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Abstract 

 

One of the most reliable ways to transmit mechanical power is to use geared mechanisms 

and gears have indeed been used since ancient times in the most different fields. In recent 

years, and especially in the aeronautical and aerospace industry, an ever growing need to 

reduce the weight of the components and increase the transmitted power density trough the 

increase of the rotational velocity has become evident. This trend has led engineers to 

experience complex dynamic phenomena that could lead to failures if not properly 

accounted for in the design phase, which has become ever more complex in terms of the 

contradictory balance between robustness and low weight to be achieved for optimal results 

and a lot of research has been done to understand those phenomena. 

Aim of this work is to develop a dynamic model able to integrate the instantaneous contact 

conditions between the flanks and the compliances of the gear webs and shafts in a 

numerically efficient way, so that this approach could be effectively used in the design or 

verification phase of the engineering process. During gear engagement the main source of 

dynamic excitation is the time-varying mesh stiffness and thus the first step of this work is 

the development of a method to determine it. This is done through an algorithm that takes 

into account the flexibilities of the different parts of the gears, such as the web, the rim, the 

fillet, and the involute profile. A nonlinear step is considered to find the actual contact point 

as it moves due to the deflection of the engaging profiles. To correctly estimate the mesh 

stiffness an accurate description of the contact is needed and therefore a 2D rough 

frictionless contact model is introduced and the effects of tip-corner contact and some profile 

modifications are highlighted. Most of the profile modifications applied to gears during 

manufacturing are also done along the facewidth and as such cannot be studied with a 2D 
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approach. For this reason, 3D rough frictionless contact is introduced coupled with a detailed 

description of the gear geometry through the use of 3D solid finite elements and the effects 

of profile modifications on the static transmission error and mesh contact stiffness are 

discussed.  

In order to validate the results obtained from the presented approaches an experimental test 

bench to measure the quasi static transmission error is presented and the computational 

results are compared against the experimental ones. This test bench features an innovative 

design especially regarding the measurement, since the angular encoders reading the 

deformations are mounted so that the tangential displacements are uncoupled from the 

radial and axial ones, ensuring accurate readings.  

Next, a time domain dynamic model is presented, which includes the results of the contact 

analyses and 3D finite element discretization to capture the flexible behavior of gears during 

engagement with fast computational times. This is achieved through the use of reduced 

order models, rotations of the results obtained at the previous time step and a series of 

expansions and reductions of the degrees of freedom to simulate the motion of the gears 

and the travelling load as the teeth enter and leave contact. The nonlinear mesh stiffness 

included is both time and load dependent. Models with different web designs are analyzed 

with this method and the results obtained are discussed for different conditions and also 

tooth profile modifications. Finally, the strengths and weaknesses of the proposed method 

are discussed, and the possibility of further improvement is commented upon. 
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Sommario 

 

Uno dei modi più affidabili per trasmettere potenza nei sistemi meccanici è quello di usare 

trasmissioni con ruote dentate che infatti sono state usate fin dai tempi antichi nei più diversi 

ambiti di applicazione. Negli ultimi anni, specialmente nell’industria aeronautica ed 

aerospaziale, si è manifestato un sempre crescente bisogno di ridurre le masse in gioco e 

incrementare la densità di potenza trasmessa attraverso l’aumento della velocità di 

rotazione dei componenti. Questa tendenza ha portato gli ingegneri a scontrarsi con 

fenomeni dinamici complessi che potrebbero portare a cedimenti se non debitamente 

considerati in fase di progettazione, che è diventata anche più complessa in termini della 

ricerca del contradditorio equilibrio tra robustezza e leggerezza da ottenere per risultati 

ottimali e molta ricerca si è svolta per comprendere questi fenomeni. 

