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A Low-Complexity 6DOF Magnetic Tracking
System Based on Pre-Computed Data Sets for

Wearable Applications
David A. Fernandez G.† ‡, Paolo Motto Ros‡, Danilo Demarchi‡ and Marco Crepaldi†

† = Electronic Design Laboratory (EDL), Istituto Italiano di Tecnologia.
‡ = Department of Electronics and Telecommunications, Politecnico di Torino.

Abstract—We present a 6DOF magnetic tracking system
based on a low-complexity algorithm, operating with an Inertial
Measurement Unit (IMU) orientation estimation and regression
functions formed with simulated data sets, capable of running
using only a single microcontroller unit (MCU), for use in low-
complexity wearable and wireless systems. A prototype based on
a commercial magnetometer and IMU, a Cortex-M4 MCU was
implemented and tested in both static and dynamic conditions,
using a VICON motion tracking system as reference. Static and
dynamic spatial accuracy performance is 2.6 mm and 5.4 mm
respectively, after applying a calibration procedure based on
a two layers Neural Network (NN) and a measured data set.
Comparison with the state-of-the-art, supported by a defined
Figure-of-Merit (FoM) show excellent performance compared
to commercial and research systems in a low-complexity and
portable solution.

Index Terms—6DOF, Magnetic tracking, High accuracy, Low
complexity, Wireless ready.

I. INTRODUCTION

THE accurate tracking of objects inside a determined space
has been recently identified of great interest in various

research fields. The necessity of immersive human-machine
interaction have been manifested in the entertainment industry
[1], medical instrumentation development [2], neuroscience re-
search [3] and sport engineering [4]. Being able to comprehend
and quantize how the human joints move or an inanimate
object is manipulated with a minimum required accuracy is
the key to open the door to endless interactive applications.
The application domains range from entertainment systems
such as Microsoft Kinect R© [5], which requires the position
estimation of several points with centimeter-level accuracy
inside a single room, to image-guided surgical instrumentation
[6] which requires the position estimation of few points with
submillimeter-level accuracy inside a few centimeters range.
The technology and techniques implemented for positioning
systems varies accordingly to their specific application.

Tracking systems can be divided into three categories based
on their applications requirements in terms of range and
accuracy. The first of these categories are the global tracking
systems, such as GPS, Galileo and GLONASS, that allow the
localization of a device in an open field around globe with
an accuracy of few meters. Next, site-wide tracking systems
can be considered. They allow the localization of a device
inside and within the range of a building with an accuracy

below one meter. For this purpose different radio frequency
systems such as Ultra-Wideband (UWB) systems [7], [8],
Radio Frequency Identification (RFID) [9], Wi-Fi hotspots
[10] and Bluetooth 5.1 beacons arrays [11], [12] can be used
with variable techniques such as Time of Arrival (TOF), Time
Difference of Arrival (TDOF), Angle of Arrival (AOA) or
Angle of Departure (AOD). Then workspace tracking systems
can be considered as the final category. These allow the local-
ization of devices inside a space limited to few cubic meters
with a centimeter and even millimeter-level accuracy. Due to
these characteristics, most immersive interactive applications
can be developed with workspace tracking systems. Several
techniques and technologies can be used to achieve these
type of system performances, however, optical and magnetic
tracking are so far the only applicable solutions to reach
millimeter-level accuracy and below.

Optical tracking systems range from devices that perform
below millimeter-level tracking of retro-reflective markers
inside a range of few meters such as VICON R© [13] and NDI
optical systems [14], to devices that provides millimeter-level
accuracy tracking the human fingers inside a few centimeter
range such as Leap Motion R© [15], [16]. Magnetic tracking
systems either commercially available such as Razer Hydra R©

[17], Polhemus [18], [19], [20] and NDI magnetic systems
[14] or research prototypes such as Finexus [21] and IM6D
[22], are able to track objects with a millimeter-level accuracy
and below within lower ranges than most considered optical
tracking systems. Comparing both optical and magnetic so-
lutions, it can be found that the main differences between
them are the working range, which is usually larger for optical
systems, and the requirement of a Line-Of-Sight (LOS) or the
challenge to operate without it [23]. Optical tracking systems
can not work without a LOS between the tracked object and
the system, while magnetic systems are independent as long
as the tracking space is clear from ferromagnetic materials. In
order to counteract this dependency, optical systems require
the use of multiple stereo-cameras, as a mean to maintain the
LOS with at least one camera. Moreover, since the cameras
need to be installed in fixed and calibrated positions to keep
the tracking space reference, this makes magnetic systems a
more portable and flexible solution. However, one weak point
of current magnetic tracking systems is the lack of a wireless
connectivity, since most systems have the tracked device wired
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Fig. 1: Magnetic flux density lines of a magnetic dipole created
by a current loop around the Z axis.

to its processing unit, which might limit the mobility of human
joints when been worn, limiting therefore their use in immer-
sive human-machine interactive applications, in comparison
to optical tracking systems. Applications such as [24], [25],
[26] could be enhanced by replacing the reported tablet-based
systems with a 3D millimeter-accurate tracking system with
non-LOS performance dependence, hence allowing further
explorations of human-machine interfaces (HMI) for visually
impaired users. Moreover, [27] shows other HMI applications
examples based on wearable magnetic tracking systems. The
immersiveness of such applications could be enhanced by the
introduction of 6DOF and multiple sensor tracking.

This paper proposes a magnetic tracking system based on a
simplified position and orientation estimation algorithm suit-
able for use in wearable devices with wireless interfacing by
establishing low power and data rate throughput limits. Prior to
the system usage, a simulation of the generated magnetic field
is calculated on a large number of different position points.
Then a scattered interpolation is formed to build the magnetic
sensor position as a function of the measured magnetic flux,
in order to reduce its estimation computational time. The
system uses a high-speed digital magnetic sensor to capture
the generated field, paired with an Inertial Measurement Unit
(IMU) to estimate its orientation through sensor data fusion.
This concept enables the deployment of low-cost embedded
6 Degrees Of Freedom (6DOF) magnetic tracking systems.
This paper is a continuation of what was presented in [28]
and it is organized as follows. Sec. II introduces the magnetic
tracking system concept and Sec. III presents the associated re-
quired low-complexity hardware. Sec. IV presents in detail the
tracking algorithm implementation while a proof-of-concept
implementation is discussed and validated in Sec. V. Sec. VII
concludes the paper.

