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Abstract 

 Current advances in connected and automated mobility claim to 

change driving scenarios worldwide. Nevertheless, the impact of 

automated mobility on the design of vehicle powertrains still need 

exhaustive assessment. In this paper, a design methodology is 

proposed for BEV powertrains that integrates the consideration of 

vehicle-to-vehicle (V2V) connected driving. Particularly, each 

analyzed design solution is evaluated in standard drive cycles both as 

normal human-operated vehicle and as following car in automated 

V2V driving. The overall battery energy consumption for the latter 

case is evaluated by solving an optimization problem to determine 

off-line the most suitable vehicle speed trajectory. Remaining design 

requirements include vehicle maximum speed, acceleration capability 

and gradeability. Obtained results aim at quantifying the amount of 

energy savings for V2V automated driving depending on the 

considered mission and BEV powertrain design. Moreover, 

remarkable changes in the ranking of optimal BEV design solutions 

are observed based on the specific percentage of the vehicle lifetime 

travelled as automated following car in the off-line optimized V2V 

scenario. This work thus represents one of the initial steps to assess 

the impact of connected and automated driving on the optimal BEV 

powertrain design solutions. 
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Introduction 

The embedment of advanced driving assistance systems (ADAS) 

currently represents a common feature of road vehicles [1]. 

Enhancing comfort and safety particularly constitutes the actual main 

target for these systems. Related typical examples are cruise control 

(CC), preserving a desired constant vehicle speed value, and its 

evolution into adaptive cruise control (ACC), where a safety distance 

from the preceding vehicle is additionally ensured [2]-[5]. While 

these systems are already popular and installed on commercially 

available vehicles, recent research concerning CC aims at 

implementing novel cooperative adaptive cruise control (CACC) 

technologies. In CACC, vehicles get information about the 

longitudinal motion of the preceding vehicle through vehicle-to-

vehicle (V2V) wireless communication and automatically adjust their 

speed accordingly [6][7]. Remarkable system-level benefits can be 

achieved with these systems including traffic management 

optimization, fuel economy improvement, emissions reduction, 

driving comfort enhancement and, above all, safety increase. This 

latter aspect does not concern vehicle passengers solely, rather it 

affects the rest of road users as well such as pedestrians, bicyclists 

and occupants of other vehicles [8]-[10]. 

V2V communication appears one of the most promising elements to 

enable automated and connected mobility in the near term. When 

compared to other intelligences such as vehicle-to-infrastructure 

communication (V2I), vehicle-to-grid communication (V2G) or 

vehicle-to-pedestrian communication (V2P), the relative ease of 

implementation of V2V communication represents a major drive in 

this framework [11][12]. As example, Toyota and Lexus recently 

announced the implementation of Dedicated Short-Range 

Communications (DSRC) systems for V2V interaction on vehicles 

sold in the United States starting in 2021 [13]. Figure 1 illustrates a 

sketch of the V2V driving scenario, where the preceding and the 

following vehicles are named as ‘lead vehicle’ and ‘ego vehicle’ 

respectively. 

Research about V2V interaction range from the perception of the 

driving comfort [14], through the wireless communication itself 

[15][16] to the optimal traffic management [17][18]. Moreover, 

several studies specifically address the reduction of employed 

vehicular propelling energy through V2V communication between 

passenger cars. Focusing on internal combustion engine (ICE) 

vehicles, in 2013 Lang et al. implemented a fuel optimizer control 

logic for the following vehicle in a V2V scenario and demonstrated 

that up to 25% fuel economy reduction could be achieved without 

compromising traffic capacity [19]. The same authors then compared 

the fuel economy accomplished in an ideal V2V scenario with the 

corresponding value achievable in CACC without V2V capabilities 

 

Figure 1. V2V driving scenario. 

http://corporatenews.pressroom.toyota.com/releases/toyota+and+lexus+to+launch+technology+connect+vehicles+infrastructure+in+u+s+2021.htm
http://corporatenews.pressroom.toyota.com/releases/toyota+and+lexus+to+launch+technology+connect+vehicles+infrastructure+in+u+s+2021.htm
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[20]. In 2017, He and Orosz assessed fuel economy enhancement 

considering two V2V communication scenarios as well: the first one 

applied connected cruise control, while the second one implemented 

model predictive control [21]. As regards hybrid electric vehicles 

(HEVs), research efforts have demonstrated the capability of 

improving fuel economy by exploiting information coming from the 

preceding vehicle in a V2V communication scenario. Analyzed HEV 

architectures included parallel P0 [22], parallel P2 [23], parallel P1-

P4 [24] and power-split [25][26]. Recently, Tate et al. have compared 

the overall greenhouse gas (GHG) emissions of a traditional ICE 

vehicle and a battery electric vehicle (BEV) in a V2V scenario. 

Remarkable reductions could be achieved especially in the BEV case, 

moreover a down-sizing of the electric motor was declared possible 

for the following vehicle [27]. 

Considering two V2V-connected cars, the following vehicle may 

experience remarkable changes in its automated speed pattern when 

this latter is optimized according to the information coming from the 

leading vehicle. Particularly, as a result of the V2V-optimized vehicle 

operation and usage, smoother drive cycles with a reduced number of 

stopping events may be experienced by the following vehicle. As 

consequence, the powertrain may encounter diverse driving 

requirements according to the vehicle being positioned as leader or 

follower in a V2V scenario. Changing driving requirements may 

consequently impact on the optimal design of vehicle powertrains.  

