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The recent technological advances underlying the screening of large combinatorial libraries in high-
throughput mutational scans, deepen our understanding of adaptive protein evolution and boost its
applications in protein design. Nevertheless, the large number of possible genotypes requires suitable
computational methods for data analysis, the prediction of mutational effects and the generation of
optimized sequences. We describe a computational method that, trained on sequencing samples from
multiple rounds of a screening experiment, provides a model of the genotype-fitness relationship.
We tested the method on five large-scale mutational scans, yielding accurate predictions of the
mutational effects on fitness. The inferred fitness landscape is robust to experimental and sampling
noise and exhibits high generalization power in terms of broader sequence space exploration and
higher fitness variant predictions. We investigate the role of epistasis and show that the inferred
model provides structural information about the 3D contacts in the molecular fold.

I. MAIN1

The continuous interplay between selection and variation is at the basis of Darwinian evolution. Recent advances2

in experimental techniques allow for a quantitative assessment of evolutionary trajectories at the molecular level3

[1]. From this point of view, the improvement in the construction of combinatorial libraries of proteins or other4

biomolecules and the high-throughput technologies to characterize their phenotypes [2, 3], provides one of the more5

stringent testing grounds for studying the genotype-phenotype evolutionary relation under an externally controlled6

selective pressure. Besides its evident theoretical appeal, this line of research also has a more practical interest: in7

Directed Evolution experiments, combinatorial libraries of sequences are routinely screened to select molecules with8

specific biochemical properties such as binding affinity towards a target (e.g. antibodies) [4], catalytic features (e.g.9

enzymes) [5–7], etc.10

The last decades have seen a tremendous boost in the availability of reliable high-throughput selection systems,11

such as: genetic [8], display systems (e.g. phage, SNAP-tag, mRNA, etc) [9], cytofluorimetry (e.g. FACS) [10], and12

micro-droplet techniques [11]. Still, a fundamental limitation is the number of variants that can be screened compared13

to the size of the sequence space of possible mutants. For example, a hundred residue protein has up to 20100 ' 1013014

possible variants, while the actual massive parallel assay libraries are typically able to handle ranges of variability15

within 108–1012, which can be fed to a single high throughput screening pass.16

Thanks to advances in sequencing technologies (especially in terms of reduced cost per read), machine learning17

methods for the inference of sequence-phenotype associations are starting to show their full potential. In particular,18

several massively parallel assays, known as deep mutational scanning (DMS) [2, 3, 12] are becoming available where19

typically a large-scale library of protein variants undergo repetitive cycles of selection for a function or an activity.20

The library is retrieved each round and the counts of each variant are determined by high-throughput sequencing.21

Such an increasing amount of sequence data, demands new algorithms to produce accurate statistical models of22

genotype-fitness associations.23

All the computational methods developed so far that make use of deep mutational scanning sequencing data to learn24

a genotype-fitness map utilize a supervised approach: a proxy of the fitness of the mutants tested in the experiment25

is computed from the sequencing reads and a machine learning method solves the regression problem [13–18] (with26
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the only remarkable exception of [19] that we discuss later). Here, we propose a novel method that shifts the learning27

approach from a supervised to an unsupervised framework.28

We learn a model that describes accurately (via maximum likelihood) the full-time series (successive rounds) of29

sequencing reads observed in the experiment.This strategy has the advantage of not reducing the information contents30

defining a function of the fitness that is often affected by sampling noise, but on the contrary, it uses the full information31

in the screening experimental data: the sequencing reads time series.32

The method consists of a probabilistic modeling of the three phases of each experiment cycle: i) selection, ii)33

amplification, and iii) sequencing (see Methods). In brief, what we observe are the reads coming from the sequencing,34

i.e., a sample of the library at a specific time step. The other phases are described in terms of latent variables referring35

to the number of amplified and selected mutants. The probability that a mutant is selected (e.g. by physical binding to36

the target) depends on the specific mutant sequence composition. On the other hand, we assume that the probability37

of a mutant to be amplified depends only on the fraction of mutants present after selection (ignoring possible sources of38

amplification selection such as codon bias that could however be taken into account in our framework using appropriate39

priors). We take into account both additive contributions from the individual residues and epistatic contributions in40

the form of pairwise interactions, although more complex multi-residue interaction schemes could be introduced.41