Obbiettivo di questo lavoro è quello di sviluppare un modello capace di integrare le condizioni 

istantanee del contatto tra i fianchi delle ruote e le cedevolezze della cartella e dell’albero in 

una maniera numericamente efficiente, per fare in modo che questo approccio possa essere 

usato efficacemente nella fase di progettazione o verifica. Durante l’ingranamento la 

principale sorgente di eccitazione dinamica proviene dalla variazione nel tempo della 

rigidezza di ingranamento, perciò il primo passo di questo lavoro è lo sviluppo di un metodo 

per determinarla. Questo è ottenuto attraverso un algoritmo che tiene in considerazione le 

flessibilità delle diverse parti delle ruote dentate, quali la cartella, la corona, il raccordo e il 

profilo a involute. Un approccio nonlineare è incluso per ottenere il punto di contatto reale 

dato che questo si sposta a causa della deformazione dei profili a contatto. Per ottenere una 

rigidezza di ingranamento precisa è necessaria un’accurata descrizione del contatto e per 

fare questo un modello bidimensionale è introdotto e gli effetti del contatto tra gli spigoli delle 
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dentature sono analizzati insieme ad alcune modifiche di profilo. Tuttavia, la maggior parte 

delle modifiche di profilo effettuate sulle ruote durante la produzione sono create lungo la 

larghezza di fascia e quindi non posso essere studiate solamente con un approccio 

bidimensionale. Per questo motivo un modello di contatto tridimensionale è stato introdotto, 

accoppiato al calcolo delle cedevolezze coerente con questa modifica e gli effetti di questo 

tipo di modifiche di profilo sull’errore statico di trasmissione e di rigidezza di contatto sono 

discussi. 

Per validare i risultati con gli approcci presentati un banco sperimentale per la misura 

dell’errore di trasmissione quasi statico è presentato e i risultati computazionali sono 

comparati con quelli sperimentali. Questo banco di prova introduce caratteristiche innovative 

specialmente per quanto riguarda il sistema di misura, dato che gli encoder angolari che 

leggono le deformazioni sono montati in modo che le deformazioni tangenziali siano 

disaccoppiate dalle deformazioni radiali e assiali, in modo da assicurare misure precise. 

Successivamente, un modello dinamico nel dominio del tempo con tempi di calcolo molto 

rapidi è presentato, che incorpora i risultati delle analisi del contatto precedenti e una 

discretizzazione ad elementi finiti per catturare il comportamento flessibile della ruota 

durante l’ingranamento. La velocità del modello è ottenuta tramite l’uso di modelli di ordine 

ridotto, rotazione dei risultati ottenuti all’istante di tempo precedente e una serie di 

espansioni e riduzioni dei gradi di libertà per simulare il movimento delle ruote durante 

l’ingranamento e lo spostamento dei punti di applicazione del carico mentre i denti entrano 

e lasciano il contatto. La rigidezza di contatto inclusa nel modello è sia dipendente dal tempo 

che dal carico. Diversi modelli con diverse tipologie di cartella sono analizzati attraverso 

questo modello e i risultati ottenuti sono confrontati anche con diverse modifiche di profilo. 

Per concludere, i punti di forza e di debolezza di questo metodo sono discussi insieme alle 

possibilità di miglioramento dello stesso. 
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I. Introduction 

 

 

Gears are widely used mechanisms employed to transmit power and motion between 

different mechanical components.  For their comprehensive study, several aspects need to 

be considered which considerably complicates the design process. During this delicate 

phase, the designer needs to assess the various layout possibilities and verify that each of 

them respects the design failure criteria. Furthermore, in order to develop a reliable and low 

noise product, several other analyses must be carried out with several different tools to 

ensure correct engaging conditions, and this can lead to sub-optimal results achieved by the 

end product since many mistakes can be made in-between the analyses or the different 

software used. Aim of this work is to develop a methodology to analyze gears in their entirety 

as accurately as possible, while keeping the computational times short to allow for design 

explorations by varying several parameters, all in one environment. Several tools are 

available for the quick and rough dimensioning of gears but those often neglect important 

aspects such as the compliance of the different part of the gears or the contact mechanics 

involved in their meshing. On the contrary, software based on Finite Elements are also 

popular and include those aspects at the price of slow and cumbersome model creations and 

computations. In this work approaches able to capture those aspects with fast setup and 

