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ABSTRACT Planning tools with excellent accuracy along with precise and advance estimation of the quality of

transmission (QoT) of lightpaths (LPs) have techno-economic importance for a network operator. The QoT metric

of LPs is defined by the generalized signal-to-noise ratio (GSNR) which includes the effect of both amplified

spontaneous emission (ASE) noise and non-linear interference (NLI) accumulation. Typically, a considerable

number of analytical models are available for the estimation of QoT but all of them require the exact description

of system parameters. Thus, the analytical models are impractical in case of un-used network scenarios. In this

study, we exploit an alternative approach based on three machine learning (ML) techniques for QoT estimation

(QoT-E). The proposed ML based techniques are cross-trained on the characteristic features extracted from the

telemetry data of the already in-service network. This new approach provides a reliable QoT-E and consequently

assists the network operator in network planning and also enables the reliable low-margin LP deployment.

Keywords: Cross-train Machine Learning; Quality of Transmission Estimation; Generalized OSNR.

1. INTRODUCTION

During the past two decades the dramatic increase in the global IP traffic, urged by the introduction of 5G

technology along with the expansion of bandwidth hungry applications; such as high definition (HD) video

and virtual and augmented reality (VR and AR) contents, is forecast for the coming years [1]. These recent

trend of growing traffic generated much research interest towards the flexible and dynamic optical network

architecture. In the prosecution of this, technologies such as elastic optical network (EON) and software-defined

networking (SDN) are introduced in the past few years. The classical feature of EON and SDN paradigm in

the optical networks is dynamic and adaptive provisioning of network resources both in control and data plane.

In the data plane, the EON paradigm [2] has explored a completely unique optical network architecture able to

provision LPs based on the actual traffic demands. This flexibility makes the LP provisioning problems much

more challenging as compared to traditional fixed-grid wave-length division multiplexing (WDM) networks.

Apart from this in the control plane, SDN provides on-demand configuration and virtualization of a network.

Furthermore, the dynamic configuration of the optical network offers a profusion of design parameters such

as single/multi carrier transmission, baud rate, adaptive modulation format, forward error correction (FEC) and

adaptive channels spacing provides good degree of versatility to the network operator during the planning phases.

In this reference, the preliminary QoT-E of the LP is significantly important for the planning phases of optical

networks. Generally, a considerable number of analytical models are available for QoT-E, but all of them require

the exact description of system parameters. Thus, the analytical models are nonfunctional in the case of un-used

network scenarios, i.e., the networks where the operator doesn’t have an exact knowledge of the working point

of network elements (gain and noise figure ripples in amplifiers, insertion losses, etc...)

In this context, an alternative approach has been recently investigated based on the ML techniques which has

the potential to estimate the QoT of the LP of un-used network using the characteristics features extracted from

telemetry data of already in-service network. For a state of the art WDM optical transport based on coherent

optical technologies, QoT is well assessed by the generalized SNR (GSNR), which includes the effect of ASE

noise and NLI accumulation [3]. Generally, the QoT parameter is the the most challenging parameter during

planning phase owing to the uncertainties on the knowledge of the exact working point of network elements

imply uncertainty in QoT-E. To counteract this, we use three data-driven ML methods for an accurate low

margin QoT-E of LP prior to its actual deployment. A ML paradigm has already been expertly used in the

optical networks; consider [4], [5], [6], [7] for network performance monitoring, [8], [9] for QoT prediction

using ML approach. In [10] the authors used ML technique for controlling optical line system (OLS). An overall

survey of ML applied applications in optical networks are discussed in [11].

The major difference between the previous literature and the present work is that we exploit a more realistic

approach by using telemetry data of GSNRs responses to specific traffic configurations of LPs of the already

in-service network in an open environment. The telemetry data are generated synthetically by perturbing the

nominal working point of network elements of in-service network. Exploiting this telemetry data of already

well developed used network, we cross-train the proposed ML techniques to estimate the QoT of an un-used

network. The cross-trained ML techniques empowers the network operator to obtain a reliable and accurate

QoT-E that can be used for planning, control and reliably deploy the LP with a minimum margin.
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2. SYSTEM MODEL & DATA GENERATION

For mimicking the telemetry data of in-service network, a reliable and well-tested open source GNPy library

is used for physical layer abstraction [12]. This library outlines an end to end simulation environment which

develop the network models for physical layer, using this capability we configure GNPy to mimic the telemetry

data. A typical SDN empowered backbone optical network is considered in which edges are modeled by OLSs

that comprise of fibers and amplifiers while nodes are defined as re-configurable optical add-drop multiplexer

