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Prismatic Delta Robot: a Lagrangian Approach 
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federico.colombo@polito.it 

luigi.lentini@polito.it 

Abstract. This paper shows the kinematic and dynamic model of a prismatic 

Delta robot designed for a 3D printer. After description of the direct and inverse 

kinematic algorithms, the forces on the actuated prismatic joints are computed 

with the lagrangian approach.  

Examples of actuators forces computed with the lagrangian approach are shown 

in case of Lissajous type path imposed on the end effector (inverse kinematics) 

and traveled at constant speed. The results are checked with the energy conser-

vation principle. The effect of inertia forces is evaluated at different printing 

speeds. 

Keywords: Prismatic Delta robot, Lagrangian approach, parallel robots, dy-

namic modelling. 

1 Introduction 

Delta robot structure is employed is several industrial applications, such as pick and 

place machines and 3D printers. An evident advantage respect to other structures, such 

as the cartesian one, is the higher acceleration that can be reached, due to the small 

moving masses. 

This robot was invented in 80s by Clavel [1]. It was then introduced into the market, 

initially for pick and place operation and packaging, then also for haptic controllers and 

other purposes (e.g. medical and pharmaceutical), last but not least for 3D printing 

[2,3].  

The kinematics of the delta robot with rotating actuators is proposed in [4], while in 

[5] the kinematic analysis is performed for the delta robot with prismatic actuators, with 

particular attention to singularities. The kinematic study for this structure is also carried 

out in [6]. 

About the dynamics, there are three methods to determine the actuators forces in 

dynamic conditions [7]: the Newton-Euler procedure, the principle of virtual works and 

the Lagrange’s equation with multipliers formalism. The principle of virtual work has 

been applied in [8] to calculate the dynamics of the prismatic delta robot. The lagran-

gian approach was employed to study the dynamics of a delta robot with rotational 

actuators [9], but to the best of author’s knowledge, this approach has not yet been 
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employed to the delta robot with prismatic actuators. This paper is aimed at covering 

this literature lack. 

2 The prismatic Delta robot 

The architecture of the delta robot with prismatic joints is depicted in Fig.1. The robot 

is a parallel machine composed by a platform and three legs each of them is a serial 

kinematic chain of type P(SS)2. Due to the presence of the parallelograms in each leg, 

the platform can only translate along the three directions. The prismatic actuated joints 

are vertical and connect the three carts to the fixed basement. Points A1, A2 and A3 are 

defined in the middle of the short sides of the parallelograms in correspondence of the 

carts, while points P1, P2 and P3 are defined in the middle of the opposite sides, in cor-

respondence of the platform. Points B1, B2 and B3 are the vertical projections of points 

A1, A2 and A3 on the basement plane. A fixed reference system OXYZ is located in the 

center of the basement, with X axis parallel to segment B1B2 and oriented from B1 to 

B2 and Y axis oriented towards point B3. Both triplets B1B2B3 and P1P2P3 identify equi-

lateral triangles attached to the basement and to the platform respectively. The side 

lengths of these triangles are indicated as sB (triangle on basement) and sP (triangle on 

platform). Point P is located in the center of the platform. 

The dofs associated to the prismatic joints are indicated with q1, q2 and q3 and rep-

resent the coordinates along Z axis of points A1, A2 and A3 respect to fixed reference 

frame. 

 
Fig. 1. Architecture of the prismatic Delta robot 
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3 Kinematics 

The direct kinematics study involves the calculation of position, velocity and accelera-

tion of the platform when the input trajectories in prismatic joints are known. Vice 

versa, the inverse kinematics involves the calculation of the joints trajectories when the 

motion of the platform is supposed to be known. 

The closure equations are the following: 

𝑶𝑩1 + 𝑩1𝑨1 + 𝑨1𝑷1 + 𝑷1𝑷 = 𝑶𝑷 

𝑶𝑩2 + 𝑩2𝑨2 + 𝑨2𝑷2 + 𝑷2𝑷 = 𝑶𝑷 

𝑶𝑩3 + 𝑩3𝑨3 + 𝑨3𝑷3 + 𝑷3𝑷 = 𝑶𝑷 

 (1) 

 

Imposing that the length of segments 𝑨1𝑷1, 𝑨2𝑷2 and 𝑨3𝑷3 is constant in time and 

equal to l, the length of the long side of the parallelograms, the following non-linear 

equations are derived: 
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3.1 Direct kinematics 

Known q1, q2 and q3 and their first and second time derivatives, the direct kinematics 

allows to compute the coordinates xP, yP and zP of point P and their time derivatives. 