This probabilistic description allows us to define an overall likelihood to observe a time series of reads in an42

experiment given the parameters involved in the energetic contribution to the selection, i.e. the genotype-phenotype43

map. Optimizing the parameters to maximize the likelihood allows us to obtain an effective model of the fitness44

landscape.45

The method has the twofold aim of: (i) providing an accurate statistical description of the time series (in terms46

of panning rounds) evolution of the differential composition of the combinatorial library, (ii) predicting individual47

sequences, or rationally designed libraries of increased biophysical activity towards the sought target, that in particular,48

can be used in the recently proposed machine-learning-guided directed evolution for protein engineering [18].49

The method we propose gets inspiration from the Direct Coupling Analysis (DCA) methods developed to describe50

statistical coevolutionary patterns of homologous sequences [20]. This successful field has provided fundamental tools51

commonly applied in structure prediction pipelines [21] and more recently to provide mutational effect predictions52

[22–27]. Other approaches apply different machine learning schemes [28] on the same framework. The main difference53

between these unsupervised methods and the present work lies in the input data. The DCA approach learns a54

statistical description of a multiple sequence alignment of the protein family sequences, treating it as if it were an55

equilibrium sample drawn from a Potts model, while we deal with an out-of-equilibrium time series of screening56

experiments reads. Moreover, the broadness of the sequence space covered by the input data is different, with a57

protein family typically reaching an average Hamming distances of around 70% which results from the outcome of58

millions of years of Darwinian evolution, while in the DMS typical combinatorial libraries have at most 4-5 mutations59

away of the wild types in a few rounds of selection.60

This opens several questions on the relevance of the modeling. Notably on the role of epistatic interactions and the61

extent of applicability of the method as a generative model. The application of DCA methods has provided evidence62

on the importance of epistatic effects in shaping the homologs distribution over sequence space. Moreover, on the63

modeling side, it has shown the effectiveness of pairwise models [29, 30] to capture the epistatic contribution and64

provided useful three-dimensional structural predictions (residue contacts) [16, 17] .65

In the Results section, we investigate whether the same applies to the output of the experimental assay, first and66

foremost the reliability of the inferred epistatic interactions and the effectiveness to generate optimized sequences with67

respect to the selection process. Our findings are corroborated by the capacity to predict structural properties (e.g.68

residue contacts) from the inferred epistatic interaction, as similarly found in [16, 17].69

II. RESULTS70

First we assess the accuracy of the inference method to learn the genotype to fitness map by testing on five Deep71

Mutational Scanning (DMS) datasets, briefly described in the Data section. Also, we investigate the generalization72

power of the inferred fitness landscapes and the promising potential to generate sequences of high fitness. Finally,73

we examine the epistatic interactions learned, comparing them to non-specific epistasis due to a global non-linear74

genotype to fitness map [14], and analyzing the relevance of the epistatic terms to predict contacts between residues75

in the three-dimensional molecular structure.76

In a typical screening experiment, the selectivity [13] is a measure of the fitness of a protein mutant computed from77

the sequencing samples of the population. In its simpler form, it is the ratio of the sequence counts at two consecutive78

rounds. Slightly different definitions of selectivity are present in the literature [13], aiming to reduce the impact of79

experimental noise on the computed mutants fitness.80
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There are several sources of noise that affect the reproducibility of a deep mutational scanning experiment. Se-81

quences that are present in low numbers are more susceptible to statistical fluctuations. This can be due to the uneven82

initial library composition that can change between different realizations of the same experiment. In addition, the83

attempts to cover a large sequence space can generate low replicates per mutants, since the availability of particles to84

carry the mutants is limited (e.g., in practice no more than about 1013 phages can be manipulated). Moreover, the85

sequenced mutants represent a very small sub-sample of the total diversity of variants in the experiment. Therefore86

the reads statistics might not reflect fairly the underlying variant abundances. The magnitude of this sampling error87

depends on the mutants coverage that we define as the ratio of the total number of reads over the number of unique88

mutants, i.e. the number of reads per variant in a hypothetical uniform distribution case. In Table (I), we list89

the mutants coverage for each used data set. The sampling noise affects both the trained model and the selectivity90

measure but, interestingly, as we see later has a more prominent effect on the latter.91