II. MAGNETIC TRACKING SYSTEM

Magnetic tracking is based on the exploitation of the de-
pendency of a measurement taken by a magnetic flux density
~B sensor on its position ~P and orientation ~O with respect
to the field generator. This dependency can be expressed as
a mathematical model of the magnetic field. Such model
performance heavily depends on the environment composition,
the field generator geometry and materials, and could be
solved through Maxwell’s equations. In order to simplify the
presented problem, the model of a magnetic dipole in vacuum

Fig. 2: Sensor coordinates ρ (a) and Z (b) as a function of
magnetic flux measurements Bρ and BZ .

can be considered, then, as observed in Fig. 1, the magnetic
flux density ~B measured in the point ~P can be expressed as
(see [29]),

~B =
µ0MT

4π

(
3 ( ~O · ~P ) ~P

R5
−

~O

R3

)
(1)

where MT = NI is the magnetic dipole moment with N
the current loop turns number and I the current magnitude,
R = ‖~P‖ with ~P the magnetic sensor position, ~O is the unit
vector oriented with the north pole of the magnetic dipole,
and µ0 is the vacuum permittivity. Even if the above model
can not accurately describe the field generated by a bobbin
coil, it remains valid for certain implementations assuming
the sensor to bobbin distance greater than four times the
current loop radius [30]. A more accurate representation of the
field generated by an air bobbin coil, solved through elliptic
integrals can be found in [31]. However, this model cannot be
correctly applied when a high permeability material is used as
the bobbin core to increase the generated field magnitude, due
to the permeability non-linearity.

In order to calculate ~B = f(~P , ~O) for more complex
structures such as the bobbin coil with ferromagnetic core,
Finite Element Methods (FEM) modeling can be used to solve
numerically the correspondent Maxwell’s equations. However,
the objective is to estimate the sensor position using magnetic
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flux density measurements, therefore a way to perform the
inverse function ~P = fP ( ~B, ~O) is needed. It can be seen
from the simplest magnetic flux model represented in Eq. (1),
that performing the regression estimation is not an simple task.
One commonly used tool to solve this regression problem is
the non-linear least squares method. However, this requires
a high computational power for a real-time application with
a high update rate, and leads to a not anymore wearable
processing hardware, therefore limiting the capability of a
magnetic tracking system to be designed as a wearable device
in comparison to optical tracking systems. As a possible
solution, we propose partitioning our tracking space of interest
and form a regular grid of numerous position points { ~Pi}, then
from a FEM model of the magnetic flux density ~B extract
{ ~Bi} = f({ ~Pi}) for each one of these points and finally,
using the scattered interpolation method, form the regressions
functions ~P = fP ( ~B), as shown in [28]. A similar regression
method is exposed in [32], where a look-up table is used to
pair known positions points { ~Pi} with their correspondent
magnetic flux density { ~Bi} or voltage measurement. Such
method would also allow a fast real-time computation how-
ever, the trade-off of needing more memory space depending
the required accuracy and range, needs to be taken into account
for resource constrained wearable devices. Fig. 2 shows a
graphical representation of the regression functions, defined
here as,

~P = [ρ, Z] = [fρ(Bρ, BZ), fZ(Bρ, BZ)] (2)

formed with a 2D FEM model of a bobbin coil, using a set
of points ~P , from ρ = 2 cm to ρ = 30 cm, and Z = 2 cm to
Z = 30 cm, with 1 mm spacing between points. Taking into
account the axial symmetry of the field generated by a current
loop as shown in Fig. 1, the problem can be simplified to a
two dimensional (2D) model dependent on the coordinates ρ
and Z. To use this 2D solution for a three-dimensional (3D)
problem, some assumptions and limitations need to be taken
into account. Firstly, to ensure a single pair of magnetic flux
density Bρ and BZ , for every point ~Pi, it is necessary to work
in the space Z ≥ 0. Then, as showed in Fig. 3, using a tri-axial
magnetic flux density sensor, the 3D problem can be solved
according to the following steps:

1) Sense the magnetic flux density in the sensor position
as BX , BY and BZ ;

2) Calculate Bρ =
√
B2
X′ +B2

Y ′ ;
3) Estimate ρ and Z from the regression functions Eq. (2),

while θ is the Bρ projection angle in the X ′Y ′ plane.
This solution, however, is only applicable when the sen-

sor axes [X ′, Y ′, Z ′] and the system axes [X, Y, Z] are
aligned, therefore the sensor measurements BX′ , BY ′ and BZ′
correspond to their system referenced components BX , BY
and BZ . Observe that when the sensor and system axes are
misaligned, the relative sensor orientation with respect to the
system axes needs to be known. This relative orientation can
be determined using IMU sensors, which are composed by
accelerometer, gyroscope and low sampling rate magnetic sen-
sors through the use of available Attitude Heading Reference
System (AHRS) algorithms. For this purpose we considered

the Madgwick’s algorithm [33]. It is an open source AHRS
algorithm, characterized by a low computational cost. In [33],
[34] the algorithm is compared to Kalman Filter (KF) based
AHRS algorithms, showing similar accuracy without the use
of computationally expensive matrix inversion required by
a KF. Moreover, [34], [35] show that the algorithm can be
easily integrated in dead reckoning position systems and to
enhance their performances. Furthermore, [36] experimentally
compares Madgwick’s algorithm with an Extended Kalman
Filter (EKF) based AHRS running on a M4-Cortex micro-
controller, getting slightly better accuracy results using the
EKF at the expense of a computational cost one order of
magnitude higher. We have then chosen Madgwick’s algorithm
to estimate both sensor and system orientation with respect
to the Earth in form of quaternions q = e

α
2 (uX ı̂+uY ̂+uZ k̂) =

cos(α2 )+sin(α2 )(uX ı̂+uY ̂+uZ k̂). The quaternions represent
a rotation of α around the unit vector uX ı̂+uY ̂+uZ k̂. Having
both the sensor and system earth referenced quaternions, qS
and q0 respectively, the relative sensor orientation with respect
to the system can be calculated as the Hamilton product as
follow,

qR = qS × q−10 . (3)

The system referenced magnetic flux measurement can now
be estimated as,

~BR = qR × ~B × q−1R = [BX , BY , BZ ]. (4)

where ~B = [BX′ , BY ′ , BZ′ ] is the sensed magnetic flux
density referred to the sensor axes [X ′, Y ′, Z ′].