Despite the aforementioned works aimed specifically at 

demonstrating the reduction of required propelling energy through 

V2V communication, little research has been conducted related to 

optimal powertrain design and sizing while evaluating V2V 

scenarios. Focusing on BEVs, current powertrain design 

methodologies only consider a single vehicle travelling in normal 

driving conditions. A design methodology for BEV powertrains has 

particularly been proposed based on brute force optimization and 

traditional driving requirements. Rapid rightsizing of powertrain 

components was the primary objective of the mentioned research, 

while up to two gear ratios were found adequate to satisfy the 

considered BEV driving requirements [28]. This paper aims therefore 

at developing an optimal design procedure for BEV powertrain that 

integrates the consideration of V2V automated driving conditions as 

well. This is achieved by evaluating the BEV electrical energy 

consumption in an off-line optimized car-following operation for 

different drive cycles. Obtained results demonstrate that the optimal 

BEV powertrain sizing may deeply change when considering V2V 

mobility other than normal driving. The rest of this paper is organized 

as follows: the retained BEV mathematical model is firstly presented.  

The subsequent section outlines the optimization problem for 

determining the energy consumption of a following vehicle in a V2V 

scenario. The integration of this procedure in a design methodology 

for BEV powertrains is then discussed. Finally, results and 

conclusions are given. 

Battery Electric Vehicle model 

This section aims at detailing the considered mathematical model for 

BEVs. Figure 2 particularly illustrates a schematic diagram of the 

model. In this work, an in-body motor powertrain with a single speed 

transmission (i.e. direct drive) is selected for the analyzed BEVs. 

Indeed, this layout currently reveals promising being embedded in the 

majority of commercially available BEVs [29]-[35]. Moreover, our 

previous work recurrently identified this configuration among the 

optimal BEV powertrain architectures produced by an automated 

design methodology [28]. When motoring, the battery delivers 

electrical energy through the inverter to the electric motor (EM) 

which in turn propels the vehicle through the transmission system. In 

a regenerative braking scenario, the energy flow is inverted and the 

EM functions as a generator. Considering analytical formulations, 

mathematical models for each retained element of the BEV will be 

described in the next paragraphs. In general, a backward modelling 

approach is adopted: taking as input the desired vehicle acceleration 

or deceleration (𝑎), the model returns as output the corresponding 

battery State-of-charge (SoC) variation (𝛥𝑆𝑂𝐶). 

 

Figure 2. Retained BEV model. 

Vehicle and road load 

A simple road load approach and a single equivalent mass are 

considered here to model the vehicle body. More precisely, the 

transmission output torque 𝑇𝑂𝑈𝑇 should simultaneously compensate 

the road resistive loads and satisfy the vehicle acceleration demand 

(𝑎). This condition can be mathematically expressed in (1).    

𝑇𝑜𝑢𝑡 = (𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑚𝑖𝑠𝑐 + 𝐹𝑎𝑒𝑟𝑜 +𝑚𝑣𝑒ℎ ∙ 𝑎) ∙ 𝑟𝑤ℎ𝑒𝑒𝑙 

With:        𝐹𝑟𝑜𝑙𝑙 = 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ 𝑓0   

𝐹𝑚𝑖𝑠𝑐 = 𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ sin(𝛼) + 𝑘 ∙ 𝑣 

𝐹𝑎𝑒𝑟𝑜 =
1

2
∙ 𝜌 ∙ 𝑆 ∙ 𝐶𝑥 ∙ 𝑣

2 

(1) 

𝐹𝑟𝑜𝑙𝑙, 𝐹𝑚𝑖𝑠𝑐  and 𝐹𝑎𝑒𝑟𝑜 are resistive load terms provided by the rolling 

resistance, some miscellaneous terms (e.g. transmission losses, side 

forces, road slope) and aerodynamic drag, respectively. 𝑚𝑣𝑒ℎ and 

𝑟𝑤ℎ𝑒𝑒𝑙 represent vehicle mass and wheel effective radius, 

respectively. 𝑔,  𝛼 and 𝜌 stand for the gravity’s acceleration, the road 

slope and the air density, respectively. 𝑓0, 𝑘, 𝑆 and 𝐶𝑥 are vehicle 

parameters corresponding to the rolling friction coefficient, a 

miscellaneous loss coefficient, the frontal area and the drag 

coefficient, respectively. 

Transmission 

Here, the transmission system is considered through (2) and (3) that 

define the conversion of speed and torque values between input and 

output of the system (where 𝜏 defines the gear ratio). 

𝜔𝐸𝑀 = 𝜔𝑜𝑢𝑡 ∗ 𝜏     (2) 

𝑇𝐸𝑀 =
𝑇𝑜𝑢𝑡

𝜂𝑡𝑟
𝑠𝑖𝑔𝑛(𝑇𝑜𝑢𝑡)∗𝜏

    (3) 
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𝜔𝐸𝑀 and 𝜔𝑜𝑢𝑡 represent values of angular speed for the EM and 

wheels, respectively. 𝑇𝐸𝑀, the EM torque, can assume positive or 

negative values depending on propelling or braking conditions. 𝜂𝑡𝑟 is 

the efficiency of the transmission system that includes loss of the 

rotating parts and gear meshing: its value can be assumed constant 

for preliminary calculations. The sign of the desired transmission 

output torque as exponent allows accounting for both driving and 

braking scenarios [36].  

Electric motor and inverter 

In this paper, the EM is modeled through its empirical loss map that 

considers core loss, copper loss and mechanical loss of the machine. 

Starting from this table, it becomes possible to map the EM 

efficiency according to the corresponding values of speed and torque, 

as performed in [37][38]. Subsequently, the battery electrical power 

output (𝑃𝑏𝑎𝑡𝑡) can be evaluated in (4). 