Validation of mutants fitness predictions92

To validate the inferred genotype-phenotype map we do not have access to direct high-throughput measures of93

the binding energy with the target. Nevertheless, we can assess the reconstructed fitness landscape comparing the94

predicted binding energy with out-of-sample sequence selectivities. To do so, we perform a leave-one-out 5 fold cross-95

validation, i.e, masking a fifth of the mutants in the library from the learning data, and testing on the remaining ones.96

To mitigate the effect of the sampling noise on the selectivity measure, we filter out sequences with high selectivity97

error (see Methods for details) from the test set. In figure (1), we show the correlation of the predicted binding energy98

and the log selectivity for each examined data set. In all experiments, we obtain an excellent agreement between the99

out-of-sample model prediction and the selectivity measure based on read counts (i.e. a proxy of the binding energy).100

The correlation between the two values steadily increases as we filter out more noisy sequences.101
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FIG. 1. Overall model performances. Correlation of the predicted binding energies E and the log-selectivity θ computed
from the sequencing reads. a) Scatter plot of E vs θ for the in-sample (blue dots) and out-of-sample (orange dots) sequences
in the Araya et al. dataset. The Pearson correlation is ρ = 0.81, after filtering out the noisier data (fraction of used data
f = 0.05). b) Pearson correlation coefficient between E and θ for different filtering thresholds on sequence errors in the Araya et
al. dataset. On the x-axis, the fraction of the sequences used to compute the correlation, a lower fraction of sequences account
for a more severe filter on noisy sequences and provide higher correlations. The comparison of the in-sample and out-of-sample
sets (4/5 and 1/5 of the mutants respectively) shows a minor overfitting bias. c) Comparison of the Pearson correlation curves
(same of panel b) for the five datasets. Notice that the higher the mutants coverage of the dataset (Olson et al., Wu et al.)
higher the correlation reached, see table (I)

As previously pointed out, in contrast to other approaches that fit sequence selectivities, we train a model directly102



4

on the sequencing reads, maximizing the model likelihood of the full set of read counts from the experiment and103

obtaining a statistical description of the differential composition of the combinatorial library across rounds. This104

allows us to obtain an estimate of the binding probability more reliable and robust against the experimental noise.105

To prove this statement, we create a decimated training set by selecting in each round of the experiment a random106

subset of the reads, and for each training-set realization we learn the model parameters. We perform the test on the107

Olson et al. dataset, which has a high mutants coverage (∼ 500).108

The results are shown in figure (2): from panels (a-b) we clearly see that the reliability of the selectivity decays109

faster as the decimation ratio increases, compared with that of the model which provides accurate predictions also110

in the highly under-sampled regime. In other terms, the selectivity of a sequence derived from an under-sampled111

dataset is a worst statistical predictor of the full-dataset selectivity compared to our model predictor. Even if we112

use the correction strategy outlined by [13], the selectivity measure is severely impacted by sampling noise, whereas113

the predicted fitness landscape inferred by our model is more robust to under-sampling. Finally, the measures of114

selectivity relies upon the presence of multiple reads of the same mutant across the rounds, while our approach seems115

to be less impeded by this limitation.116

Generalization extent of the inferred fitness landscape117

The fitness landscape refers to the selection process of a specific phenotype of a protein. We investigate to which118

extent the model is able to extract information about general features of the landscape that can be used to provide119

reliable predictions on different experiments, different energy spectra or different sequence space regions with respect120

to the training ones.121

An intriguing question is to what extent different experimental settings can have an impact on the inferred pa-122

rameters, reducing its generalization power, or whether we can use the learned map to predict new experimental123