computational times, both in two and three dimensions, will be detailed, but its application to 

parametric studies and failure criteria will not be discussed. Even if the wanted results in 
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terms of performance and weight are obtained under static conditions gears and 

transmissions are inherently dynamic systems due to their natural fluctuations in stiffness 

and other parameters during their rotation. Those dynamic aspects are often neglected up 

until the moment when the transmission is tested and either high cycle fatigue phenomena 

or disturbing noises present themselves. At the test stage the characteristics of the product 

are well defined and only minor changes can be made to suppress those unwanted 

byproducts. The dynamic interaction between gears is usually neglected in most industrial 

settings during the design process since the available methods and software are usually 

either very simplified or they require computational times that cannot coexist with the 

industry need to satisfy the customers as soon as possible. For this reason, a method to 

perform rather quickly and simply this kind of dynamic analyses using a scheme employing 

reduced order models of fully flexible and compliant gears will be detailed and applied. This 

method is still young but has a great overlook since it will allow the study of the dynamic 

characteristics of a transmission already in the design phase, providing key information to 

the designers before actual tests in an amount of time short enough to be actually applicable 

in an industrial scenario. 
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II. State of the Art 

 

 

 

II.1  History of the field 

 

Gears are one of the most widely used methods to transmit motion and power, and they 

have been so since ancient times. Probably the oldest evidence of their use is the Antikythera 

mechanism which dates back to the 3rd century BC and was used as an astronomical 

calendar. The Chinese during the 3rd century developed a chariot with a differential 

mechanism with gears to keep the statue of the emperor pointing south as it travelled 

through the country. From the ancient ages the uses of gears have multiplied exponentially 

and as of today their uses ranges from super-heavy machinery, down to miniaturized high-

precision applications like clocks and watches. Recently [1] it has also been discovered that 

a small insect in its juvenile state uses a geared mechanism to synchronize the movement of 

its legs during jumps to maximize accuracy and distance covered. This is the first occurrence 

of a natural geared mechanism ever found. Ideally gears could be considered as rigid bodies 

and as such, due to their properties and geometry, they should be able to transmit motion at 

a constant rate without introducing in the system that they’re a part of further sources of 

dynamic excitations. This would mean that gears wouldn’t be sources or victims of 

mechanical failures since those are most commonly caused by dynamic problems. Indeed, 

most of the damage mechanisms, such as fatigue and wear, and all the noise and harshness  
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Figure 1: Naturally occurring geared mechanism from [1] 

problems are due to the dynamic nature of the conditions in which the mechanical systems 

are operating. The large amount of literature related to engagement dynamics and gear 

dynamics in general ( [2] [3] [4]) proves that this is not the case. This great amount of literature 

available is due to the various aspects and outputs the engineers are interested in, starting 

from the stresses in the gears, the cumulated damage, the efficiency of the power 

transmission, the noise and vibration emission and propagation, the loads on the supporting 

members such as the bearings and the gearbox casing, all the way to more complex 

problems like rotor dynamics and the final life assessment of the entire transmission. These 

dynamic effects are generated by the system kinematics, such as the cyclic variation of load 

due to gears rotation, and by the system flexibility. The first aspect could surely induce failure 

of the gears such as fatigue in the tooth root fillet or in the contact surface, but this is implicit 

in the nature of mating gears and unavoidable and therefore must be treated by a 

conventional fatigue approach as described in the consolidated standards like AGMA [5] or 

ISO [6]. Scientific analyses to reduce and mitigate problems related to the second aspect 

started in the Twenties and Thirties of the 20th century and they were related to the 

evaluation of the dynamic overloads due to teeth mating and studied which design changes 

could increase the lasting of the system by reducing noise and vibration. In the Fifties studies 

were conducted to understand the overload during engagement with the help of the first 

dynamic models. More complex models were then introduced in order to improve their 

accuracy and to take into account the effects of tooth tridimensionality and the nonlinearities 

of the main components and also due to the effects of friction and lubrication. The increase 

in computational power and availability the literature is enriched by complex Finite Element  
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Figure 2: Tooth bending strength calculation according to AGMA [5] and ISO [6] 