Finally, in order to avoid mixing with the Earth and power
lines magnetic fields and still let the problem be considered
quasi-static, a low frequency field is generated, in this particu-
lar case with frequency between 70 Hz and 1 kHz. Therefore,
the sensed magnetic flux density can be considered variable
in time with the following form,

~BR(t) = ~BR sin(2πf0t+ φ), (5)

where ~BR is still composed as expressed in Eq. 4. Since we
intend to use the Bρ projection angle θ in the X ′Y ′ plane

Sensor

Bz

Z

Y

X

Z'

X' Y'

ρ

Z

B

θ

Bobbin

Bρ

Fig. 3: Sensed magnetic flux density vector components Bρ
and BZ , and cylindrical sensor coordinates ρ, Z and θ with
respect to the system axes.
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(Fig. 3), as part of the position estimation procedure, having
a vector that varies over time leaves two options to apply it.
On one side having a full synchronization with magnetic field
generator would allow to know exactly the sensed magnetic
flux density phase φ. Otherwise, using a tracking space limited
by either X > 0 or Y > 0 would allow to be able to assume
respectively BX′ or BY ′ , as an always positive component
and use this sensed signal to calculate φ. At this point,
by knowing φ we can extract the sensed ~BR(t) amplitude
~BR with its correspondent direction and use the previously

explained method to estimate the sensor position ~P .

III. SYSTEM-LEVEL HARDWARE ARCHITECTURE

To implement the previously described technique inside
a wearable device, a system-level hardware architecture is
conceptualized according to the diagram shown in Fig. 4. The
system is divided in two modules, the field generator module
and the sensing module, interfaced to an end-user device
functioning as Graphical User Interface (GUI).

The field generator module is in charge of generating the
oscillating magnetic field with a low frequency. It comprises
a micro-controller unit (MCU) that generates the sinusoidal
signal, that is power amplified before feeding a single axial
cylindrical bobbin coil. An IMU mechanically fixed to the
bobbin coil is sampled by the same MCU to set the system
axes orientation with respect to Earth. A Bluetooth Low
Energy (BLE) module allows the wireless communication with
the final user device running the GUI. Finally, a power supply
unit powers both the MCU and the amplifier.

The sensing module comprises multiple couples of tri-axial
magnetic flux density and IMU sensors controlled by a MCU
which is also in charge of processing the sensor signals to
estimate both its position and orientation with respect to the
bobbin coil and the field generator IMU, respectively. To allow
high-levels of wearability a rechargeable Li-Po battery-based
powering system and a BLE module can be used for wireless
communication in order to send the tracked sensors processed
data to the GUI. As mentioned in Sec. II, it is important to
take into account that if the regression functions in Eq. (2) are
implemented inside the sensing module MCU, it is necessary
to trade-off between the regressions function accuracy and
range, and the required Random Access Memory (RAM) space
from the MCU. This trade-off will be further discussed in Sec.
IV as a mean to set the required MCU RAM size.

Finally, the GUI will run in the end-user device connected
to both modules via BLE allowing the field generator module
control and receiving the sensor module data. As an alternative
solution, the GUI could run the regression functions Eq. (2) if
the application requires a large accuracy and range, demanding
a memory space higher than the MCU available RAM. As it
will be explained in Sec. IV, low-power wireless solution is
viable since the BLE required data throughput is the same
before and after the regression functions use. However, we
considered it of secondary importance since it depends on the
final user device characteristics and not the tracking system
itself, which is the core contribution.

IV. TRACKING ALGORITHM IMPLEMENTATION

The magnetic developed tracking algorithm was designed to
be run on the sensing module MCU for each sensor couple,
so as to accomplish the procedure described in Sec. II with
a wearable and wireless hardware designed as proposed by
the system level architecture described in Sec. III. Prior to
the device usage, the system axes orientation with respect
to the Earth q0 must be calculated using the field generator
module IMU data and the Madgwick’s algorithm. As showed
in Fig. 5, a first stage of the sensing module algorithm will
sample the magnetic sensor with 800 samples/s and filter it
with a low-pass filter with 15 Hz cut-off frequency. Then, the
sensed earth magnetic flux density, the IMU accelerometer
and gyroscope measurements, and the previously computed
system quaternion q0 will be used inside the Madgwick’s
algorithm to compute the sensor couple relative quaternion qR
at 100 samples/s. On a second stage, the raw magnetic sensor set
of 8 measurements is rotated by the conjugated quaternion q−1R
and then band-pass filtered with a 30 Hz bandwidth around the
variable magnetic field frequency f0 = 100 Hz as showed in
Eq. (5), allowing the extraction of a single sine wave period.
A third stage will extract the ~BR envelope from the filtered
signal ~BR(t) with a 100 samples/s rate. By reducing the tracking
space to Z > 0 and Y > 0, BY component will be always
considered positive and the phase between BY sin(2πf0t+φ)
and both BX sin(2πf0t+φ), BZ sin(2πf0t+φ), will be used
to determine the sign of both BX and BZ . The final stage of
the algorithm will transform ~BR into the estimated coordinates
~P = [X, Y, Z]. For this purpose, firstly Bρ is calculated as
the norm of BX and BY , then using the regression functions
described in Sec. II Eq. (2) are calculated.

In order to run these functions on an MCU, it is possible
to use only a limited number of point to form the scattered
interpolation of the regression functions in Eq. (2). The trade-
off in this case resides in the chosen number of points to
build the scattered interpolations and the consequent needed
memory space and accuracy. To estimate the required memory,
besides the number of point to be used, it is necessary to know
the number of triangles formed with a Delaunay triangulation
of such set of point. Then to solve the linear interpolation as
shown in [37] the minimum required memory can be estimated
as an array of 4 × N for N points containing the points
coordinates [Bρ, BZ , ρ, Z], plus an array of 6 × M for M
triangles containing the vertex and triangle connectivity lists.