outcomes.124

Fowler et al. [31] and Araya et al. [32] published two experimental datasets, in which the hYAP64 WW domain125

is selected for binding against its cognate polyproline peptide ligand. In both cases, most variants in the library are126

on average two a.a. substitutions away from the wild-type sequence. Still, the initial libraries of the two experiments127

have only about 50% sequences in common, with the rest of the sequences being unique to each dataset. The model128

trained on one dataset (discarding the common sequences) provides accurate predictions of the empirical selectivities129

observed in the other experiment, as shown in panel (a) of figure 2. Interestingly when the common sequences are130

taken into account, the binding energies inferred from the two datasets show better correlations than the selectivities.131

This suggests that the inferred energy is more reproducible and robust to noise, and hence is a better estimator of132

the true fitness.133

We repeated the same analysis training on the Olson et al. dataset and testing on the Wu et al. dataset, as they134

both used the IgG-binding domain of protein G (GB1) and performed the selection for binding to immunoglobulin G135

fragment crystallizable (IgG-Fc). In this case, we train on all the sequences at Hamming distance 1 and 2 from the136

wild-type (from the Olson et al. dataset) and we ask whether the model can make predictions of sequences three or137

four mutations away from the wild-type (from the Wu et al. dataset). The results in figure (4) of the SI show that138

the model is still able to predict the fitness landscape for more distant mutants (Pearson correlation of ρ = 0.67 for139

Hamming distance 3 and ρ = 0.55 for Hamming distance 4), although these predictions deteriorate as the distance to140

the sequences covered in the training set increases.141

Can we learn from sequences in the low binding energy-band a predictive model of the high binding energy-band142

of the fitness landscape? This is a relevant question if we want to exploit the model to generate, for instance, better143

binders not originally present in the experiment. To gauge the performance of the model for this task, we use the144

sequences with low selectivity as training set, and the sequences with higher selectivity as the test set.145

In contrast to the previous results where the out-of-sample sequences were extracted from the same distribution as146

the in-sample, in the present computation we selectively learn from low-medium binding energy sequences while we147

test on the top binders. As shown in panel (c), figure (2), the predictions are in excellent agreement with the data,148

showing the capacity to learn the fitness landscape of high fitness region very accurately.149

Epistasis150

The study of the role of intragenic epistatic interactions in shaping the fitness landscape is a subject of intense151

research, different contrastive results have been largely debated in the scientific community [4, 14, 33–35]. Although152

on the evolutionary scale it is clear that the epistasis have an important role in shaping the sequence ensemble of153

protein family domains across homologs, on a more local scale, in the selection of local mutations around a wild type154
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FIG. 2. Model robustness and generalization power. In panels (a-b) is shown the robustness of the model inference
with respect to sampling noise. We reduce the mutants coverage decimating randomly the reads in the Olson et al. dataset,
obtaining datasets with different numbers of total reads. We use them to infer the binding energy and to compute the selectivity
after decimation and we compare them with the full dataset selectivity. In panel (a) we show the Pearson correlation coefficient
between the full dataset selectivity and the predicted energy of the model and the decimated selectivity on a test set, as a
function of the coverage of the decimated datasets. In panel (b) we show the correlations of the two measures with the full
dataset selectivity for different thresholds of filtering of mutants errors on the test set. While the Pearson correlation between
the decimated dataset selectivity and the original one reduces drastically upon increasing the decimation rate, the predicted
binding energy maintains always a high correlation with the test-set selectivity. c) Correlation of predicted energies E and
empirical selectivity θ, when the model is trained on one dataset (Araya et al.) and tested on the outcome of a different
experiment(Fowler et al.). On the x-axis, the fraction of the sequences used to compute the correlation after filtering on error.
The blue curve refers to the model trained on sequences that are not common to the two datasets. In the inset a scatter plot
of E and empirical log-selectivity for a particular choice of filter threshold (data fraction f = 0.05, correlation ρ = 0.91). The
yellow curve corresponds to the correlation between inferred energies of the sequences common to the two datasets while the
green one refers to the correlation between selectivity compute on the same sequences in the two datasets, interestingly is lower
than the previous correlations suggesting that energy is a more reproducible quantity than the empirical selectivity itself. d)
Capacity of the model to predict best binders. Correlation of predicted energies E and empirical selectivity θ trained on low
selectivity mutants and test on the top selectivity ones. The high correlation in the test set and the capacity to rank properly
the unseen best binders suggest the promising application of the method as a generative model.

