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Abstract. For an effective study of specific driving scenarios, in particular related to 

overtaking manoeuvres, developing well-thought-out manoeuvre databases from the 

acquired data will greatly improve the analysis process. The key point being that 

identifying clearly the studied scenario and clustering the manoeuvres based on spe-

cific sub-cases of this will bring an extra dimension of information that allows to 

visualise existing correlations between a given set of conditions and the manoeuvres 

performed under them. This paper expands on how to obtain these databases starting 

from only from overtaken manoeuvres extracted from experimental data. Consisting 

in two main procedures, the manoeuvre classification itself, in which a hybrid-clas-

sifier that combines both supervised and unsupervised algorithms generates the sce-

nario sub-cases, and the database compilation stage, in where it displays the different 

types of databases that can be created, based on the aim of the study.  

Keywords: Autonomous driving, Test scenarios, Overtake manoeuvres, Database 

generation, Vehicle dynamics. 

Introduction 

Many are the new technologies that are being discussed in the state of the art of 

automotive engineering, such as lightweight design [1-4], hybridization and electri-

fication of vehicles [5-8] and, of course, autonomous driving [9,10]. 

One important goal that can potentially render autonomous driving vehicles more 

acceptable to clients is developing an overtaking manoeuvre model that can assimi-

late as close as possible the behaviour of a human driver, because these manoeuvres 

would feel more “familiar” resulting in greater levels of comfort than what would be 

perceived through an optimized trajectory. To achieve this, it is deemed crucial to 

find the parameters that influence how overtakes are performed and would allow to 

replicate these in a model [11]. Therefore, experimental tests were performed, in 

which two vehicles mounted with various sensors and a CAN logger were driven 

repeatedly on the highway by various drivers under controlled conditions (low to 

mid traffic hours, during sunny days for better camera visibility, and fairly straight 

highway stretches). This resulted in large amounts of data requiring pre-processing 

in order to isolate the overtaking manoeuvres so that an analysis could be performed. 

This study and the main results are reported in [12] that is an important background 

and starting point of this paper. 

The final purpose of this paper was a database of isolated manoeuvres which in-

cluded the time-series information for any parameter (i.e. vehicle speed at every 
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point in time), alongside single value data, such as the manoeuvres duration. It is of 

utmost importance to generate dedicated database for manoeuvre analysis, since it 

would allow for an efficient and structured study and comparison of the different 

overtaking manoeuvres. Not only, should this database include the information that 

allows for a profound analysis, but also identify similar manoeuvres, as to bring an 

extra dimension of understanding of how certain driving conditions affect human-

driving behaviour. 

Manoeuvre Classification 

 
Fig. 1. Decision tree node 

The hypothesis was that the manoeuvres must be clustered through a classification 

process that resembles the decision process of the driver in the specific driving sce-

nario that is being analysed (i.e. initiating a cut-out manoeuvre). Based on this prem-

ise, the classifier’s macro-structure had to resemble that of a decision tree (Fig. 1), 

where its decision nodes symbolize the driving-scenario’s parameters, the branches 

represent different non-overlapping intervals of the values related to that parameter, 

and the leaf nodes represent a given range of conditions for each sub-case (which 

will now be referred as scenarios) of this macro-scenario. Another important deci-

sion was to make it a hybrid-classifier, meaning that it was composed of a supervised 

and unsupervised set of algorithms. The supervised portion has to do with the user 

setting the classification requirements, while the unsupervised algorithms oversees 

the classification by finding a way to comply with as most of them as possible. This 

structural setup allows it to statistically subdivide the manoeuvres through a set of 

user-defined parameters representing the requested scenario, thus resulting in a more 

data-driven clustering method. 

Parameter Selection 

The decisions represent how the driver evaluates a defined set of conditions related 

to a specific macro scenario and performs a given course of action [13]. A macro 

scenario refers to the global situation being analysed, like for example, the moment 

in which the driver activates the left turn signal to let the other drivers know that he 

intends to perform the overtake in the coming seconds. Each scenario will represent 

a specific sub case of this event, thus a specific combination of these conditions, 

such as a defined range of speeds, lateral displacements, etc. This definition makes 

it is easier to understand if a specific set of conditions has a determined influence on 
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the overtaking behaviour, especially when comparing it to other scenarios, but also 

by observing the similarity between the manoeuvres conforming them. 