(FE) and Multibody models that also consider the micro and macro geometry of the gears, 

the overall deformations of the gearbox components and the evolution in time of the 

engagement. The goals of those studies also shifted with time. The earlier works are oriented 

towards the estimation of the Dynamic Factor which is the load increment due to the 

dynamics. Others are instead voted to engagement dynamics and they focus their attention 

on the compliance. Others are more system-oriented and they consider shaft and bearing 

clearances and flexibilities. With the rise of high spin speed system gyroscopic effects are 

also taken into account with complex rotor dynamics models of the geared system, while 

others are more focused on the noise and vibration aspects. This wide variety of goals and 

methods is justified by the objective complexity of those systems and reflects the difficulty 

of understanding and modeling the dynamic behavior of geared transmissions. In the early 

years the objective was to study and define a factor to scale the nominal forces to take into 

consideration the dynamics during the design of the gears, as is still done today according 

to [5] and [6]. The first works were mostly experimental and the first definition of the Dynamic 

Factor was obtained by comparing the nominal conditions to failure conditions by 

experimentally vary the spin speed and loads of a transmission and recording ruptures [2]. 

Failure conditions were then compared to nominal ones and the Dynamic Factor was 

computed. This clear dependency of the survival of the gears with spin speed and load 

conditions led Walker [7] to propose the first analytical expression. In that expression the 

Dynamic Factor was directly related to the tangential speed and the pitch diameter 

𝐷𝐹 = 
600 + 𝑣

600
=  
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑙𝑜𝑎𝑑

𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑
 (2.1) 
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where 𝑣 is the linear speed of the gear at the pitch diameter in feet per minute. This approach 

overestimated the dynamic contributions since it neglected a lot of parameters. A 

modification, which will become the starting point for the AGMA standard [5], was proposed 

in [8]: 

𝐷𝐹 = 
78 + √𝑣

78
=  
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑙𝑜𝑎𝑑

𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑
 (2.2) 

 

The AGMA standard will later take into consideration the manufacturing quality in the 

expression of the Dynamic Factor 𝐾𝑣: 

𝐾𝑣 = (
𝐶

𝐶 + √𝑣
)
−𝐵

= 
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑙𝑜𝑎𝑑

𝑠𝑡𝑎𝑡𝑖𝑐 𝑙𝑜𝑎𝑑
 (2.3) 

 

where 𝐶 = 50 + 56(1 − 𝐵) and 𝐵 = 0.25(𝐴𝑣 − 5)
2/3. Tuplin [9] is the first to also consider 

the errors due to gear manufacturing. He defines a natural frequency of the resonance 

phenomenon that could occur in a gear pair when a pitch error is present and the maximum 

load that the gear pair could experience. A sketch of this model is visible in Figure 4 and the 

accelerations �̈�1and �̈�2 can be computed solving the equations of motion where the external 

load is represented by the time variation of the distance between the gear 𝑚2 and the 

stiffness 𝑘. Tuplin finds that the maximum load cannot exceed the value of the stiffness times 

the pitch error 𝑒. Harris [10] conducted a series of tests to understand the causes of gear 

vibration. Harris analyses the relative displacement as the variation in the velocity ratio at 

the pitch diameter for different gears and loads. He finds that the relative displacement at a  

 

Figure 3: Visualization of the TE: In grey the ideal position, in cyan the actual one 
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precise load is strictly related to the static error at that loads and the curves he registers in 

the so called Harris map (Figure 5) are only related to the variation in stiffness. He therefore 

introduced the concept of the design load which corresponds to the particular torque for 

which the mesh excitations of a given gear are minimal. His findings were confirmed by 

numerous experiments and also proven theoretically for pinion-gear pairs [11] [12] and for 

multi-mesh systems [13], thus the importance of the Transmission Error (TE) was highlighted. 