sequence for binding a target, is debated whether such effects are involved and to which amount. We investigated155

whether a model without epistasis, hence where the mutation effects are independent in each residue and provide156

additive contributions to fitness, can reach the same description accuracy of the experiments. See Methods for details157

on the independent site model and the pairwise epistatic one.158

The five datasets considered in this study vary with respect to the broadness of sequence space sampled (how far159
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from the wild type are the mutants in the library) and the length of the mutated part of the sequence, as summarized160

in table (I).161

The two opposite limits are the Olson et al. dataset where the full length of the gb1 (55aa) is mutated only by a162

maximum of two amino acids (long sequence, limited broadness) and the Boyer et al. and Wu et al. datasets where163

only four amino acids are considered but the libraries cover a significant fraction of sequence space. The Araya et al.164

and Fowler et al. datasets lay in an intermediate regime.165

Panels (a-c) of figure 3 show the comparison of the performance of the independent site model and the pairwise166

epistatic model: the broader the sequence space covered in the experiment, the more crucial becomes the inclusion of167

the epistatic interactions in the model for a proper description of the experimental outcome.168

Recent papers have pointed out that epistatic interactions can arise spuriously from non-linearities in the genotype-169

phenotype map [14, 33].170

Otwinowsky proposed a global epistatic model that infers the parameters of an independent site model together171

with the nonlinear shape of the map. This method provides a good prediction of the fitness in DMS experiments172

(See figure (5) in SI for the performance on all the datasets), considering also the lower number of parameters used.173

Nonetheless, performing the same analysis to test robustness and generalization highlighted in the previous paragraph,174

the global epistasis model appears to be sensitive to sampling error (panels (e-f) of figure 3) and fails to predict higher175

fitness mutants when trained on the low fitness ones (panel (f) of figure 3)176

In recent studies, it has been demonstrated that the epistatic interactions, quantified from deep mutational scanning177

experiments, can be used to determine 3D contacts in the molecular structures [15–17]. This finding provided a strong178

support to the idea that the observed epistatic interaction does not come only from non-specific artifacts due to the179

non-linearity of the fitness map, but rather reflects the interplay of structural stability and functional binding of the180

selection process in the experiment.181

We investigate whether and to which extent the proposed model provides contact predictions that can be used for182

three-dimensional structure modeling, on the GB1 domain of protein G using the Olson et al. DMS experiment. To183

test the predictions we use a crystal structure of the protein in complex with the Fc domain of human IgG (PDB id184

1fcc). As a measure of the epistasis between two positions we use the average difference in binding energy between185

the sum of single mutations and the double mutants, similar to the score used by [36] (see the methods section for186

details). We identified the most epistatic pairs by sorting all of the pairs of positions by order of decreasing epistatic187

score.188

In figure 3 panel (g) we show the ROC curve of the predictions compared to the weighted Mutual Information (a189

non-parametric measure defined in equation (S.10) ). In panel (h) are shown the first 20 predictions and the true190

contact maps. We note that the MI predictions are strongly clustered around the binding surface, while the model191

contact predictions are distributed all over the structure, making them more useful for 3D structure modeling. In the192

supplementary material, we report the same structural analysis for the WW domain, using the dataset from Fowler193

et al. and Araya et al..194

III. DISCUSSION195

Despite advances in high-throughput screening and sequencing techniques, investigating genotype-phenotype rela-196

tionships remains a substantial challenge due to the enormous size and large dimensionality of the space of possible197

genotypes. We propose a computational method to obtain a model of the genotype to fitness map, learned from the198

sequencing data of a deep mutational scanning experiment. The novelty of the method consists of an unsupervised199

approach that uses a probabilistic description of the full amplification-selection-sequencing phases of the experiment.200