𝑃𝑏𝑎𝑡𝑡 =
𝑃𝐸𝑀

[𝜂𝐸𝑀(𝜔𝐸𝑀,𝑇𝐸𝑀)∗𝜂𝑖𝑛𝑣]
𝑠𝑖𝑔𝑛(𝑃𝐸𝑀)

+ 𝑃𝑎𝑢𝑥  (4) 

𝑃𝐸𝑀 represents the EM output power and demonstrates consistent 

sign with the EM torque. 𝜂𝑖𝑛𝑣 is the efficiency of the inverter 

(assumed having a constant value). Retaining the sign of 𝑃𝐸𝑀 as 

exponent in the denominator allows capturing both depleting and 

charging battery conditions within this formula. Finally, 𝑃𝑎𝑢𝑥 is the 

power requested by the accessories (e.g. lubrication, air conditioning) 

and is assumed having a constant value here. 

Battery 

A non-linear Rint model is retained here as a simple equivalent 

circuit that represents the operation of the battery. The Rint model 

considers an ideal voltage source (VOC) coupled with a single internal 

resistance (RIN) that represent the overall behavior of the battery [39]. 

The efficiency of the battery can thus be calculated in (5). 

𝜂𝑏𝑎𝑡𝑡 = (
𝑉𝑂𝐶∙𝐼𝐿−𝑅𝑖𝑛∙𝐼𝐿

2

𝑉𝑂𝐶∙𝐼𝐿
)
𝑠𝑖𝑔𝑛(𝑃𝑏𝑎𝑡𝑡)

   (5) 

𝐼𝐿 represent the battery current and it can be calculated from the value 

of battery output power. Also in this case both driving and braking 

scenarios can be considered by introducing an exponential term. 

Finally, the battery SoC modification between two consequent time 

steps (𝛥𝑆𝑂𝐶) can be evaluated in (6). 

𝛥𝑆𝑂𝐶 =
𝑃𝑏𝑎𝑡𝑡∗𝛥𝑡𝑖𝑚𝑒

𝜂𝑏𝑎𝑡𝑡
𝑠𝑖𝑔𝑛(𝑃𝑏𝑎𝑡𝑡)∗𝐶𝑏𝑎𝑡𝑡

    (6) 

Particularly, 𝛥𝑡𝑖𝑚𝑒  represents the retained simulation time step, 

whereas 𝐶𝑏𝑎𝑡𝑡 stands for the battery capacity. 

Optimization problem for V2V driving 

In this section, the mathematical problem for determining the optimal 

operation of the following car in a V2V scenario is presented and 

discussed. This is performed in order to properly assess the energy 

economy capability of a specific BEV powertrain design in a car-

following automated condition. Particularly, the operation and the 

driving pattern of the following vehicle is optimized off-line in this 

case to provide a proper benchmark for the energy usage assessment. 

In off-line V2V automated driving simulation, the following vehicle 

(‘Ego vehicle’) knows a priori beforehand the entire speed profile of 

the leading vehicle travelling the retained drive cycle. With reference 

to the V2V scenario reported in Figure 1, at each discretized time 

instant the Ego vehicle is supposed to receive from the leading 

vehicle its current values of position, speed and acceleration (𝑥1, 𝑥̇1 

and 𝑥̈1respectively). The V2V communication is supposed ideal (i.e. 

without interaction noise) and instantaneous in this work. Then, the 

optimal control problem under exam can be formulated in (7). 

min { 𝐽 = ∫ 𝑒𝑏𝑎𝑡𝑡(𝑥̇2, 𝑥̈2, 𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 } 

subject to:   

(𝑥1 − 𝑥2) ≤  𝑑𝑀𝐴𝑋 

(𝑥1 − 𝑥2) ≥  𝑑𝑠𝑎𝑓𝑒𝑡𝑦  

𝑥̈2 ≤ 𝑥̈2𝑚𝑎𝑥(𝑥2̇) 

(7) 

𝑒𝑏𝑎𝑡𝑡 represents the instantaneous battery energy consumption for the 

ego vehicle, which is a function of the corresponding vehicle speed 

(𝑥̇2) and acceleration (𝑥̈2) values. The distance between lead vehicle 

and ego vehicle (𝑥1 − 𝑥2), named here inter-vehicular distance 

(IVD), is then subjected to two constraints. Firstly, its value should 

not exceed an upper limit (𝑑𝑀𝐴𝑋) in order to both account for 

physical limitations of the V2V signal transmission and to reduce 

overall road usage. On the other hand, the IVD should not fall below 

a critical safety value (𝑑𝑠𝑎𝑓𝑒𝑡𝑦) in order to prevent collision. Finally, 

the vehicle maximum acceleration capability (𝑥̈2𝑚𝑎𝑥) is considered 

according to the feasible operating regions of the specific BEV power 

components. Particularly, a maximum actual value for the vehicle 

acceleration can be defined as function of the current value of vehicle 

speed (and, consequently, of EM speed) considering the EM 

maximum deliverable torque characteristic. 

Optimization algorithm 

In this paper, dynamic programming (DP) is implemented to solve 

the introduced optimization problem for V2V automated driving. The 

DP algorithm examines discretized vectors for the control variable 

space and the state variable space of the retained mathematical model 

and returns the global optimal solution by operating an exhaustive 

search among all the possible control actions at each considered time 

step. The DP capability of identifying the global optimal solution 

represents the main reason for its implementation to solve the control 

problem illustrated in this paper. In 1957, Bellman firstly introduced 

his principle of optimality laying the foundations for the development 

of DP [40]. Nevertheless, the widespread usage of DP was made 

possible only in early 2000s thanks to related advances in the 

commonly available computational power. DP indeed exhibits 

remarkable computational costs to perform an exhaustive search 

through the entire control and state vectors at each considered time 

step and consequently identify optimal control actions. Its process is 

implemented backward from the final drive cycle time point to the 

initial one by searching for the optimal trajectory among the 

discretized grid points, as illustrated in Figure 3. Particularly, the 

Bellman’s principle of optimality states that the optimal policy can be 

obtained if a single-stage sub-problem involving only the last stage is 

solved first, then the sub-problem involving the last two stages, last 

three stages, etc. until the entire problem is solved step by step. 