Fig. 6 shows the interpolations smoothness decrease and the
error of the interpolation created with ∆ρ = ∆Z = 10 mm
with respect to an ideal interpolation created with a ∆ρ =
∆Z = 1 mm separation grid. Tab. I compares the required
memory space and root-mean-squared-error (RMSE) of each
one of the scattered interpolations created using both floating
point and 16-bit fixed point precision for both points and
triangles information arrays, and different spacing grids with
respect to the ideal interpolation created with floating point
precision and a ∆ρ = ∆Z = 1 mm. It can be seen that using
a fixed point precision introduces a negligible error in compar-
ison to the error introduced by the use of a higher grid spacing.
Alternatively, such memory limitations can be avoided if the
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Fig. 4: System-level conceptual hardware architecture. The system is divided in two modules, the field generator module, which
is in charge of generating the AC magnetic field and the sensing module, which processes the sensed signals and estimates the
magnetic sensors relative position. Additionally a device connected wirelessly to the modules will contain the system graphical
user interface.

Fig. 5: Algorithm implementation flowchart to estimate posi-
tion and orientation of a single tri-axial magnetic and IMU
sensor couple.

scattered interpolations are implemented in the end-user device
instead of the MCU, provided that it is capable of running
these calculations in real time and have enough available
RAM. This is possible only after the signal processing stages
and not before because the necessary data throughput depends

TABLE I: Comparison of Different Scattered Interpolations of
Functions fρ(Bρ, BZ) and fZ(Bρ, BZ)

Grid
spacing
(mm)

# points # triangles Precision Memory
Size ( kB )

RMSE
(mm)

1 302960 605876
Floating

Point 24236 -

Fixed
Point 9694.2 0.0475

5 3080 6130
Floating

Point 245.79 0.419

Fixed
Point 98.2 0.422

10 784 1541
Floating

Point 62.189 0.8313

Fixed
Point 24.764 0.8322

on the magnetic sensor sampling rate, which in this case (see
the following section) is 800 samples/s but could be higher
(when using an analogue magnetic sensor and an analogue
to digital converter). In the envelope extraction block output
the update rate can be controlled and adapted to a low power
wireless communication data throughput.

V. PROOF-OF-CONCEPT AND EXPERIMENTAL RESULTS

In order to verify the previously discussed methods, a
laboratory system prototype was implemented. Fig. 7 shows
the tracking sensor module prototype. It has been developed
using the 9-axis IMU MPU9250 which is commonly used
for orientation estimation applications and is composed by
an accelerometer with sampling frequencies from 4 Hz to
4 kHz, sensitivity from 2.048 to 16.38 LSB/G and full scale
ranges from ±2 to ±16 G. The gyroscope provides sampling
frequencies from 4 Hz to 4 kHz, sensitivities from 16.4 to
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Fig. 6: Scattered interpolation of regression functions ρ = fρ(Bρ, BZ) and Z = fZ(Bρ, BZ) comparison for different position
grids ∆ρ = ∆Z = 1 mm and ∆ρ = ∆Z = 10 mm.

Fig. 7: Wearable sensor prototype. An MPU9250 IMU is used
to estimate the sensor couple orientation, while a KMX62-
1031 is used as magnetic sensor.

131 LSB/◦/s and full scale ranges from ±250 to 2000
◦
/s

The IMU is mechanically coupled to the high speed digital
magnetic sensor KMX62-1031 which has a sample frequency
from 0.781 Hz to 1.6 kHz, sensitivity of 0.0366 µT/LSB and full
scale range of ±1200 µT. This mechanical coupling allows the
system to estimate the magnetic sensor orientation using the
IMU data. The use of both external magnetic sensor and IMU
may be considered redundant for the marker miniaturization,
which is a direct goal for any wearable system. However, this
is mandatory due to the sampling rate limitations of the inte-
grated magnetic sensor AK8963 and of known commercially
available IMU.

As depicted in Fig. 8a, the sensing module (marked with
green letters) comprises the following elements:

A Sensor module with Invensense MPU9250 and Kionix
KMX62-1031;

B STM32F446RE MCU on a ST Nucleo-F446RE evalua-
tion board;

C Laptop connected through USB to the MCU, running
Matlab as GUI.

The field generator module (marked with blue numbers) com-
prises the following elements:

1 Aim-TTi EX354TV power supply;
2 Teledyne Lecroy Wavestation 3082 signal generator;
3 ST STEVAL-CCA044V1 power amplifier board;
4 800 turns handcrafted uni-axial bobbin coil with high

temperature resistive resin base and 30 AWG magnetic
wire, measured impedance of 21 Ω at 100 Hz.

A 32 V and 1 A power supply is used to feed the field generator
module, while the signal generator and the power amplifier
were set to generate a sinusoidal wave of 100 Hz and 1 Apeak

to the bobbin coil.
The sensing module was set to sample the magnetic flux

density with 800 samples/s, while sampling the acceleration
and the angular velocity with 100 samples/s. The MCU filters
and processes the acquired signals, then estimates the sensor
couple orientation and the magnetic signal envelope with
100 samples/s and finally performs the regressions functions in
Eq. (2) using 778 points with 16-bit precision for ±1200 µT
for Bρ and BZ , and 0 to 30 cm for ρ and Z. To emulate their
implementation inside the MCU at the offline test processing
stage, the laptop performs the same regression function on
Matlab, while for the real-time implementation it is used to
show graphically the estimated sensor position and orientation
at 100 fps.

Since in this proof-of-concept an IMU sensor in the field
generator module is not included, the system axes are de-
termined using the orientation that the tracked sensor has



7

(a) (b)

Fig. 8: Validation system test-up. The field generator module comprises, (1) Power supply, (2) Signal generator, (3) Signal
amplifier and (4) Bobbin coil. The receiver module comprises (A) Designed couple sensor, (B) MCU and (C) Laptop running
a GUI. Retro-reflective markers are used on the system prototype: one marker is placed in the center of the bobbin coil axis,
three are placed aligned with both X and Y sensor axes, and three extra markers are used to fix the VICON R© system axes.

for the first ten seconds after initialization. In this section
we will present first measurement results using the system
uncalibrated. Based on these results we will introduce a
calibration algorithm based on a Neural Network (NN) to
enhance performance and we will apply this in post-calibration
measurement results.