One key element lies in the inclusion of pairwise epistatic interactions in the modeling of the specific mutant selection,201

nevertheless we remark that in the same framework other modeling schemes are possible.202

To investigate the properties of the inferred fitness landscape, we used five DMS experiments related to two well-203

studied proteins, the WW domain part of the YAP65 protein, the Gb1 domain of the IgG-binding protein, and204

the variable part of a human antibody, all selected for binding to cognate ligands. These experiments differ in205

several technical characteristics, such as library generation and expression, length of the mutated part of the protein,206

broadness of the initial library and sequencing coverage per mutants.207

First, we performed a cross-validation test obtaining accurate selectivity predictions for all the five datasets. Second,208

we investigated the generalization power of the model. We learned on one experiment and predicted correctly the out-209

come of a second one with same wild type protein and binding target, obtaining a better experimental reproducibility210

than from the mutant selectivities themselves. Remarkably the model shows the capacity to predict lower binding211

energy spectra, we masked the higher fitness mutants from the training and we recover the correct ranking and fitness212

of the best binders. Moreover, we noticed that the predicted fitness landscape is more robust to experimental noise213
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FIG. 3. Epistatic Effects. The comparison of the independent site model and the epistatic model is displayed in panels
(a-c). The three panels refer to different characteristics in the broadness of the screened library and the length of the mutated
part of the protein sequence. From left to right broadness increase and the number of the mutated residues reduce (see table
I. For each dataset are shown the correlation of the epistatic model (upper line) and the independent site model (lower line)
and is highlighted in gray the gap between the two. Broader the library, more distant mutants from the wild type are screened
and more the epistatic effects become relevant. In panels (d-f) are shown the robustness and generalization analysis (same
as depicted for the epistatic model in figure 2) of the global epistasis model [14]. The panels (d-e) display the reduction of
the accuracy of GE model when lowering the mutants coverage. In panel (f), the low correlation between GE prediction and
selectivity for high fitness mutants, depict the deficiency to generalize the prediction to lower binding energy spectra. The
panels (g-i) show the structure contacts predictions for GB1 domain form the Olson et al. DMS experiment (tested on the
crystal structure PDB id: 1fcc). Panel (g): the ROC curves of the predicted contacts with the epistatic score computed from
the inferred model and the weighted Mutual Information. Panel (h): Contact map of the first predicted contacts. In gray-scale
is displayed the distances between residue heavy atoms, in blue are highlighted the residues on the binding surface (less than
3Å to the Fc domain of human IgG). The green dots are the true positives (heavy atoms distance less than 8Å) and the reds
are false positives. In the upper triangular part are shown the Mutual Information predictions while in the lower triangular
part the Epistatic score. The MI predictions are strongly clustered around the binding surface while the model predictions
cover the whole structure. Panel (i) The same predictions on the molecular structure of G protein in complex with the Fc
domain of human IgG.

than the selectivity measures (the fitted quantity in the supervised approach). To demonstrate this we performed a214

decimation of sequencing reads and assess the detrimental in the predictions.215
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Finally, we investigated the reliability of the epistatic interactions in the model. Our results show that when216

increasing the library’s sequence diversity, epistatic interactions become more important to obtain a good fit to the217

experiments. In addition, we can extract from the inferred epistatic interactions, structural information of the 3D218

contact proximity.219

Recently it has been pointed out that non-linearities in the genotype to fitness map can produce spurious epistatic220

effects, namely non-specific epistasis or global epistasis [14, 33]. This suggests a limited magnitude of specific epistatic221

effects in shaping the fitness landscape in local screening assays. We compared the two hypothesis and our analysis222

suggest that, while the spurious global epistasis could have a prominent role where the experiment is selecting complex223

phenotypes (among others: cell growth rate [37, 38] or a proxy of expression levels [39]), in the set of experiments224

we have analyzed, where the selection is upon the binding affinity to a target molecule, the specific epistatic effects225

account for real genetic interactions.226

All these findings suggest that the presented unsupervised approach has the promising application as a generative227

model to identify novel high-fitness variants and can be included in a machine-learning-assisted Directed Evolution228

framework where the computational part are included in the cycle to design the combinatorial libraries to be screened229

