matrix. Fibers and matrix are modeled via

a component-wise approach via Lagrange polynomials defining the displacement field and the geometry;

the void modeling exploits the 3D distributions of Gauss points within a beam element, and a selected

amount of matrix integration points are prescribed negligible elastic properties. The use of 1D models

avoids the aspect ratio constraints of 3D FE and leads to significantly lower computational costs. The

present framework can deal with various sets of void distributions to investigate the influence of void

content and morphology. Such analyses considered multiple scenarios and statistical metrics. The RVE

is 3D, and the influence of its depth is another assessed parameter. The most significant findings are the

following:

� As well-known, the influence of void distributions and RVE dimensions on the homogenized prop-

erties is low. The void content is the fundamental parameter to consider, independently of the void

arrangement.

� The void arrangement influences the stress fields. The clustering of voids leads to higher stress mean

values and peaks, and broader ranges of stress.

� Likewise, deeper RVE leads to higher maximum stress values. The combined effect - deeper RVE

and clustering - may lead to some 10% increments in the mean values of stress. Such a result may

be a warning regarding the proper choice of the RVE geometry to ensure its representativeness

concerning stress distributions.

� All six stress components are affected with particularly significant variations in cross-sectional axial

components.

The future extensions should consider the nonlinear analysis to investigate the influence of voids on failure.

Furthermore, the modeling of more complex RVE architectures and the multiscale analysis are of interest.

Further investigations are necessary regarding the role of the RVE depth on the stress distributions. The

30



authors are currently implementing a multiscale framework to verify the effects of the RVE modeling on

the failure of a specimen with comparisons with experimental results.
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[18] D. Garoz Gómez, F.A. Gilabert Villegas, R. Sevenois, S. Spronk, and W. Van Paepegem. Material

parameter identification of the elementary ply damage mesomodel using virtual micro-mechanical

tests of a carbon fiber epoxy system. Composite Structures, 181:391–404, 2017.

[19] A. Hyde, L. Liu, X. Cui, and J. Lua. Micromechanics-enriched finite element modeling of composite

structures with fiber waviness and void defects. AIAA SciTech Forum, 01 2019.

[20] C.C. Chamis, F. Abdi, M. Garg, L. Minnetyan, H. Baid, D. Huang, J. Housner, and F. Talagani.

Micromechanics-based progressive failure analysis prediction for WWFE-III composite coupon test

cases. Journal of Composite Materials, 47(20-21):2695–2712, 2013.

[21] R. Talreja. Incorporating manufacturing defects in damage and failure analysis, pages 377–390. 12

2016.

33



[22] H. Jiang, Y. Ren, Z. Liu, and S. Zhang. Microscale finite element analysis for predicting effects of

air voids on mechanical properties of single fiber bundle in composites. Journal of Materials Science,

54, January 2019.

[23] K. Chowdhury, R. Talreja, and A. Benzerga. Effects of manufacturing-induced voids on local failure

in polymer-based composites. Journal of Engineering Materials and Technology, 130, 04 2008.

[24] J. Aboudi. The response of a partially loaded composite half-space weakened by local defects.

International Journal of Solids and Structures, 168, 03 2019.

[25] M. Naderi and N. Iyyer. Micromechanical analysis of damage mechanisms under tension of 0-90

thin-ply composite laminates. Composite Structures, 234:111–659, 11 2019.

[26] A. Benzerga, X. Poulain, K. Chowdhury, and R. Talreja. Computational methodology for modeling

fracture in fiber-reinforced polymer composites. Journal of Aerospace Engineering, 22, 07 2009.

[27] H. Huang and R. Talreja. Effects of void geometry on elastic properties of unidirectional fiber

reinforced composites. Composites Science and Technology, 65:1964–1981, 10 2005.

[28] L. Zhuang and R. Talreja. Effects of voids on postbuckling delamination growth in unidirectional

composites. International Journal of Solids and Structures, 51:936–944, 03 2014.

[29] D. Vajari, C. Gonzalez, J. Llorca, and B. Legarth. A numerical study of the influence of microvoids in

the transverse mechanical response of unidirectional composites. Composites Science and Technology,

97, 06 2014.

[30] T. Huang and Y. Gong. A multiscale analysis for predicting the elastic properties of 3D woven

composites containing void defects. Composite Structures, 185, 11 2017.

[31] I. Kaleel, M. Petrolo, A. Waas, and E. Carrera. Computationally efficient, high-fidelity microme-

chanics framework using refined 1D models. Composite Structures, 181, 08 2017.

[32] I. Kaleel, M. Petrolo, E. Carrera, and A. Waas. Micromechanical progressive failure analysis of

fiber-reinforced composite using refined beam models. 11 2017.

[33] I. Kaleel, M. Petrolo, E. Carrera, Pineda. E.J., T.M. Ricks, B.A. Bednarcyk, and S.M. Arnold. Inte-

gration of CUF micromechanics framework into NASMAT for multiscale analysis of fiber-reinforced

34



composites. In ICMAMS, editor, Proceedings of the Second International Conference on Mechanics

of Advanced Materials and Structures - ICMAMS 2019, Nanjing, China.

[34] E. Carrera, M. Cinefra, E. Zappino, and M. Petrolo. Finite Element Analysis of Structures Through

Unified Formulation. John Wiley & Sons Ltd, 2014.

[35] I Kaleel, M Petrolo, E Carrera, and AM Waas. Computationally efficient concurrent multiscale

framework for the linear analysis of composite structures. AIAA Journal, 57(9):4019–4028, 2019.

[36] I Kaleel, M Petrolo, E Carrera, and AM Waas. Computationally efficient concurrent multiscale

framework for the nonlinear analysis of composite structures. AIAA Journal, 57(9):4029–4041, 2019.

[37] E. Carrera and M. Petrolo. Refined beam elements with only displacement variables and plate/shell

capabilities. Meccanica, 47(3):537–556, 2012.

[38] R. Sevenois, G.D. Garoz, E. Verboven, S. Spronk, F. Gilabert, M. Kersemans, L. Pyl, and

W. Van Paepegem. Multiscale approach for identification of transverse isotropic carbon fibre prop-

erties and prediction of woven elastic properties using ultrasonic identification. Composites Science

and Technology, 168, 09 2018.

[39] D.C. Montgomery. Applied Statistics and Probability for Engineers, 6th Edition. John Wiley and

Sons, Incorporated, 2013.

[40] J.M. Chambers. Graphical Methods for Data Analysis. CRC Press, 2018.

35