 
Fig. 2. Decision-making parameters of left-turn signal activation preceding a cut-out 

Therefore, the first step towards building the classifier has to do with defining these 

conditions (these will be referred as classification parameters). Thus, the exact time 

index in which this event takes place needs to be identified, in order to extract the 

corresponding value inside a time-series parameter. Alongside defining the parame-

ters, it is key to understand and establish their order of appearance in the decision 

hierarchy, since it will dictate how the manoeuvres are classified. Error! Reference 

source not found. illustrates the selected parameters and their order of succession 

that were selected to represent the moment the left-turn light is activated, which de-

notes the intention of performing a cut-out manoeuvre. It is believed that performing 

a similar thought process is good practice when studying any type of macro scenario 

that requires human decision-making. Hopefully, this is performed prior to designing 

the experimental tests, since it helps identifying which parameters and data needs to 

be measured and studied, so that in a future stage it is possible to recover the com-

bination of triggers that led to performing the manoeuvre. 

Configuration of Decision Tree Classifier 

The main objective of the classifier was that in each step it could split the data as 

balanced as it deemed plausible, while avoiding separating data sharing the same 

values for the respective decision node parameter. 

Since conventional decision trees have decision nodes with predefined splitting 

rules, they are not able to take into account how the data will be distributed in the 

future, tending towards an unbalanced splitting. Since an automatized approach was 

required as well, this lead designing a new approach. Because it had to be both flex-

ible and adaptable to any type of dataset and its respective distribution, it was estab-

lished that the splitting criteria would rely on the use of percentiles.  

Its flexibility has to do with the easiness of selecting the splitting parameters gov-

erning each decision node and the desired number of branches into which to sub-

divide the data subsets at each node, without prior knowledge of it is even possible 

or wise. Remember that the branching of the preceding node influences the distribu-

tion of the variables conforming each sub-set of data reaching a node, making it very 

difficult to define splitting rules for each subset beforehand. Here is where the sys-

tem’s adaptability comes into play. It analyses the percentile information of the data 

arriving at the node, determines if the user’s splitting request is possible or not, and 

based on that, it defines the splitting rules it deems most adequate through the fol-

lowing procedure: 
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Find the requested percentiles. 

Calculates the bounds requested by the user (Equation 1). When requested for three 

divisions, it searches for the values matching the percentiles 0, 33, 66 and 100. 

 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 → 𝐵𝑟𝑎𝑛𝑐ℎ(𝑖) =

[𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 100∙(𝑖−1)

𝑛𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

, 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 100∙𝑖

𝑛𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

] (1) 

Where nbranches is the number of branches 

Analyse one subset at a time and correct their bounds. 

Through the logic scheme shown in Fig. 3, the procedure can update each division 

node’s clustering criteria so that all similar entries are grouped together while still 

maintaining clusters’ dimensions as close as it seems wise. It will also reduce the 

amount of divisions when the requested division rule is too high. 

 
Fig. 3. Branching correction process 

Subdivide the data. 

Each division node uses the new division instructions to divide the subset’s entries 

along their respective branches into to the subsequent level or leaf node (Fig. 1). 

Data subsets are essentially the result of grouping the data of the manoeuvres which 

values corresponding to the analysed parameter are inside the same interval limits 

(as shown here). In the end, the output would be the final scenarios. It is likely that 

the total amount of scenarios is lower than the amount requested by the user. 

Classifying the Manoeuvres 

By extracting the subset of the database that contains solely the information related 

to the classification parameters, the procedure becomes less memory intensive. In 

Table 1, it is exemplified how the subset would look like for the macro case scenario 

depicting the Left Turn Signal Activation used before (Fig. 2), and as it can be no-

ticed, it has a lot less entries than if all the hundreds of measured parameters were 

included. This data will then pass through each of the decision nodes of the classifier, 

until it reaches the leaf nodes and the final scenarios are obtained. 

Table 1. Example of Manoeuvre Database extract used for Scenario Classification 
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Ma-

noeuvre 

Identi-

fier 

Decision Node Variables 

P.1 

[km/h] P.2 [m] P.3 [m] 

P.4 

[km/h] P.5 [m] 

      

1 121.28 65.34 -1.46 98.45 -1.63 

2 118.97 102.61 -1.78 101.22 -1.94 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

n-1 126.73 95.34 -0.98 87.98 -1.16 

n 123.64 87.48 -2.12 97.61 -1.59 

 

The classifier then proceeds to add an extra parameter to a new copy of the Main 

Manoeuvre Database, thus linking each of the manoeuvres to their respective sce-

nario. Alongside it, it will generate a datasheet for each scenario (exemplified in 

Table 2 for an arbitrary scenario) detailing the interval bounds of each classification 

parameter based on the data contained inside them, like the maximum and minimum 

vehicles speeds of the manoeuvres belonging to a scenario. This helps us understand 

what is going on in the scenario, like if in the case the driver is driving at high speeds 

and is relatively close to a slow-moving truck, what does he tend to do. It is also a 

very useful tool when comparing different scenarios, as it aids the user in under-

standing how these differ from one another and how their characteristics affect the 

manoeuvres differently. 