Recently, the DP algorithm has remarkably increased its popularity 

thanks also to its widespread implementation for effectively solving 

the optimal control problem for HEV powertrains. Related examples 

of DP application for HEVs can be found in [41]-[43].  
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Figure 3. Dynamic programming process. 

The adaption of DP algorithm implemented in this paper refers to the 

version provided by Sundstrom and Guzzella [44]. In order to solve 

the optimization problem illustrated in (7), considered control 

variable space (𝑈) and state variable space (𝑋) are reported in (8). 

 𝑈 = {𝑥̈2}   , 𝑋 = {
𝑥1 − 𝑥2
𝑥̇2

}   (8) 

Particularly, 𝑈 contains the Ego vehicle acceleration value, while 𝑋 

include current values for the IVD and the Ego vehicle speed. In the 

rest of this section, details will be provided concerning the 

implementation of the optimization constraints and the objective 

function for the optimal control problem reported in (7). 

Optimization constraints 

The optimal automated speed trajectory of the Ego vehicle is 

subjected to three constraints reported in (7) and related to the 

maximum allowed IVD (𝑑𝑀𝐴𝑋), the minimum safety IVD (𝑑𝑠𝑎𝑓𝑒𝑡𝑦) 

and the Ego vehicle acceleration. 

Maximum allowed IVD 

As regards the maximum achievable IVD (𝑑𝑀𝐴𝑋), a value that 

depends on the road type is assumed here. As a matter of fact, the 

IVD should be restrained in urban areas to limit overall road 

utilization and facilitate smooth traffic flow. Limited vehicle speed 

values achieved in urban areas are particularly helpful in this intent. 

On the other hand, this restriction may be relaxed for extra-urban and 

highway scenarios thanks to the increased road surface available. 

Enhanced safety margins for the actual IVD could also be achieved in 

this way accounting for the generally higher values of vehicle speed 

in these types of road. Maximum allowed IVD values of 40 m and 80 

m are particularly retained here for urban and extra-urban/highway 

driving respectively.  

Minimum safety IVD 

Among the research conducted on mathematical modeling of safety 

IVD in V2V driving, Chen et al. in 2013 introduced a formulation 

accounting for both the current Ego vehicle speed and the difference 

in speed values between the two vehicles [45]. In the same work, a 

comparison with a traditional braking model and a time-headway 

model suggested that the introduced formulation could achieved 

considerable driving safety and simultaneously accomplish traffic 

efficiency. In general, the model by Chen et al. supposes that, in an 

emergency, the Lead vehicle would send a warning message to the 

Ego vehicle. Subsequently, both vehicles would have to stop 

completely without colliding. The formulation of 𝑑𝑠𝑎𝑓𝑒𝑡𝑦 thus 

depends on the sign of the difference in vehicle speed value between 

Lead vehicle and Ego vehicle. Figure 4 illustrates the speed profiles 

of the two vehicles during an emergency braking for both cases 

detailed below. The x axis origin particularly relates to the time 

instant in which the Lead vehicle sends the warning message to the 

Ego vehicle and starts braking. The distances travelled by the cars are 

therefore represented by the areas under the corresponding speed 

trajectories: red and green areas specifically relate to Lead vehicle 

and Ego vehicle, respectively. When the Lead vehicle initial speed 

value (𝑥̇1
0) is lower than the Ego vehicle initial speed value (𝑥̇2

0), the 

following model holds: 

𝑑𝑠𝑎𝑓𝑒𝑡𝑦 = 𝑠2 − 𝑠1 

where 

{
 
 

 
 𝑠1 =

(𝑥̇2
0)2

2 ∙ 𝑥̈1𝑀𝐴𝑋−

𝑠2 = 𝑥̇2
0 ∙ (𝑡1 + 𝑡2 +

𝑡3
2
) +

(𝑥̇2
0)2

2 ∙ 𝑥̈2𝑀𝐴𝑋−

 

(9) 

𝑠1 and 𝑠2 are the distance traveled by the Lead vehicle and the Ego 

vehicle before reaching a complete stop as shown in Figure 4(a), 

respectively. 𝑥̈1𝑀𝐴𝑋−  and 𝑥̈2𝑀𝐴𝑋− are the maximum attainable 

deceleration values by the Lead vehicle and the Ego vehicle, 

respectively. Finally, 𝑡1, 𝑡2 and 𝑡3 stand for the system reaction time, 

the braking coordination time and the required time to reach the 

complete acceleration capability for the Ego vehicle, respectively.  

 

Figure 4. Speed profiles and distances travelled for a V2V emergency braking. 
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On the other hand, if the Lead vehicle initial speed is greater than the 

Ego vehicle initial speed, the model for determining 𝑑𝑠𝑎𝑓𝑒𝑡𝑦   in (10) 

reveals more optimistic in removing the contribution of the distance 

travelled by both vehicles before exhibiting equal speed values (𝑠12). 

This latter term can be visualized as the crosshatched area in Figure 

4(b). 

𝑑𝑠𝑎𝑓𝑒𝑡𝑦 = 𝑠2 − 𝑠1 − 𝑠12 

where 

{
 
 
 
 

 
 
 
 𝑠12 =

(𝑥̇1
0)2 − (𝑥̇2

0)2

2 ∙ 𝑥̈1𝑀𝐴𝑋−
− 𝑥̇2

0 ∙ 𝑡𝑒𝑞𝑢𝑎𝑙

𝑠1 =
(𝑥̇2

0)2

2 ∙ 𝑥̈1𝑀𝐴𝑋−

𝑠2 = 𝑥̇2
0 ∙ (𝑡1 + 𝑡2 +

𝑡3
2
) +

(𝑥̇2
0)2

2 ∙ 𝑥̈2𝑀𝐴𝑋−

𝑡𝑒𝑞𝑢𝑎𝑙 =
𝑥̇1
0 − 𝑥̇2

0

𝑥̈1𝑀𝐴𝑋−

 

(10) 

𝑠12 is the additional term in this case representing the difference 

between the Lead vehicle displacement and the Ego vehicle 

displacement during the time period needed for both cars to have the 

same value of speed (𝑡𝑒𝑞𝑢𝑎𝑙). Apart from this term, the model reveals 

the same formulation as (9).  