[40].230

IV. METHODS231

Inference232

We consider a set of experimental rounds of selection t ∈ 0, 1, . . . , T , with t = 0 referring to the initial combinatorial233

library. At round t, there are N t
s phages displaying sequence s. The number of phages that will be selected for the234

next round can be taken as binomially distributed with mean psN
t
s , where ps is the selectivity of sequence s. Since a235

large quantity of phages is present initially, we can approximate this as the deterministic selection of a fraction psN
t
s236

for each sequence. In the next step, the selected pool is thus amplified to reach the initial population size. Since a237

small quantity of carriers is selected, this step is modeled as a stochastic multinomial distribution,238

P (Nt+1|Nt,p) =
N t!∏
sN

t+1
s !

∏
s

(
psN

t
s∑

σ pσN
t
σ

)Nt+1
s

, (t = 0, . . . , T − 1) (1)

where N t =
∑
sN

t
s is the total number of particles carrying sequence s at round t, and a bold symbol such as Nt

239

denotes the set of all N t
s for all sequences. The full experiment consists of iterating these two steps.240

Finally, at selected rounds, a sample of the amplified population is sequenced. In the limit of large enough sample241

size, we assume that the read counts are approximately proportional to the frequencies of sequences in the population242

(see Appendix for details).243

Under these assumptions, it follows that the likelihood of the time-series {N0,N1, . . . ,NT } is given by the product244

of (1) from t = 0 to t = T − 1.245

Genotype to fitness map246

The selection probabilities can be modeled by a two-state thermodynamic model (bound or unbound), ps =247

1/(1 + eEs−µ), where Es is the binding energy of sequence s and µ is the chemical potential, which depends on248

the concentration of binding target presented in the experiment [41].249

As a function of sequence, Es is a genotype-to-phenotype mapping that assigns a biophysical parameter (binding250

energy) to each sequence. We assume that Es decomposes into additive contributions from individual a.a. species in251

the sequence, plus epistatic contributions from interacting pairs of letters:252

Es = −
∑
i

hi(si)−
∑
i<j

Jij(si, sj) (2)

The problem becomes that of inferring the parameters hi(a), Jij(a, b) by maximizing the likelihood (1) over all253

rounds. In addition a regularization (e.g. an `2-norm) term can be included to prevent over-fitting.254
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Rare binding approximation255

In typical experiments, the fraction of selected phages is very small, implying that ps � 1 for most sequences. This256

suggests a rare binding approximation, ps ≈ eµ−Es . Under this approximation, the log-likelihood simplifies to:257

L =

T−1∑
t=0

∑
s

Lts, Lts = N t+1
s ln

(
N t
se
−Es∑

σ N
t
σe−Eσ

)
(3)

In this limit, the log-likelihood does not depend on µ anymore. It also makes L a concave function of the energies258

Es, and hence of the fields hi(a), Jij(a, b) that we intend to learn. Since our algorithm consists in finding the259

maximum of (3) with respect to these parameters, concavity guarantees that the solution is unique and that it can be260

found efficiently with numerical optimization routines. In our implementation we found that the L-BFGS algorithm261

performed well.262

Independent site model263

Due to the rare binding approximation, when in the energy terms are considered only the h parameters contribution,264

each residue contributes independently and there are no epistatic effects as the amino acid changes impact additively265

to the fitness, ps ≈
∏
i ehi .266

Empirical selectivity267

To compute empirical selectivities, we performed a linear regression of parameters θs, α
t, in a model of the form:268

lnN t
s − lnN t−1

s = θs + αt + εts (4)

where θs is the log-selectivity, αt an amplification factor and εts measurement noise. We performed a weighted least269

squares regression, assuming approximate independent variances 1/N t
s for the terms lnN t

s , given that counts follow270

Poisson distributions [13]. We also estimated error bars for the selectivities θs by standard linear regression formulae271