(ROADM) sites. The given OLSs are supposed to operate at the nonlinear-propagation optimal working point

and the random behavior of physical layer is considered through amplifier gain ripple. The merit of QoT i.e.,

the GSNR of any candidate LP routed through a particular OLSs is given by 1/GSNR =
∑

n
1/GSNRn,

where n is the number of OLSs contributing in the routing of particular LP. The GSNR metric of candidate

LP is given by Equation. 1, where PRx is the power of the channel at the receiver, PASE is the power of the

ASE noise and PNLI is the power of the NLI.

GSNR =
PRx

PASE + PNLI

, (1) MSE =

n∑

i=0

(GSNRp
i
−GSNRa

i )
2

n
, (2)

In addition to this, fiber impairments such as fiber attenuation (α = 0.3 dB/km), dispersion (D = 16 ps/nm/km)

and insertion losses are also considered. In order to make simulation more realistic, the statistics of insertion

losses are determined by an exponential distribution with λ = 4 as described in study [13]. The considered

OLSs carry only 76 channels over the standard 50 GHz grid on the C-band, having total bandwidth close to

4THz due to the limitation of computational resources. We do not expect substantial difference in results when

considering standard 96 channels on the entire C-band. We supposed to rely on transceivers at 32 GBaud, shaped

with a root-raised-cosine filter. The amplifiers in the OLSs are configured to work at a constant output power

mode of 0 dBm per channel. All channels are operated at their optimum launch power ranges (0-0.006) dBm

and all network links are supposed to operate on standard single-mode fiber with average span length of 80

km. In-line amplifiers are supposed with noise figure uniformly distributed for each amplifier in a range of (6

to 11) dB along with uniform random gain ripple with 1 dB variation.

Figure 1: (a) European Network Topology; (b) USA Network Topology; (c) Machine Learning Black-Box

After finalizing the network configuration, the most delicate part is the spectral load of simulated links which

in the proposed work is the subset of 276, overall possible combinations of spectral load given by 76 channels.

Among this subset each source-to-destination (s –> d) pair has 1024 realizations of random traffic ranging

from 34% to 100% of total bandwidth utilization. The data set is mimicked against the European Union (EU)

Network Topology shown in Fig. 1a, which is used as already in-service network and for an un-used network

case the required data set is generated against the USA Network Topology shown in Fig. 1b. The configuration

used for an un-used network scenario is the same as for the former in-service network case with the exception

of different amplifier gain ripple and noise figure, which is normally the most random part in the OLS. In order

to mimic this behaviour, GNPy is configured to generate 4096 data realizations for 4 (s –> d) pairs of in-service

EU Network and 35840 data realizations against 35 (s –> d) pairs of an un-used USA Network.

3. VISUALIZE MACHINE LEARNING BLACK-BOX

The proposed models cognate the features and labels of the candidate LP of the in-service network using ML.

The manipulated parameters used to define the features for ML models include received signal power, NLI, ASE,

channel frequency and distance between source to destination node, while the exploit label is manipulated by

GSNR parameter of the candidate LP depicted in Fig .1c. The total number of input features for proposed ML

models consists of 380 entries, as we have 76 entries against each manipulated parameters (76 X 5 = 380). In

this study, the three ML based models are build-up using high level python application program interface (API)

of open source ML library called scikit-learn (SKL). SKL provides variety of algorithms for ML tasks ranging

from classification, regression, dimensionality reduction, and clustering. Moreover, it has also some modules for

features extraction, pre-processing data and evaluation of the models [14]. The proposed SKL based ML models
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are evaluated by mean square error (MSE) as a loss function expressed in Equation. 2, where GSNRa
i and

GSNRp
i

are the actual and predicted values of the any candidate channel for the ith spectral load respectively

and n is the total number of realizations in the test data set.

4. MACHINE LEARNING MODELS

In the present work, the three ML based models are developed using python API of SKL library. The models

are listed as decision tree regressor (DTR), random forest regressor (RFR) and multi-layer perceptron regressor

(MLPR) [14]. The models are configured for training, validation and testing by the conventional rule 70/15/15

having training-steps of 1000, in order to give the models sufficient intelligence. Each proposed model is

cross-trained by 4 different paths of EU-Network; Amsterdam-Berlin, Brussels-Bucharest, Frankfurt-Istanbul,

Vienna-Warsaw having 4096 realizations and is tested explicitly on 35 different paths of un-used USA-Network

having 35840 realization depicted in Fig. 3.