A. Uncalibrated Static and Dynamic Measurements

Both static and dynamical accuracy tests have been per-
formed using a VICON R© optical tracking system to obtain
the ground truth measurement. VICON R© systems provide the
necessary accuracy to establish ground through as they operate
through retro-reflective markers with an accuracy of 1 mm
with 200 fps. All measurements were performed inside a room
of 3 m×4 m×3 m size with 9 cameras placed 3 m high. As
shown in Fig. 8a four retro-reflective markers were fixed in the
proposed system: one was placed in center of the top side of
the bobbin coil, three were placed in the sensor holder aligned
with the X and Y axes of the sensor, and three extra markers
were used to fix the VICON measurement axes. The sensor is
positioned 9 mm below the middle point between the markers
that trace the X axis.

The static accuracy test consisted in a comparison of the
resulting measurements of both tracking systems of the sensor
position with respect to the bobbin coil. For this evaluation
we have used 95 different positions inside a half cylinder
volume of 20 cm radius and 13 cm height, within a maximum
measured distance of 21 cm. 5 seconds of data, with the sensor
statically positioned in each specific location, were recorded
for comparison. As specified in [33], the performance of
Madgwick’s algorithm in the estimation of the IMU sensor
orientation greatly relies on a proportional coefficient of the al-
gorithm loop β, which balances the influence of the gyroscope
data (self-referenced dynamic data) over the accelerometer and
magnetic sensor data (earth referenced static data). Therefore,

we need to consider this to test the sensor orientation accuracy
independently, in order to chose the proper β set up for the
dynamic accuracy test. The three sensor axes retro-reflective
markers movements were recorded along with the IMU sensor
data. The sensor holder was then rotated around its three
axes once counterclockwise and once clockwise within a
range of ± 90◦ for a rotation duration of 5 s, while the
variable magnetic field was generated. The dynamic accuracy
test consisted in recording four different types of movements
inside a half cylinder volume of 20 cm radius and 13 cm
height, recorded with both VICON R© and prototype system,
in particular:
• “T movement” test, where the sensor is moved in parallel

to the table plane, first in parallel to the Y axis and then
in parallel to the X axis.

• “Circle movement” test, where the sensor is moved in
parallel to the table plane following a circular form.

• “Arc movement” test, where the sensor is moved to form
arcs traces inside the tracking space.

• “Arbitrary movements” test, where the sensor is moved
arbitrarily for 5 seconds inside the tracking space.

Accuracy is evaluated with the spatial root-mean-square error
formula revisited as follows,

ξ =

√√√√ 1

n

n∑
k=1

((Xk −Xvk)2 + (Yk − Y vk)2 + (Zk − Zvk)2),

(6)
where Xk, Yk and Zk are the prototype system estimated
coordinates, Xvk, Y vk, Zvk are the VICON R© estimated
coordinates and n is the total test position points for the static
test or the recorded number of frames for dynamical tests. The
static experimental tests have been performed for two hours
while dynamical tests on four hours, for a total experimental
time frame of six hours. Fig. 9a shows both the VICON R©

measured position targets and the system output for each one
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(a)

(b)

Fig. 9: Static accuracy experimental test results. VICON R© measured targets are marked with blue circles, while system outputs
are marked with orange crosses and the distance between them is marked with a black line.

of the trial points, while their deviation is shown by a black
line. The resulting spatial accuracy ξ of this test is 7.8 mm.
This measurement result is comparable with our previous
studies in [28], with the difference of running in 6DOF, which
makes it usable in more applications. As shown in Fig. 9b,
the mayor contribution to spatial error comes from the Z
coordinate. Both X and Y data, which directly depend on ρ,
show a growing error as the test point gets further away from
the system origin. This is consistent with having used scattered
interpolations computed from FEM simulations which do not
correspond completely to what is being measured. The sensor
orientation RMSE values obtained were 2.15◦, 1.89◦, 1.94◦

and 1.92◦ for β values 0.01, 0.1, 0.3 and 0.5 respectively.
Results show that the optimal β value obtained is 0.1 and
the minimum orientation RMSE obtained is 1.89◦ which is
close to the reported algorithm performance of 1.7◦ RMSE by
Madgwick [33]. Dynamical accuracy measurement results are
shown in Tab. II. The dynamical measurements are consistent
with the static accuracy test result. Fig. 10a, 10b, 10c and 10d
show the four best test recording outputs of both VICON R©

and prototype system. We can observe that the proposed
system can only approximately follow the sensor movements.

As the sensor gets further away from the system origin
results shows a growing position error, more evident in the
Z axis in comparison to the XY plane. This supports the
previous observation taken from the static accuracy test. To
identify the main error source, we used the static accuracy
test position points inside the FEM simulation to compute
their correspondent simulated magnetic flux density values and
compare with the measured magnetic flux values in the form of
γratio ρ = Bρ sim/Bρmeas and γratio Z = BZ sim/BZmeas.
As a linear relation between simulated and measured magnetic
flux densities is not found (potentially explaining the origin of
the difference between simulated and measured magnetic flux
density values), we concluded that the scattered interpolation
of the regression functions of Eq. (2) needs to be modified to
match the measured magnetic flux density values and enhance
system performance.

B. Calibration Procedure

In order to obtain the regression functions with data that
properly represents the generated magnetic field, two ap-
proaches are possible, in particular:
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(a) (b)

(c) (d)

Fig. 10: Dynamic accuracy experimental test results. “T movement” best test performance (a). “Circle movement” best test
performance (b). “Arc movement” best test performance (c). “Arbitrary movements” best test performance (d).

TABLE II: Dynamic Accuracy Measurements

Movement Type T Circle Arc Arbitrary
Test Number #1 #2 #3 #4 #1 #2 #3 #1 #2 #3 #1 #2 #3
ξ ( mm ) 6.4 6.9 6.2 5.3 8 7.1 6.7 7.5 8.9 10.4 7.5 9.4 7.9

ξ avg ( mm ) 7.6

1 Entirely reconstruct the regression functions by substitut-
ing the simulated data sets with measured magnetic flux
density on each position point of the desired grid.
This approach has the drawback of being unpractical
because it requires the correct positioning of the sensor
in each of a large data set of positions points.