If the gears are considered rigid, they form a perfect kinematic coupling and therefore the 

displacements along the line of action of the two mating gears are equal, so 

𝑑𝑏,1
2
휃1 = 

𝑑𝑏,2
2
휃2 (2.4) 

 

where 𝑑𝑏,1, 𝑑𝑏,2 represent the base diameters of the two mating gears and 휃1, 휃2 their 

angular displacements. In actual conditions teeth are flexible, profiles are different from ideal 

and due to manufacturing and assembly errors the above relationship doesn’t hold anymore. 

Therefore, the following general definition for the TE can be stated 

𝑇𝐸 =
𝑑𝑏,1
2
휃1 − 

𝑑𝑏,2
2
휃2 (2.5) 

 

If conditions can be considered static or quasi-static this TE is often called Static Transmission 

error (STE) or Loaded Static Transmission Error (LSTE). When the TE is computed taking into 

considerations only the modifications from the ideal gears due to the manufacturing process 

then it’s called Manufacturing Transmission Error (MTE). Those errors can be of shape, of pitch 

deviations or indexing and run-out. When the mounting deviations such as center distance 

variation, eccentricities, and misalignments but no loads are acting on the system then that 

is called the No Load Transmission Error (NLTE). Furthermore, due to dynamic effects, the 

instantaneous load changes and teeth could even lose contact and even have impacts on 

the coast side of the tooth profile and during rotation all of the above mentioned errors 

cumulate and the Dynamic Transmission Error (DTE) originates, which is hence a function of 

time, that can be expressed as 

𝐷𝑇𝐸 =
𝑑𝑏,1
2
휃1(𝑡) − 

𝑑𝑏,2
2
휃2(𝑡) (2.6) 
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Figure 4: Tuplin dynamic model [9] 

 

 

Figure 5: Harris map [10] 
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II.2 Sources of excitation 

 

Evidently the calculation of those errors, especially the STE, is crucial in understanding the 

dynamic interaction in geared systems and obtaining the correct Dynamic Factor 𝐾𝑣 and the 

DTE. The first works in this direction where based on analytical formulations and the first one 

is by Weber [14] and later by Weber and Banaschek [15]. These works are based on the 

superposition of the deformation due to the contact between teeth, the deflection of a 

clamped-free beam with the shape of the tooth and the ring compliance. 

The compliance due to contact between teeth is analyzed using the bidimensional Hertz 

theory [16] for cylindrical contact, while Lundberg [17] proposed to consider a distribution 

of pressure at the surface of an elastic half plane.  The clamped-free variable shape beam 

introduces the flexural, shear and normal compliances. The gear body is accounted for 

considering the tooth rigid and assuming the ring as an elastic semi-infinite plane where 

flexural, shear and normal effects are applied. Ishikawa [18], according to [19], improved 

the methodology by considering the tooth as a trapezoidal beam attached on top of a 

rectangular beam. Attia [20] introduced some modifications to Weber’s model and a sketch 

for its application is visible in Figure 6 in which 𝑌𝐴 is the height from the root circle of the 

point of application of the load 𝑃, 𝑥1 and 𝑥2, are the distances between the beginning of the 

flank of tooth 𝐴 and the centerlines of tooth 𝐵 and 𝐶 respectively, while 𝑥3 and 𝑥4 are the 

distances from those centerlines to the boundary of the considered gear portion of length  

 

Figure 6: Sketch of Attia's model [20] 



II 

   

  
 30 

 

𝑐.The angles 𝛿1 and 𝛿2 are the angular deflections of the unloaded teeth 𝐵 and 𝐶 while 휁𝐵 

and 휁𝐶 are the corresponding angles computed at height 𝑌𝐵 and 𝑌𝐶 over the centerline of 

the respective tooth. due to the load applied on tooth 𝐴. Its main contribution is hence the 

inclusion of the deflection of the teeth close to the loaded one in the calculation of the static 

solution. Cornell [21] later used a discrete approach instead of Weber’s integral approach to 

improve the feasibility of a computer implementation. O’Donnel [22] improved the model by 

implementing influence coefficients in the evaluation of tooth base stiffness. More recently 