4.1 Decision Tree Regressor

The proposed DTR constructs a tree based on several decisions inferred from the data features. The present

DTR consists of three basic modules; pre-processing, training and testing. Before passing the data to train module

of the DTR, the data set is standardized using pre-processing module [15]. After standardizing the data set, it

is moved to the training module where DTR is cross-trained on 4 different paths of in-service EU-Network.

The training module has two main basic tuning parameters; min samples leaf and max depth. In order to get

the optimum values of these parameters in the present scenario, considering the computational time and model

over fitting, min samples leaf = 3 and max depth = 100 are selected. Soon after cross-training, the test module

start testing 35 different paths of un-used USA-Network.

Figure 2: Distribution of ∆GSNR for SKL Based Learning Methods

4.2 Random Forest Regressor

The RFR model combines several decision trees, cross-trained separately on randomly selected subsets of the

training data set using Bagging technique [15]. The proposed RFR also consists of same three basic modules

exactly like DTR; pre-processing, training and testing. The standardized data set after pre-processing is moved

to the training module, where RFR is trained on 4 different paths of in-service EU-Network. Similar to DTR

parameter tuning, we also do the same for RTR and decide min samples leaf = 3 and max depth = 100 in

the particular simulation scenario. After cross-training, the RFR test module start testing 35 different paths of

un-used USA-Network.

4.3 Multi-layer Perceptron Regressor

The MLPR has generally two or more layers of perceptrons which form a directed acyclic graph, where each

layer of MLPR is fully connected to the subsequent layer. The proposed MLPR also consists of three basic

modules; pre-processing, training and testing same. The standardized data after pre-processing is moved to the

training module where MLPR is trained on 4 different paths of in-service EU-Network. The train module of

MLPR is configured with back propagation algorithm along with default stochastic gradient descent (SGD)

optimizer having learning rate = 0.01 and L2 regularization = 0.001 [16]. In addition to this, MLPR consists

of 3 hidden layers along with 20 neurons for each hidden layer, having relu as activation function that allows

translation of the given input features into the prediction of label of our point of interest with less complexity

[17]. After cross-training, the test module start testing 35 different paths of un-used USA-Network.

5. RESULTS AND DISCUSSION

In this section, we exploit the prediction performance of the proposed three ML models; DTR, RFR and

MLPR. The assessment of the proposed ML models are done by calculating the prediction error ∆GSNR,

where ∆GSNR = GSNRPredicted - GSNRActual. In Fig. 2, a prediction error metric is plotted for DTR,

RFR, and MLPR against the test samples of on channels realization only. For the given simulation scenario, DTR

is unable to find underlying relationship and irregularities. On the other hand, RFR took average of various trees
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Figure 3: Distribution of ∆GSNR for the simulated links of USA Network using MLPR

instead of choosing randomly subsets of the features. So, its overall performance is much better than DTR. On

the other hand MLPR performed very well due to its cognitional potentiality provided by internally configured

neurons as compared to DTR and RFR. The results are verified by observing the mean (µ) and standard deviation

(σ) of ∆GSNR against each proposed model in Fig. 2. Focusing on the MLPR after observing µ and σ of

∆GSNR, it is quite obvious that MLPR is the best learning methods in the present simulation scenario. We

further analyze and elaborate the results related to MLPR by showing the beans-plot in Fig. 3, the ∆GSNR
distribution of all the test paths of un-used USA Network. In Fig. 3, the out bound values of ∆GSNR is also

depicted along with the µ value (red dot in each bean) of ∆GSNR for each test path.

6. CONCLUSION

In summary, we proposed and exploit the ability of three different ML models for QoT-E, considering the

scenario of cross-train ML models on telemetry data of in-service EU Network and tested on completely un-used

USA Network. The proposed ML models are developed by using higher level APIs of scikit-learn library. The

data set used in this particular scenario is generated synthetically using a reliable and well-tested GNPy library.

Exploiting the ability of cross-trained MLPR, developed by using scikit-learn performs better than RFR and

DTR due to its cognitive ability of perceptron. It is remarkable that, MLPR proved to be the model achieving

the best generalization in terms of average prediction error of 0.1697 dB with standard deviation 0.0538 dB .
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