2 Use a representative number measurements in order to
form a data set of position points and magnetic flux
density measurements in our tracking space of interest.
Compute FEM simulations of the magnetic flux density on
each position point of the data set. Then find a regression
relationship between the FEM simulation results and the
measurements obtained on the same position points and
finally enable a generalizable fitting that uses as input the
FEM simulation results and as target the measurements
taken.
This approach has the advantage of adapting (calibrating)
the large simulated data set of the previous regression

functions using a smaller data set of the measured mag-
netic flux density.

We followed the second approach because of its inherent
viability and thus, the possibility of re-using the large data set
obtained in FEM simulation. Using thirty-nine of the ninety-
five static test measurement, a data set directly related to
the generated magnetic field is formed covering test posi-
tions points in the ranges 47 mm ≤ ρ ≤ 160 mm and
8 mm ≤ Z ≤ 130 mm. The relationship between simulated
and measured magnetic flux density data sets, defined by the
ratios γratio ρ and γratio Z , followed a non-linear trend. More-
over, there were not any identifiable mathematical relations
that could be used for simple regression fitting techniques.
Hence, we have chosen to train a two-layer feed-forward
two-inputs two-outputs and sixteen neuron Neural Network
(NN). The NN uses as input the simulated magnetic flux
density values computed on a known set of position points,
formed from a third of the static accuracy test position points.
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The magnetic flux density measured on the same set of
position points are used as targets. A Bayesian Regularization
algorithm was implemented with 70% of samples used for
training and 30% used for testing. Finally, the trained NN
is fed with the uncalibrated regression functions magnetic
flux density data set, generating a new data set to form the
calibrated regression functions. These regression functions are
now optimized to work with the magnetic field measured
during the static accuracy test.

C. Post-calibration Measurements

Using the previously recorded test data with the calibrated
regression functions of Eq. (2), new static and dynamic ac-
curacy test results were obtained. Fig. 11a shows the post-
calibration static accuracy test results. In comparison to the
previous results shown in Fig. 9 we observe that the responses
are closer to the target points in the covered tracking space.
The system accuracy was measured using Eq. (6), resulting in
an spatial RMSE ξ = 2.6 mm. This represents a relative error
of 1.23 % the maximum tracked distance (21 cm) and proves
that the system performance improved with the executed
calibration procedure. Compared to the pre-calibration relative
error of 3.71 %, indeed, accuracy gain is 200 %. Supporting
the above observation, Fig. 11b shows the system accuracy
enhancements both on the Z axis and on the XY plane
for the test point positioned farthest from the system origin,
compared to Fig. 9b. System performance enhancement is
also highlighted in Tab. III which shows the results of each
dynamical test as well as their average accuracy, highlighting a
40.7 % accuracy gain from the pre-calibration test result. The
improvement on the Z estimation is more evident on Figs.
12a and 12b compared to Figs. 10a and 10b. While the “arcs
movement” test of Fig. 12c show only a slight improvement
both numerically and graphically compared to 10c, the “ar-
bitrary movements” show a more evident improvement after
calibration. As shown in Fig. 12d the proposed system can
follow properly very complex traces.

D. Wireless Communication Capabilities

In order to test the feasibility of replacing USB data
transmission with wireless communication, we have added
an ST X-NUCLEO-IDB05A1 expansion board on top of
our ST Nucleo-F446RE board. This board interfaces the
STM32F446RE MCU with a SPBTLE-RF network proces-
sor module that includes an embedded BLE protocol stack,
enabling BLE v4.2 compliant communication for the sensing
module of our prototype. We defined a custom service with
seven characteristics, X , Y , Z, qR0, qR1, qR2 and qR3,
through which we were able to broadcast the sensor position
and relative quaternion with 100 samples/s rate, 16-bit and
32-bit precision respectively. We received and verified the
transmitted data correctness through a smartphone using a
BLE Analyser application, demonstrating the wireless com-
munication capabilities of our system. The overall measured
current consumption during transmission was 51.1 mA.

VI. DISCUSSION

We introduce a figure of merit (FOM) Γ to compactly collo-
cate the designed tracking system performance and wearability
in comparison to state-of-the art devices either commercially
available and research developed. The FOM focuses on both
system accuracy and range, but at the same time highlights
the system wearability (and complexity) which is the main
characteristic in which both the proposed system algorithm
and hardware architecture focuses. The FOM is defined as,

Γ =
ξP
RM

VM
DOF

. (7)

The first term of Γ includes the position static accuracy ξP
of the tracking device, since this is the main performance
indicator. Considering that the performance of magnetic track-
ing decays with the sensor to field generator distance, Γ is
proportional to static accuracy ξP over the tracking range
RM ratio. The second term accounts for the device markers
wearability and usage flexibility. This comprises the marker
volume VM (in the nominator), as with a higher sensor volume
the system becomes less useful for wearable applications.
To unify the evaluation criteria among the reported magnetic
tracking systems, we take into account only the tracked marker
volume, as it is supposed to be worn in parts of the body
that significantly move. We therefore ignore the volume of
processing units or data transmitters that do not impact in the
moving object tracking. Finally, the second term denominator
comprises the number of DOF to indicate a Γ improvement as
DOF increases. Tab. IV compares the state-of-the-art systems
with our prototype in terms of position static accuracy (mm),
orientation accuracy (◦), tracking range (cm), output update
rate (samples/s), degrees of freedom, the capability of wireless
communication between tracking markers or wearable process-
ing unit and the end-user device, and Γ. We observe that by
using the FOM Γ as an indicator, our system is ranked only
fourth in a list of devices composed by several commercial and
research developed system. This can be considered a very good
result for such a low complexity and non optimized prototype
made with off-the-shelf components. Moreover, compared to
wireless only systems the prototype ranks only second w.r.t
the magnetic tracking system gold standard Polhemus G4 [18]
that uses deeply engineered micro-sensors. Observe also that
on Tab. IV most of the compared system algorithms are run
on a CPU or a GPU: Polhemus G4 transmits the sensed data
wirelessly to the user CPU and process all data in the end-
user device. In our system, the algorithm runs directly on the
sensor module, particularly on a Cortex-M4 as we focus on
the wearability and portability of the solution regardless of
the end-user device performance. Observe that our current
prototype includes a BLE v4.2 compliant communication
module. However, futher optimizations are possible and need
to be considered in further studies, in particular on a battery
life-latency trade-off basis. A minimum latency of 676.7 µs
for an error-free one-way ATT exchange transmission was
reported in [41] considering the minimum connection interval
of 7.5 ms. Since two ATT exchanges are necessary for the
notification of a single sensor 22 bytes payload, we can expect
a minimum notification delay of 1.35 ms. We consider this
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(a)

(b)

Fig. 11: Post-calibration static accuracy experimental test results. Referenced targets are marked with red circles, while system
outputs are marked with red crosses and the distance between them is marked with a black line.