Further details for the illustrated safety IVD model can be found in 

[45]. By applying the reported formulations, it becomes thus possible 

to map 𝑑𝑠𝑎𝑓𝑒𝑡𝑦  with Ego vehicle speed and relative vehicle speed as 

independent variables, as illustrated in Figure 5. 

 

Figure 5. Map of the minimum saftety IVD constraint. 

BEV acceleration capability 

In solving the optimization problem for V2V driving, a constraint 

needs implementation to account for the physical limitations in the 

amount of torque deliverable from the analyzed BEV powertrain. 

Indeed, the current maximum value of achievable vehicle 

acceleration is directly proportional to the torque value as stated in 

(1). According to the typical EM characteristic, the maximum value 

of deliverable torque gradually decreases when higher angular speed 

values are reached by the machine. Moreover, physical limitations for 

the peak power attainable by the battery are retained in (4) in this 

paper. When the BEV is braking, higher values of decelerating torque 

can be retained with respect to the limit achievable by the electrical 

powertrain accounting for the additional contribution of friction 

braking. Nevertheless, the additional energy term related to friction 

braking cannot be stored in the battery for future usage, therefore the 

DP optimization for driving the Ego vehicle in a V2V scenario will 

likely tend to avoid employing friction braking. 

Objective function 

When generally implementing DP for vehicle control, defining the 

objective function to minimize represents a crucial step. In fact, other 

than the primary optimization target, the objective function usually 

must include other terms as well to support realistic driving 

conditions. Here, exclusively minimizing the overall battery energy 

consumption for the analyzed drive cycle as stated in (7) would 

particularly lead to “jerky” vehicle speed profiles for the Ego vehicle 

in the automated V2V scenario [46]. In fact, the DP optimizer would 

attempt to recover as much regenerative braking energy as possible in 

this way. Particularly at vehicle speed closed to the null value, an 

energy-only optimized trajectory would prefer to operate high-

frequency fluctuations rather than smooth coasting. A related 

example of a “jerky” speed profile obtained through a single-term 

objective function for an Ego vehicle is illustrated in Figure 6 (a). 

Nevertheless, similar speed profiles would remarkably compromise 

the travelling comfort for the passengers of the Ego vehicle. A 

solution to consider the feasibility of driving patterns for the 

following car in a V2V scenario needs therefore achievement. A first 

possible option could envisage the addition of a third term in the state 

variable space (𝑋) in (8) represented by the Ego vehicle acceleration 

value (𝑥̈2). Possible constraints to limit the recurrent switch between 

positive and negative values of vehicle acceleration could thus be 

implemented in the DP optimization. However, the addition of a 

further term in the state variable space (𝑋) would increase the 

 

Figure 6. Examples of Ego vehicle speed profile in optimized V2V driving. 

 

(a) Single-term objective function

(b) Dual-term objective function
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dimension of the search space explored by DP. Therefore, an 

exponential increase in the computational cost for completing the DP 

optimization procedure may be observed. This could represent a 

major restriction in implementing a computationally efficient sizing 

methodology for BEV powertrains, where a large number of design 

candidates and driving conditions needs to be evaluated. To 

overcome this draft, in this paper we propose to directly include a 

penalization term for excessive “jerky” driving in the DP objective 

function (𝐽𝐷𝑃), as reported in (11). 

𝐽𝐷𝑃 = ∫ [𝑒𝑏𝑎𝑡𝑡(𝑥̇2, 𝑥̈2, 𝑡) + 𝛼𝑗𝑒𝑟𝑘] 𝑑𝑡
𝑡𝑒𝑛𝑑
𝑡0

  (11) 

𝐽𝐷𝑃 thus include both a first term for the battery energy consumption, 

and a second term that accounts for jerky driving. 𝛼𝑗𝑒𝑟𝑘 is 

particularly defined in (12) for this paper.  

𝛼𝑗𝑒𝑟𝑘 = {
0                        𝑥̈2 ≥ 0 
𝛤                       𝑥̈2 < 0 

    (12) 

𝛤 represents a coefficient for jerk minimization. Its numerical value 

should particularly overcome the order of magnitude of the maximum 

achievable battery power [W] in order to effectively limit the overall 

percentage of drive cycle spent in braking events. The optimizer will 

thus keep recovering the highest possible amount of regenerative 

braking energy, while decelerating the vehicle only when necessary. 

Figure 6 (b) reports an example for a speed profile of an Ego vehicle 

when considering the illustrated dual-term  𝐽𝐷𝑃. As it can be noticed, 

smooth and more regular vehicle speed pattern can be achieved in 

this way for the Ego vehicle with respect to results related to the 

single-term objective function shown in Figure 6 (a). 

BEV design methodology including V2V driving 

This section aims at detailing the design methodology for BEV 

powertrains developed in this paper that aims at integrating the 

consideration of V2V driving features. The workflow of the entire 

procedure is illustrated in Figure 7, described as follows and 

implemented in MATLAB© software. 

The design variables for the considered BEV layout include the type 

and size of EM and the value of the gear ratio for the single speed 

transmission. A direct search method is applied here in sweeping all 

the possible combinations of these two design variables. The main 

reason for not implementing different optimization algorithms to 

explore the design space (e.g. genetic algorithm, gradient-based 

optimization, particle swarm optimization) relates in this case to the 

selected EM being a discrete variable. In fact, each selected EM here 

represents an actual production component and it is associated with 

its corresponding operational map as in [28]. Moreover, adopting a 

direct search approach allows comparing each of the possible design 

alternatives and assessing their performance singularly. 