Sainsot et al. [23]  modified the approach to the compliance of the tooth base 휁′′′ from the 

semi-infinite plane of Weber to a semi-analytical formulation based on elastic rings which 

results in the following comprehensive formula: 

𝑦𝐴 =
𝐹𝑐𝑜𝑠2𝛼

𝑏𝐸
∙ [𝐿∗(ℎ, 휃𝑓) (

𝑢

𝑠𝑓
)

2

+𝑀∗(ℎ, 휃𝑓)
𝑢

𝑠𝑓
+ 𝑃∗(ℎ, 휃𝑓) ∙ (1 + 𝑄

∗(ℎ, 휃𝑓)𝑡𝑔
2𝛼)] (2.7) 

 

where the coefficients 𝐿∗, 𝑀∗, 𝑃∗ and 𝑄∗ are given as functions of the thickness of the tooth at 

the root and the ratio between the inner and outer radius of the gear rim and the other terms 

will be detailed in paragraph III.3.2. Other authors propose semi empirical models to describe 

the stiffness variation during the motion of the gear, such as the work of Cai and Hayashi 

[24]. In this paper the stiffness of the tooth is described as a function of time and contact ratio 

and the main parameters are the spin speed of the gear and the number of teeth that are 

contemporarily mating. For helical gears, Umezawa et al. ( [25] , [26]) observed a logarithmic 

relationship between the stiffness and the position along the tooth face, and later Cai [27] 

proposed an improved function for the stiffness considering the contact ratio and addendum 

modifications. As the computational power increased many researchers started using the FE 

method, initially to compute the stress in the root fillet, but in [28] the FE was used instead to 

evaluate the dynamic behavior of the gear pair. An interesting validation of the FE approach 

is given in [29]. In that paper a comparison of 3D FE with experiments and other base theories 

is given. From that time many researchers started using FE analyses to calculate the stiffness 

of the teeth. Some of those consider only the effect of the tooth stiffness neglecting the 

contact, so the FE model is only related to the structural behavior of the tooth as in [30], [31] 

and [32]. Others consider separately the summation of Hertzian phenomena and the elastic 

behavior of the gear ( [33], [34], [35], [36], [37], [38], [39]). An in-depth literature overview of 

the use of FE in the simulation of gear drives is given in [40]. Interestingly, Parker et al. [41] 

introduced a detailed semi-analytical contact mechanics model close to tooth surface, 
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matched to a FE model of gear teeth and body that closely captures the non-linear dynamic 

response of spur gears, and another hybrid approach is presented in [42] . The effects of 

profile and lead modifications was investigated for helical gears in [43] and [44], where it was 

found that the meshing process can be modified by those since they affect the contact lines 

in the base plane and also the quality class of the gear was considered. Houser et al. [45] 

experimentally verified the strict correlation between the STE and the noise and vibration 

levels generated in operation. This relationship led researchers to minimize this source, first 

by investigating the corner contact [46], then suggesting algorithms to obtain the optimal 

microgeometries [47]. Other attempts at controlling the microgeometry can be found in [48], 

[49] for the improvement of the load distribution along the tooth flank, and in [50] to reduce 

the overloads. Recently [51] [52] [53] a set of analytical formulas was proposed which defines 

the optimal set of linear tip relief for spur and helical gears which minimizes the variance of 

the STE. The wide literature around these aspects highlights their importance and indeed 

Wang [54] [55] analyzes the effects of backlash and the STE in lightly loaded high speed 

gears. He concludes that “the backlash alone is not a source of trouble, but backlash coupled 

with transmission errors can be”. In [56] a study related to gear vibration is carried out using 

an analytical approach, considering the tooth stiffness variable along the tooth height and 

the position of the external force moves according to the engagement process. 