TABLE III: Dynamic Accuracy Measurements

Movement Type T Circle Arc Arbitrary
Test Number #1 #2 #3 #4 #1 #2 #3 #1 #2 #3 #1 #2 #3
ξ ( mm ) 3 3.9 3.6 2.7 5.7 3.4 4.7 7.4 8.4 10.4 5.1 6.4 5.4

ξ avg ( mm ) 5.4
Pre-calibration ξ avg ( mm ) 7.6

Calibration ξ Gain ( % ) 40.7

result as a starting point for multi-sensing and system upgrade
and optimization, for example regarding the use of a BLE
v5 module. For instance, we can consider two scenarios, one
where the regressions functions are running on the sensing
module MCU and other where these are running on the GUI.
In both scenarios the data to be transmitted (using for instance
a custom characteristic) for each sensor comprises three 16-
bit words (either for the three sensor coordinates or the three
sensor axes magnetic measurement amplitude) plus four 32-
bit words for the sensor orientation quaternion. Observe that
[42] exposes a maximum data throughput for BLE v4.2 of
236.7 kbps which would allow us to transmit a maximum
payload of 13 sensors, given a 100 samples/s sensor update rate.
On the other hand, [43] reports maximum data throughput for

BLE v5 between 1.3 Mbps and 800 kbps using notifications.
These data rates capabilities would allow our system to trans-
mit at least a payload for a maximum of 45 sensors. Therefore,
our solution remains a very good candidate to enable precise
tracking of a considerable number of nodes simultaneously,
as in finger tracking applications. We can conclude that
there is still space for improvement by further enhancing
calibration in order to enhance the system tracking accuracy.
Another viable option would be to use magnetic sensors with
a higher resolution, while maintaining the low volume of the
sensing module and a sampling rate equal or higher than
the current sensor sampling rate. Another interesting aspect
regards the orientation accuracy of those devices that have
6DOF. Our prototype is worse than commercial devices while



12

(a) (b)
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Fig. 12: Post-calibration dynamic accuracy test results. “T movement” best test performance (a). “Circle movement” best test
performance (b). “Arc movement” best test performance (c). “Arbitrary movements” best test performance (d).

TABLE IV: Magnetic Tracking Systems state-of-the-art Comparison.

System Processor
Position

Accuracy
(mm)

Range
(cm)

Update
Rate (samples/s)

Wireless
Feature DOF Orientation

Accuracy (◦)
Marker

Volume (mm3)
Γ

(mm3)

Patriot [20] NA+ 1.524 91.44 60 No 6 0.4 28.3× 22.9× 15.2 2.74
Aurora [38] NA+ 0.88 - 1.4 50 - 66 40 No 6 0.48 - 0.55 19.8× 7.9× 7.9 0.36 - 0.44

TrakSTAR [39] NA+ 1.4 66 20 - 255 No 6 0.5 19.8× 7.9× 7.9 0.44
Finexus [21] CPU 1.33 12 320 No 3 - 10×π× 52 2.9

Fernandez [28] CPU 6.5 24 66 No 5 - 42× 30× 3 20.47
G4 [18] CPU 2 - 12.7 100 - 300 120 Yes 6 0.5 - 1 22.9× 28.2× 15.2 3.27 - 20.78
G4 [18]

micro-sensor CPU 10.16 150 120 Yes 6 0.5 10×π× 0.92 0.029

Patriot
Wireless [19] NA+ 7.5 76.2 50 Yes 6 1 88.9× 42.2× 24.6 151.39

IM6D [22] GPU 1 - 5 20 30 Yes 6 1.89 - 2.21 4000 3.34 -16.67
TRing [27] CPU 8.6 12 30 Yes 6 6 35× 22× 25 229.9

GaussSense [40] CPU 0.42 10 60 Yes 5 - 30×π× 42 1.27
This work Cortex-M4 2.6 21 100 Yes* 6 1.89 18× 15× 2 1.11

* = The prototype currently does not include a wireless transceiver, but it is conceived to specifically support it.
NA+ = Unknown embedded system.

- = Not reported.
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maintaining comparable performance w.r.t the IM6D system
[22]. However, even if the difference compared to commercial
devices is not large, the orientation accuracy of our prototype
was measured under dynamical conditions, while commercial
devices performance regards static conditions, i.e., the typical
optimization target of tracking systems. We can estimate the
power consumption of a final prototype including wireless
connectivity as a way to understand feasibility of a full
functioning wearable device. As the measured MCU aver-
age current consumption is 42.4 mA during sensor position
estimation through USB, while power is 51.1 mA with BLE
v4.2 broadcasting. We could also use the current consumption
of a BLE v5 BGM13 module under transmitting conditions,
which is 8.5 mA. Current consumption estimation increases
for multiple sensors up to 4.1 mA for each extra sensor couple.
Therefore, a final device including six pairs of sensors, a
BLE v5 module and a 2000 mA h accumulator would have
an estimated battery life of 27 h. Such final system would be
perfectly tailored for applications such as hand fingers tracking
for neuroscience studies, surgical instrumentation guiding for
medical training. As mentioned in Sec. V, the dynamical
tests were performed in a time frame of four hours and we
can consider this as our maximum system validation time to
sustain the reported performance. Next works will deal with
investigations on system performance-level variability after a
calibration procedure.