As common design practice, the following test cases are standardly 

considered when developing a BEV powertrain [47]: 

▪ Maximum speed 

▪ Acceleration 

▪ Gradeability 

▪ Driving range 

 

Particularly, the first three tests are firstly evaluated as optimization 

constraints to determine whether the specific BEV powertrain 

configuration is feasible or not. In Step 3 of Figure 7, the maximum 

speed achievable by the specific BEV powertrain is firstly assessed. 

130 km/h is particularly retained in this paper as the minimum value 

for the maximum achievable speed by the BEV. Given the large 

range of operating speed of an EM with respect to an ICE, this 

constraint is usually satisfied. Considering the production vehicle, it 

becomes then easy to implement on-board controls to restrict the 

actual operating map of the EM within the region allowed by the 

standard maximum speed limits. 

As regards acceleration capabilities, a full power 0-100 km/h 

maneuver is simulated in Step 4 to check whether the analyzed 

candidate design demonstrates satisfactory performance. The 

assessed design is particularly kept or discarded depending on the 

time needed for the maneuver to be completed being lower or greater 

than a selected time requirement, respectively. The maximum time 

allowed to complete the maneuver is set to 14 s in this paper. The 

gradeability potential of successful candidate designs is consequently 

evaluated in Step 5. The simulation of a vehicle standing start given a 

certain road slope specifically represents the performance test at this 

stage. The EM thus must be able to deliver the corresponding 

requested propelling torque in (13) at null vehicle speed value 

(𝑇𝐸𝑀_𝑠𝑡𝑎𝑟𝑡). 

𝑇𝐸𝑀_𝑠𝑡𝑎𝑟𝑡  ≥  
𝑚𝑣𝑒ℎ ∙ 𝑔 ∙ 𝑟𝑤ℎ𝑒𝑒𝑙 ∙ (𝑠𝑖𝑛 𝛽+𝑅𝐿𝐴)

𝜂𝑡𝑟 ∙ 𝜏
       (13) 

𝛽 represents the slope value that needs to be accomplished, 𝑔 is the 

gravity acceleration and 𝑅𝐿𝐴 represents the first vehicle road load 

coefficient (independent on the vehicle speed value). A slope value of 

30% is particularly retained in this paper to represent the gradeability 

requirement.  

 

Figure 7. Workflow of the developed BEV powertrain design methodology. 
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The BEV powertrain designs fulfilling the performance requirements 

illustrated above are subsequently evaluated in terms of energy 

consumption (i.e. driving range). The operation of the candidate 

designs is particularly assessed both in normal driving and as 

following cars in a V2V scenario in Step 6 and Step 7, respectively. 

Concerning the normal driving (or Lead vehicle) scenario, the overall 

energy consumption for each driving mission can be 

straightforwardly calculated by summing the energy contributions for 

all the single time points while considering the vehicle model 

previously introduced. On the other hand, for the car-following case 

(i.e. Ego vehicle), the optimization problem reported in the previous 

section requires solving to determine the energy consumption in 

optimal V2V driving for each assessed candidate design.  

Different standard drive cycles are retained here to assess various 

driving conditions for both the Lead vehicle and the Ego vehicle 

cases. Considered drive cycles are particularly constituted by the 

urban driving dynamometer schedule (UDDS), the highway federal 

test procedure (HWFET), the new European drive cycle (NEDC) and 

the worldwide harmonized light vehicle test procedure (WLTP). 

Finally, result for the singularly analyzed driving missions can be 

averaged to obtain an individual parameter (𝐸𝑎𝑣𝑔) that represents the 

energy consumption of each candidate by adopting the following 

formulation for both the driving cases:  

𝐸𝑎𝑣𝑔 = 0.275 ∙ 𝐸𝑈𝐷𝐷𝑆 + 0.225 ∙ 𝐸𝐻𝑊𝐹𝐸𝑇 + 

0.2 ∙ 𝐸𝑁𝐸𝐷𝐶 + 0.3 ∙ 𝐸𝑊𝐿𝑇𝑃                  (14) 

As regards 𝐸𝑎𝑣𝑔, half of its value can be determined by following the 

United States Environmental Protection Agency’s procedure of 

retaining 55% weight on the UDDS and 45% on the HWFET. The 

remaining half of its value can then be evaluated using drive cycles 

from European Union regulations. In this case, the larger weight for 

the WLTP can be justified by this procedure aiming at gradually and 

thoroughly replacing the NEDC.  

Following the illustrated design methodology, it becomes possible to 

identify the optimal BEV powertrain design considering a mixture of 

Lead vehicle (i.e. human-operated) driving and Ego vehicle (i.e. 

automated) driving conditions, as it will be detailed in the next 

section. 

Results 

This section aims at presenting results obtained by adopting the 

illustrated methodology and considering a case study BEV. Table 1 

particularly reports the vehicle and powertrain data retained in this 

study. Vehicle data refer to the experimental study conducted in [48], 

where specific road load coefficients for an actual BEV were 

determined by removing the drag contribution provided by the EM 

when coasting. Totally 8 different EMs and 9 transmission ratio 

values are assessed, thus defining 72 possible powertrain design 

candidates. 

Steps 3 to 6 in the design methodology illustrated in Figure 7 can be 

generally performed rapidly. On the other hand, solving the 

optimization problem to assess the energy consumption of the 

analyzed powertrain design candidate as Ego vehicle in an automated 

V2V scenario requires considerable computational time. The size for 

both the discretized control and state vectors amount to 80 elements 

each in this paper. Then, considering a desktop computer with Intel 

Core i7-8700 (3.2 GHz) and 32 GB of RAM, Step 7 needs about 16 

minutes to be executed for each drive cycle. Therefore, considering 

the optimization of all the successful design candidates after Step 5 

(54 in this paper) for each of the 4 retained drive cycles, overall 

16x4x54=3,456 minutes (i.e. about 58 hours) are required to 

complete the illustrated design methodology. 