As system (2) is non-linear, it can be solved with an iterative method such as Newton 

Raphson or the three spheres intersection algorithm [6]. 

The velocities are easily computed solving a linear system resulting from the differ-

entiation of system (2). These equations can be written in a more compact way using 

the matrix notation: 

 

𝐽𝑥 {

�̇�𝑃

�̇�𝑃

�̇�𝑃

} = 𝐽𝑞 {

�̇�1

�̇�2

�̇�3

}  (3) 

 

where Jx and Jq are the Jacobian matrixes. It results 

 

{
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The accelerations are obtained differentiating once more equations system (4) and 

expressing in matrix notation. It results 
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3.2 Inverse kinematics 

The inverse problem is simpler, as the joint parameters q1, q2 and q3 can be expressed 

in explicit way as a function of the platform coordinates: 
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The velocities are computed solving system 
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while the accelerations from system 
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4 The Lagrangian approach 

The generalized coordinate vector is defined as 𝑞 = [𝑞1, 𝑞2, 𝑞3, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝]. This vector 

can be partitioned in the vector of the independent parameters 𝑞1, 𝑞2, 𝑞3 and the vector 

of the dependent parameters 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 𝑞 = [𝑞𝑖𝑛𝑑 , 𝑞𝑑𝑒𝑝]. 

The mass of each cart is 𝑚𝑐𝑎𝑟𝑡, the mass of each element between the spherical joints 

is 𝑚𝑙𝑖𝑛𝑘 (note that there are 6 of these elements), while the mass of the platform is 

𝑚𝑝𝑙𝑎𝑡. Fig.2 depicts a simplified lumped mass distribution, in which the mass of each 

link is splitted in equal parts at the two ends of the link. The extruder nozzle Q is located 

in point Q at distance PQ below point P. In this work all dissipations are neglected. 

The forces Q1, Q2, Q3 on the actuators can be computed from the lagrangian equa-

tions (9), valid for j=1 to 6: 
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𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑗

) −
𝜕𝐿

𝜕𝑞𝑗

= ∑𝜆𝑖

3

𝑖=1

𝜕Γ𝑖

𝜕𝑞𝑗

+ 𝑄𝑗  (9) 

 

where 𝜆𝑖  (i=1 to 3) are the lagrangian multipliers, which can also be computed solv-

ing system (9) and Γ𝑖 (i=1 to 3) are the closure equations. 𝑄𝑗  are the generalized external 

forces, assumed to be null on platform: 𝑄 = [𝑄1, 𝑄2, 𝑄3, 0, 0, 0]. 

 
Fig. 2. Simplified lumped mass distribution 

 

System (9) can be written in the following matrix form 

[𝐴]{𝑥} = {𝑏}  (10) 

where the unknown parameters vector is  

{𝑥} = {𝜆1 𝜆2 𝜆3 𝑄1 𝑄2 𝑄3}
𝑇 = {

{𝜆}

{𝑄}
}  (11) 

and the constant vector {𝑏} involves both inertia terms and the terms due to gravity: 

{𝑏} = [𝑀]{�̈�} + {𝐹}  (12) 

Partitioning properly system (10), it is possible to obtain the expressions of the la-

grangian multipliers and of the actuators forces: 
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{𝜆} =
𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑙𝑖𝑛𝑘

2
[𝐽𝑥

𝑇]−1 {�̈�𝑑𝑒𝑝} +
(𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑙𝑖𝑛𝑘)𝑔

2
[𝐽𝑥

𝑇]−1 {
0
0
1
}  (13) 

{𝑄} = (𝑚𝑙𝑖𝑛𝑘 + 𝑚𝑐𝑎𝑟𝑡) ({

�̈�1

�̈�2

�̈�3

} + 𝑔 {
1
1
1
})

+ (𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑙𝑖𝑛𝑘)[𝐽𝑞][𝐽𝑥
𝑇]−1  ({

�̈�𝑝

�̈�𝑝

�̈�𝑝

} + 𝑔 {
0
0
1
}) 

 (14) 

4.1 Static solution 

In case the accelerations are null the static solution is obtained: 

 

{𝑄} = (𝑚𝑙𝑖𝑛𝑘 + 𝑚𝑐𝑎𝑟𝑡)𝑔 {
1
1
1
} + (𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑙𝑖𝑛𝑘)[𝐽𝑞][𝐽𝑥