[13].272

To mitigate the effect of low counts, we add a pseudo-count of 1/2 to all counts before computing the empirical273

selectivities and before carrying out the inference [13].274

Structural contact predictions275

The presence of a large epistatic effect between site positions is related to the three-dimensional proximity of the276

residues in the protein fold [20]. To quantify the strength of the epistatic effect we computed the difference between277

the fitness effect of double mutations and the sum of the effects of the two related single mutations, hence the expected278

additive fitness in absence epistasis. The genotype to fitness map in eq. (2), the fitness of a sequence is minus the279

energy f(s) = −E(s).280

Considering a sequence s, the double mutant vij in position i and j and the single mutant vi (and vj resp.) in281

position i (and j resp.), we define the epistatic score as:282

Sij(s, vij) = ∆f(vij)−∆f(vi)−∆f(vj) (5)

where ∆f(vij) = f(vij) − f(s) = −E(vij) + E(s) = log(P (vij)/P (s)) and similarly for ∆f(vi) and ∆f(vj). We283

substitute in Sij and we average over each sequence s in the dataset and for each possible double mutants, obtaining:284

Sij =
〈

log

(
P (s)P (vij)

P (vi)P (vj)

)〉
s,v

=
〈
E(vi) + E(vj)− E(s)− E(vij)

〉
s,v

(6)
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Datasets285

To assess the inferred genotype-phenotype map we used five datasets of mutational scan studies [2] that assess286

experimentally the mutational landscape of three different proteins. In the Olson et al. dataset [42], the effects of all287

single and double mutations between all positions in the IgG-binding domain of protein G (GB1) are quantified.288

In this study, a library of all possible single and double amino-acid substitutions of the 55 sites of the GB1 protein289

domain is screened in a single round for the binding to an immunoglobulin fragment (IgG-Fc). The same protein and290

target pair were investigated by [43], who selected four positions in GB1 and exhaustively randomized them. Two291

more datasets come from [31] and [32], where a WW domain was randomized and selected for binding against its292

cognate peptide.293

In the two studies, the wild type protein and the target are the same and, interestingly, the initial randomized294

libraries in the two datasets have about half of the sequences in common.295

Finally, in [44], four positions of a variable antibody region are fully randomized and selected for binding against296

one of two targets: polyvinylpyrrolidone (PVP) or a short DNA loop with three cycles of selection.297

The four positions are embedded into one of 23 possible frameworks. The main characteristics of the biological298

system and of the experimental settings are summarized in table 1. While in Olson et al. [42] the high mutant299

coverage (500) allows us to obtain a low sampling noise, the main limitations are due to the covered sequence space,300

limited to a maximum Hamming distance of two from the wild type sequence. In Boyer et al. [44] the fraction of301

covered sequence space is significant (16% of all possible sequences) and there are multiple rounds of selection but302

the obvious limitation comes from the small length of the mutated part of the sequence (4 a.a).303

Compared to the previous datasets, the Fowler et al. and Araya et al. datasets have intermediate features where304

the covered sequence space is wider than in Olson et al. (average distance 3.4 and 4.3) and the number of selection305

rounds are respectively 3 and 4, but the sequencing depth is lower showing greater sampling noise.306

TABLE I. Different deep mutational scanning datasets used in the paper to evaluate the performance of the model.

Reference Protein Target
Length
mutated
part

Selection
rounds

Sequenced
time
points

Unique
mutants

Average
distance from
wild type

Mutant
coverage

Olson et al. (2014) GB1 IgG-Fc 55 1 2 536833 2 588
Wu et al. 2016 GB1 IgG-Fc 4 2 2 157161 3.8 422
Fowler et al. (2010) WW domain peptide 25 6 3 572076 3.4 14
Araya et al. (2012) WW domain peptide 34 3 4 940730 4.3 11
Boyer et al. 2016 Ab IgH PVP, DNA 4 3 3 28195 3.5 4
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