Obtained results are divided into two categories in this paper. Firstly, 

a comparison of energy consumption between Lead vehicle case and 

Ego vehicle case is presented for three design candidates. The second 

category of results aims at illustrating how the optimal design 

solutions vary according to the percentage of vehicle lifetime 

travelled as automated Ego vehicle in V2V driving. 

Quantifying energy saving opportunities in V2V 

driving 

Table 2 specifically reports simulation results for three analyzed BEV 

powertrain designs both in Lead Vehicle and Ego vehicle cases. 

Values for the electrical energy consumed by the battery have been 

normalized according to the distance travelled in each driving 

mission. In general, by properly solving the optimization problem 

illustrated above, the energy consumed by the BEV powertrain when 

travelling as automated Ego vehicle in a V2V scenario diminishes 

with respect to the normal Lead vehicle case. However, the 

percentage of energy savings varies according to both the driving 

conditions and the powertrain parameters. As regards the examined 

driving mission, higher rates of energy savings can be typically 

achieved when some distance is covered in an urban environment 

(e.g. in UDDS, NEDC and WLTP). Lower general values of vehicle 

speed and frequent stop&start events are particularly favorable in 

enhancing the amount of energy saved for the Ego vehicle to 10÷20 

% in this case.  

 

 

 

Table 1. Vehicle and powertrain data. 

System Parameter Value 

Vehicle 

Mass [Kg] 1651 

RLA [N] 116.41 

RLB [N∙s/m] 0.9526 

RLC [N∙s2/m2] 0.0399 

rwheel [m] 0.358 

Battery 
Capacity [Ah] 51 

𝑃𝑎𝑢𝑥 [kW] 1 

EM  

Maximum power 

[kW] 

50 ; 60 ; 70 ; 80 ; 90 ; 

100 ; 110 ; 120 

𝜂𝑖𝑛𝑣  0.95 

Transmission 
Gear ratio 4.5 : 1 : 12.5 

𝜂𝑡𝑟  0.95 

Brake system 

𝑡1[s] 0.2 

𝑡2 [s] 0.1 

𝑡3 [s] 0.1 

𝑥̈𝑀𝐴𝑋 [m/s2] 6.7 
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An example of simulation results in the WLTP is illustrated in Figure 

8 that include time series of the IVD and speed and battery SoC 

trends for both the Lead vehicle and the Ego vehicle. On the other 

hand, when exclusively extra-urban and highway driving are included 

in the considered mission (e.g. HWFET), the amount of energy 

savings reduces to 3-4 % for the considered parameters. The other 

variable that may deeply influence the energy savings is represented 

by the BEV powertrain parameters. As example, in Table 2 the 

energy consumed in the UDDS by the Design #1 as Lead vehicle is 

lower than the corresponding value for Design #2. Nevertheless, 

when considering these designs travelling as Ego vehicles in V2V 

driving, the ranking according to the energy consumption reverses as 

the Design #2 overall performs better than Design #1. This suggests 

that, for the considered example, Design #2 may represent a better 

solution than Design #1 when the retained BEV travels in optimized 

V2V automated driving. Therefore, changes in the identified optimal 

design parameters for the BEV powertrain may be expected when 

implementing V2V connected driving. 

 

Figure 8. Example of simulation results in the WLTP. 

Impacts of V2V driving on the identification of optimal 

BEV designs 

Based on the abovementioned considerations, this paragraph aims at 

illustrating the impact of connected driving on the ranking of the 

optimal BEV powertrain designs for the retained vehicle. After 

completing the illustrated design procedure, different values of 𝐸𝑎𝑣𝑔 

for the Lead vehicle case (𝐸𝑎𝑣𝑔𝑙𝑒𝑎𝑑) and the Ego vehicle case 

(𝐸𝑎𝑣𝑔𝑒𝑔𝑜) can be obtained for the successful BEV powertrain designs 

from (14). Figure 9 particularly illustrates the two Pareto frontiers 

with 0-100 km/h acceleration time and 𝐸𝑎𝑣𝑔 as independent 

variables. As highlighted in the plot, the identified optimal design in 

terms of energy economy differs according whether the vehicle 

completely travels as Lead vehicle (‘Opt. 0% V2V’) or as Ego 

vehicle in V2V driving (‘Opt. 100% V2V’). 

 

Figure 9. Pareto frontier for Lead vehicle and Ego vehicle cases. 

The two Pareto frontiers in Figure 9 respectively represent the actual 

mobility scenario (where a negligible portion of road vehicles 

embeds V2V capabilities) and an ideal scenario where the vehicle 

travels its complete lifetime while getting information from the 

vehicle ahead (thus similarly to a fully automated mobility scenario). 

As a matter of fact, new road vehicles in the near future are expected 

to encounter a mixture of these two extreme driving conditions over 

their lifetime. Therefore, it becomes necessary to observe how the 

gradual advancement of connected driving affects correspondingly 

identified optimal designs. A new parameter, 𝐸𝑎𝑣𝑔𝑚𝑖𝑥, thus defines 

the averaged energy consumption over the total vehicle lifetime as 

function of the time percentage travelled as Ego vehicle in automated 

V2V driving (%𝑉2𝑉): 

𝐸𝑎𝑣𝑔𝑚𝑖𝑥 
= %𝑉2𝑉 ∙ 𝐸𝑎𝑣𝑔𝑒𝑔𝑜 + (100 −%𝑉2𝑉) ∙ 𝐸𝑎𝑣𝑔𝑙𝑒𝑎𝑑      (15) 

Figure 10 illustrates three new Pareto frontiers obtained when 

considering the vehicle travelling the 25 %, the 50 % and the 75 % of 

its lifetime as following car in a V2V scenario, respectively. In 

general, a gradual decrease in 𝐸𝑎𝑣𝑔 can be observed for all the 

evaluated designs that is proportional to the level of V2V driving. 