𝑇]−1 𝑔 {
0
0
1
}  (15) 

 

In the central position (xP=yP=0) it results 

 

{𝑄} = 𝑔 {
1
1
1
} (2𝑚𝑙𝑖𝑛𝑘 + 𝑚𝑐𝑎𝑟𝑡 +

𝑚𝑝𝑙𝑎𝑡

3
)  (16) 

 

In a not-centered position the actuators forces are different, but their sum results to be 

 

𝑄1 + 𝑄2 + 𝑄3 = 3(𝑚𝑙𝑖𝑛𝑘 + 𝑚𝑐𝑎𝑟𝑡)𝑔 + (𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑙𝑖𝑛𝑘)𝑔

= (6𝑚𝑙𝑖𝑛𝑘 + 𝑚𝑝𝑙𝑎𝑡 + 3𝑚𝑐𝑎𝑟𝑡)𝑔 
 (17) 

 

which corresponds to the total gravity force of the suspended masses. 

5 Results and discussion 

An example of calculation of actuators forces resulting from given trajectories imposed 

on the platform is shown in this section. The following masses are considered: 

𝑚𝑙𝑖𝑛𝑘=0.02 kg, 𝑚𝑝𝑙𝑎𝑡=0.5 kg and 𝑚𝑐𝑎𝑟𝑡=0.25 kg. 

The paths are of Lissajous type 

𝒑(𝑢) = [

𝑥𝑃

𝑦𝑃

𝑧𝑃

] = [

𝑥0 sin(𝜔𝑥𝑢 + 𝜑𝑥)

𝑦0 sin(𝜔𝑦𝑢 + 𝜑𝑦)

𝑃𝑄

]  (18) 

 

with 𝜔𝑥 = 6𝜋, 𝜔𝑦 = 4𝜋, 𝜑𝑥 =
𝜋

2
, 𝜑𝑦 = 0 and 0<u<1. Point Q (the extruder nozzle) is 

supposed to move on the horizontal plane at z=0 at constant speed v along the path. The 
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path has been discretized with a uniform mesh of points corresponding to the position 

of the end effector at successive time intervals Ts. The values uk are estimated iteratively 

with the following second order Taylor series, in which vector p denotes the position 

of the end effector. This equation is valid in case speed v is constant [10]: 

𝑢𝑘+1 = 𝑢𝑘 + 𝑇𝑠

𝑣

|
𝑑𝒑
𝑑𝑢

|
𝑘

−
𝑇𝑠

2

2
𝑣2

[
 
 
 𝑑𝒑
𝑑𝑢

𝑇

∙
𝑑2𝒑
𝑑𝑢2

|
𝑑𝒑
𝑑𝑢

|
4

]
 
 
 

𝑘

  (19) 

 

Fig. 3 illustrates the architecture of the machine, with also the path on the printing 

bed.  

 

 
Fig. 3. Architecture of the 3D printer 

 

Fig. 4 on top shows force Q1 at different printing speeds (10, 50 and 200 mm/s). It 

is visible the contribution of inertia forces, which become important increasing speed 

v. It has been verified that the sum of the actuators forces at small speeds coincides with 

the total gravity force of the suspended masses (about 13.4 N), see fig. 4 at bottom. 

In order to further check the results, the time rate of the total energy (potential and 

kinetic energy) has been compared with the input mechanical power generated by ac-

tuators: 

𝑑

𝑑𝑡
(𝐾 + 𝑈) = 𝑄1�̇�1 + 𝑄2�̇�2 + 𝑄3�̇�3  (20) 
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Fig. 5 compares the two members of Eq. (20), which are found to be coincident, 

proving the correctness of the results. 

 

 

 
Fig. 4. Actuator force Q1 (top) and sum of actuators forces (bottom) at different printing speeds v. 



9 

 

 

Fig. 5. Comparison of the total energy time rate and the input mechanical power with v=200 

mm/s 

6 Conclusions 

The direct and inverse kinematics of a delta prismatic robot have been detailed in this 

paper, together with the dynamic study, carried out with the Lagrangian approach with 

multipliers. The results have been checked with the principle of energy conservation 

and checking that at small speeds the total actuators forces coincide with the total 

weight of the suspended masses. The influence of the inertia forces on the actuators 

forces is visible increasing the printing speed. The study has carried out in absence of 

friction and other dissipations for a preliminary set up of the model. Future activity 

could involve the introduction of dissipative actions in order to have a more realistic 

model. 
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