Table 2. Datasheet regarding an arbitrary scenario 

Sce-

nario 

Num-

ber 

Classification 

Parameter 

Lower 

Limit 

Upper 

Limit 

 

    

8 

P.1: EGO Vehicle Speed [km/h] 123.58 126.32 

P.2: Distance from Overtaken Vehicle [m] 76.35 95.62 

P.3: EGO Vehicle Lateral Position [m] -1.53 -0.29 

P.4: Overtaken Vehicle Speed [km/h] 92.45 104.82 

P.5: Overtaken Vehicle Lateral Position 

[m] 

-1.81 -1.45 

Database Generation 

The process for building the different databases depends on the objective of the sce-

nario analysis, and in fact, two main classes of databases were identified and devel-

oped upon.  

One is designed for scenario comparison, while the second is targeted towards ana-

lysing manoeuvres belonging to the same scenario and study its spectra. 

Selection of Comparison Variables 

This selection depends on the aspects of comfort and/or the manoeuvre of interest. 

For this study, it was important to at least include those variables that described the 

driver’s aggressiveness and vehicle comfort. An indirect reference of the scenario 

characteristics (retrievable from the scenario datasheet) is presented through the in-
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clusion of the scenario number. It is also possible to apply specific criterions (toler-

ances) to filter out outliers or irrelevant manoeuvres. For example, for the previously 

referenced left-turn-light activation scenario, the parameters deemed important 

were: Cut-Out Distance Travelled; Cut-Out Duration; Cut-Out Jerk (Mean, Mini-

mum, Maximum, Peak to Peak); Cut-Out Lateral Acceleration (Mean, Minimum, 

Maximum, Peak to Peak). 

Once these have been defined, the system proceeds to extract and/or calculate (i.e. 

Average value of a time interval of a parameter’s time series) the requested infor-

mation from the Main Manoeuvre Database and constructs the requested database. 

Database for Comparison of Scenarios 

 
Fig. 4. Spider plot with percentile bands (25%, 50%, 75%) for a cut-out scenario 

A simple working principle was established: scenario comparison shall be performed 

through their respective standard manoeuvres, which are the result of averaging out 

the manoeuvres belonging to them. These represent the most likely course of action 

when meeting a specific set of conditions. Unfortunately, it is not entirely true, since 

these omit information related to dispersion, that can back up how representative 

these are, as well as putting in evidence how a changing a scenario parameter’s range 

of values may alter the randomness of the driver’s behaviour. This dispersion infor-

mation is represented through a statistical table displaying the requested percentiles. 

As a consequence, selecting percentile 50 results in the inclusion of the standard 

manoeuvre, and the dispersion information will get richer by every extra percentile 

that is included. 

A spider plotting tool (Fig. 4) was designed in order to display the information con-

tained in this statistical table. It allows for a visual multi-variable analysis between 

different scenarios in a very compact and friendly way. This type of plot was chosen 

since it is commonly used to compare and contrast different attribute between two 

or more objects (ex. racing games, when comparing two vehicles), making its com-

prehension easier. The key difference with the typical plots, is that this one can dis-

play an attribute’s dispersion by plotting the percentile data together. Each of the 

polygon’s contour lines represents a percentile requested by the user, and each of the 

axis running through the polygon’s vertices represents one of the scenario’s param-

eters. Therefore, the intersection between a contour lines and an axis, will indicate a 

given percentile of that parameter. This is very powerful, because the distance be-

tween these contours can indicate that parameter’s dispersion, and is what can help 
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visualize the effect a variation in the scenario’s defining parameters (ex. Fig. 2) has 

on the manoeuvre’s randomness. 

Database for Studying Individual Scenarios 

There are two approaches on the design of the databases for comparing manoeuvres 

belonging to the same scenario. The first is like before, but without generating the 

standard manoeuvre data, nor distribution information, and only extracting the ma-

noeuvres from the requested scenario. The second, allows the user to include time-

series from the Main Manoeuvre Database, and proceeds to generate a new database 

consisting of structures, rather than through a table. The first is aimed towards sta-

tistical comparison or value-to-value comparison, while the second is useful for 

comparing time histories and development of the different parameters, like the vehi-

cle’s longitudinal velocity or its lateral acceleration at different points along the tra-

jectory. 

Conclusions 

With the advancements of autonomous driving a robust and precise procedure to test 

the reliability and representativeness of driving scenarios is necessary, and the liter-

ature does not present an established method so far. This paper brings up the discus-

sion about how to organize and effectively divide manoeuvres to better understand 

the underlying phenomena of one driving condition: overtake manoeuvres in high-

ways. Starting from an already built experimental campaign, described in previous 

paper, this paper proceeded on the essential steps of manoeuvre classification and 

the final database generation. The result is a comprehensible and clear method to go 

from scattered points to visualization tools between driving scenarios. Future devel-

opments on the field might include the application of the method in other driving 

conditions, as well as the development of real-case testing for autonomous vehicles. 
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