Moreover, it becomes evident how some BEV powertrain designs 

demonstrate enhanced capability of reducing their energy 

consumption through automated V2V driving with respect to other 

more conservative designs. 

Table 2. Electrical energy consumption in the analyzed drive cycles. 

 
Energy consumption [kWh/100 km] 

UDDS HWFET NEDC WLTP 

Design 

# 

EM size 

[kW] 
𝜏 Lead 

Vehicle 

Ego 

vehicle 
Δ 

Lead 

Vehicle 

Ego 

vehicle 
Δ 

Lead 

Vehicle 

Ego 

vehicle 
Δ 

Lead 

Vehicle 

Ego 

vehicle 
Δ 

1 80 6.5 8.946 8.291 7.9 % 6.838 6.638 3.0 % 8.929 8.310 7.4 % 8.692 7.503 15.8 % 

2 90 4.5 9.511 8.264 15.1 % 6.695 6.418 4.3 % 9.092 8.186 11.1 % 8.941 7.372 21.3 % 

3 100 4.5 9.498 8.319 14.2 % 6.751 6.472 4.1 % 9.138 8.251 10.8 % 8.952 7.432 20.5 % 
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Figure 10. Pareto frontier for mixed normal driving – connected driving cases. 

Finally, Table 3 reports the first three optimal designs in terms of 

energy economy for each retained level of V2V automated driving. 

The last column of the table confirms how the gradual reduction in 

the energy consumption is directly proportional to the percentage of 

V2V driving conducted. For the retained vehicle, the best BEV 

powertrain design for purely normal driving is thus constituted by the 

80 kW EM and the transmission ratio of 6.5. However, as illustrated 

in Table 2, this design may reveal little improvements when 

travelling as automated following car in a V2V scenario. In fact, 

starting from 25 % of V2V driving, the identified optimal 

transmission ratio modifies into 5.5. Subsequently, when increasing 

the percentage of automated V2V driving to 75% and 100%, the 

design with an 80 kW EM and 6.5 transmission ratio is no more 

included in the three best powertrain designs. On the other hand, 

different designs related to the EM sizes of 90 kW and 100 kW 

emerge among the most appealing design solutions. In general, the 

design candidate with the EM of 80 kW and the transmission ratio of 

5.5 appears the most promising solution when considering both 

normal driving and different percentages of automated V2V driving 

occurrence. 

Table 3. Ranking of optimal designs. 

%𝑽𝟐𝑽 Ranking 
EM size 

[kW] 
𝝉 

𝑬𝒂𝒗𝒈𝒎𝒊𝒙 

[kWh/100 km] 

0 %  

# 1 80 6.5 10.61 

# 2 80 5.5 11.82 

# 3 80 7.5 9.80 

25 %  

# 1 80 5.5 8.341 

# 2 80 6.5 8.346 

# 3 90 5.5 8.399 

50 %  

# 1 80 

80 

90 

80 

90 

 

5.5 8.099 

# 2 80 6.5 8.147 

# 3 90 5.5 8.171 

75 %  

# 1 80 5.5 7.858 

# 2 90 4.5 7.909 

# 3 90 5.5 7.944 

100 %  

# 1 80 5.5 7.616 

# 2 90 4.5 7.625 

# 3 100 4.5 7.685 

 

Conclusions 

This paper aims at developing an optimal design methodology for 

BEV powertrains that integrates the evaluation of automated V2V 

driving. For this reason, an optimization problem to off-line 

determine the most suitable driving pattern for the following car in a 

V2V connected scenario is particularly introduced. Solving this 

problem for each analyzed powertrain design candidate allows 

estimating the corresponding minimum energy consumption 

achievable in automated V2V driving conditions. Besides estimating 

the energy consumption in different standard drive cycles for both 

normal and automated V2V driving conditions, the implemented 

design procedure includes the evaluation of the vehicle maximum 

speed, acceleration capability and gradeability. Here, design variables 

for the BEV powertrain are represented by the EM type and size and 

the transmission ratio. 

Results obtained from a performed case study firstly demonstrate and 

quantify the potential reduction of propelling energy required by the 

automated following car (i.e. Ego vehicle) with respect to the human-

operated preceding car (i.e. Lead vehicle) in V2V connected driving. 

Decreasing the demanded propelling energy may thus result 

beneficial to address as well the so-called “range anxiety”, which 

currently represents one of the most contrasting factors to the 

widespread adoption of BEVs. The amount of reduction in the overall 

energy needed is found to be affected by both the specific driving 

conditions and the powertrain design parameters. This suggests that 

the optimal BEV powertrain design may change when considering a 

given percentage of the total vehicle lifetime travelled as automated 

Ego vehicle in V2V driving instead of normal Lead vehicle. 

Completing the developed design procedure demonstrates how the 

ranking of the identified optimal design solutions varies according to 

the percentage of the vehicle lifetime travelled as following car in 

automated V2V driving. From a general perspective, results obtained 

in this paper indicate that the increasing spread of connected and 

automated driving will gradually affect the optimal powertrain design 

choices for BEVs.  

Examples of related future work may consider the implementation of 

an optimal on-line control strategy to simulate the vehicle travelling 

as following car in a V2V scenario more realistically. Moreover, 

more detailed modeling approaches may be adopted for vehicle 

dynamics and power components (rather than steady-state maps), for 

the V2V wireless communication and for changes in the aerodynamic 

drag depending on the IVD. Finally, test cases with more than 2 

vehicles may be considered to integrate further connected driving 

scenarios in the illustrated design methodology. 
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