VII. CONCLUSION

A 6DOF magnetic tracking system based on IMU-based
orientation estimation of the sensor and scattered interpola-
tion as regression functions has been presented. The system
simplifies the position tracking algorithm, therefore enabling
the potential tracking of several sensors using a single MCU,
and allowing the development of a multi-sensor, wearable and
wireless device. Future works can include the optimization
of wireless communication, and the improvement of system
tracking accuracy and working range. These last aspect can
be achieved either by changing the magnetic flux density
sensor and optimizing further the calibration procedure. Final
optimizations will deal with the implementation of an online
calibration procedure to ensure an accuracy performance for
long-term applications. Such procedure can regard zero-bias
calibration of the IMU and magnetic sensors when required
and monitor the magnetic field degradation due to long-
term usage. This could be achieved by using a fixed sensor
with a known referenced position w.r.t the magnetic field
generator, through which the system periodically monitors how
the magnetic field changes over time. Finally, multiple sensors
tracking can be considered using a single MCU.
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of the Precision and Reliability of the Leap Motion Sensor and Its
Suitability for Static and Dynamic Tracking,” Sensors, vol. 14, no. 2,
pp. 3702–3720, 2014.

[17] A. S. Mathur, “Low cost virtual reality for medical training,” in IEEE
Virtual Reality (VR), 2015, pp. 345–346.

[18] Polhemus, “Polhemus G4,” https://polhemus.com/motion-tracking/all-
trackers/g4#collapseFour, 2019.

[19] ——, “Polhemus patriot wireless,” https://polhemus.com/motion-
tracking/all-trackers/patriot-wireless, 2019.

[20] ——, “Polhemus patriot,” https://polhemus.com/motion-tracking/all-
trackers/patriot/, 2019.

[21] K.-Y. Chen, S. N. Patel, and S. Keller, “Finexus: Tracking Precise
Motions of Multiple Fingertips Using Magnetic Sensing,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
2016, pp. 1504–1514.

[22] J. Huang, T. Mori, K. Takashima, S. Hashi, and Y. Kitamura, “IM6D:
Magnetic Tracking System with 6-DOF Passive Markers for Dexterous
3D Interaction and Motion,” ACM Transactions on Graphics (TOG),
vol. 34, no. 6, p. 217, 2015.

[23] J. Klein, C. Peters, J. Martı́n, M. Laurenzis, and M. B. Hullin, “Tracking
objects outside the line of sight using 2D intensity images,” Scientific
Reports, vol. 6, p. 32491, 2016.

[24] M. Memeo and L. Brayda, “Mind the Bump: Effect of Geometrical
Descriptors on the Perception of Curved Surfaces with a Novel Tactile
Mouse,” in International Conference on Human Haptic Sensing and
Touch Enabled Computer Applications, 2016, pp. 438–448.

[25] M. Memeo, V. A. de Jesus Oliveira, L. Nedel, A. Maciel, and L. Brayda,
“Tactile treasure map: Integrating allocentric and egocentric information
for tactile guidance,” in International AsiaHaptics conference, 2016, pp.
369–374.



14

[26] M. Memeo and L. Brayda, “How geometrical descriptors help to build
cognitive maps of solid geometry with a 3DOF tactile mouse,” in
International Conference on Human Haptic Sensing and Touch Enabled
Computer Applications, 2016, pp. 75–85.

[27] S. H. Yoon, Y. Zhang, K. Huo, and K. Ramani, “TRing: Instant and
Customizable Interactions with Objects Using an Embedded Magnet and
a Finger-Worn Device,” in Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, 2016, pp. 169–181.

[28] D. A. Fernandez G, E. Macrelli, D. Demarchi, and M. Crepaldi, “High-
Accuracy Wireless 6DOF Magnetic Tracking System Based on FEM
Modeling,” in IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2018, pp. 413–416.

[29] T. L. Chow, Introduction to Electromagnetic Theory: A Modern Per-
spective. Jones & Bartlett Learning, 2006.

[30] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic
Position and Orientation Tracking System,” IEEE Transactions on
Aerospace and Electronic Systems, no. 5, pp. 709–718, 1979.

[31] E. E. Callaghan and S. H. Maslen, “The Magnetic Field of a Finite
Solenoid,” 1960.

[32] F. Attivissimo, A. M. L. Lanzolla, S. Carlone, P. Larizza, and G. Brunetti,
“A novel electromagnetic tracking system for surgery navigation,”
Computer Assisted Surgery, vol. 23, no. 1, pp. 42–52, 2018.

[33] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of
IMU and MARG Orientation Using a Gradient Descent Algorithm,”
in IEEE International Conference on Rehabilitation Robotics (ICORR),
2011, pp. 1–7.

[34] X. Li and Y. Wang, “Evaluation of ahrs algorithms for foot-mounted
inertial-based indoor navigation systems,” Open Geosciences, vol. 11,
no. 1, pp. 48–63, 2019.

[35] X. Li, Y. Wang, and K. Khoshelham, “Uwb/pdr tightly coupled naviga-
tion with robust extended kalman filter for nlos environments,” Mobile
Information Systems, vol. 2018, 2018.

[36] A. Cavallo, A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C. Natale,
and S. Pirozzi, “Experimental comparison of sensor fusion algorithms
for attitude estimation,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
7585–7591, 2014.

[37] I. Amidror, “Scattered data interpolation methods for electronic imaging
systems: a survey,” Journal of Electronic Imaging, vol. 11, no. 2, pp.
157–177, 2002.

[38] NDI, “NDI Aurora,” https://www.ndigital.com/medical/products/aurora/,
2019.

[39] ——, “NDI driveBAY and trackSTAR,”
https://www.ndigital.com/msci/products/drivebay-trakstar/, 2019.

[40] R.-H. Liang, K.-Y. Cheng, C.-H. Su, C.-T. Weng, B.-Y. Chen, and D.-
N. Yang, “GaussSense: attachable stylus sensing using magnetic sensor
grid,” in Proceedings of the 25th annual ACM symposium on User
interface software and technology, 2012, pp. 319–326.

[41] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology,”
Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[42] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica,
“Performance evaluation of Bluetooth low energy: a systematic review,”
Sensors, vol. 17, no. 12, p. 2898, 2017.
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