 

II.3  Dynamic models 

 

 In the years between Tuplin [9] work and that of Bahgat et al. [56] a great number of studies 

were conducted and the extensive review by Ozguven and Houser [2] was surely the starting 

point for the model presented in [57], which is similar to the one in [26] but makes a distinction 

between STE and DTE and uses the former to compute the latter and was validated on the 

experimental results of dynamic root strains recorded in [58]. Figure 7 shows a 

representation of their proposed model in which two gears, characterized by equivalent 

inertias 𝐼1, 𝐼2 and base diameters 𝑑𝑏,1, 𝑑𝑏,2, are loaded by a driving 𝑇1 and resisting torque 𝑇2 

and displace of quantities 휃1 and 휃2. The two are connected by a stiffness 𝑘𝑚 and 

proportional damping 𝑐𝑚 due to the meshing interaction, while the dynamic source of 

excitation is modeled by the time-varying quantity 𝑒(𝑡). Using a similar model, Kahraman 

and Singh in [59] study the dynamic behavior of a gear pair simplifying some aspects. For 
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example, the STE is modeled as a sinusoidal quantity that varies with its own frequency and 

the fluctuation of the torque is characterized by a fundamental frequency different from the 

one of the STE, and those fluctuations make up the excitation sources. However, it introduces 

a non-linear trend of the elastic contribution to the force equilibrium, which is equal to zero 

when the displacement measured along the line of action is between the values of the 

backlash and is linear otherwise. This nonlinear trend is depicted in Figure 8 where 𝑞 is the 

displacement along the line of action, 𝑏 is half the backlash again measured on the line of 

action, 𝑘𝑚 is the mesh stiffness and 𝐹(𝑞) is the resulting force contribution. The same authors 

later improved their model [60] by taking into account also the compliance of the shafts and 

the clearances in the bearings as well as the periodic variation of the mesh stiffness as a 

source term. Blankenship and Kahraman [61] later developed a test rig to verify the numerical 

results and they find that if a non-linear jump phenomenon occurs, its jump-up frequency is 

 

Figure 7: Ozguven and Houser model [57] 

 

 

Figure 8: Nonlinear trend of the elastic contribution from [59] 
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independent of the load applied, while the jump-down frequency lowers as the load vanishes. 

A similar model can be found in [24], but they explicit the error contributions, and they are 

able to linearize the equations and express the error function in Fourier’s series considering 

the effect of contact ratio and errors on the dynamic response of the gear pair. They then 

demonstrate that the presence of subharmonics in the response is mainly due to the error 

harmonics. In [62] the authors provide a detailed description of flank modifications, 

deviations from the theoretical one and mounting errors resulting in a general definition of 

the NLTE, which was first investigated in [63]. They apply this methodology on a system in 

which each gear is represented by 6 degrees of freedom, and it proves to represent well 

enough a unified approach. In [64] Theodossiades and Natsiavas consider the time-

dependent mesh stiffness not as an external excitation, but as an intrinsic time-varying 

parameter of the system and they study the system’s response with analytical and 

numerical methods analyzing the effects of backlash, damping and other parameters on the 

response and stability in several conditions highlighting the possibility of occurrence of crises 

and intermittent chaos for this kind of systems. The same researchers then improved their 

model [65] including also the non-linear characteristics of oil journal bearings and also 

proposing a reduced order model to take into account also the flexibilities of the shafts and 

their rotordynamic behavior showing that several possible branches of unstable periodic 

response are possible. Another approach detailed in [66] introduces nonlinearities also from 

bearings and by only specifying the external loads the existence of other chaotic phenomena 

is demonstrated. In [67] a modelling approach is developed to compute the kinematics and 

contact conditions for highly loaded gears in non-Newtonian mixed thermo-

elastohydrodynamic conditions showing the influence of profile modifications on the contact 

and lubrication pattern and on the related power loss. Amabili and Rivola [68] proposed a 

modified non-linear model that takes into account also the non-linearity in damping and for 

its description they use the same approach as for the stiffness. NASA [69] published a report 

implementing the state of the art and focus on a parametric evaluation of the dynamic 

overload with respect to the contact ratio highlighting its importance in ruling gear dynamics. 

Kahraman and Blankenship [70] [71] experimentally investigated the relationship between 

the contact ratio and the magnitude of the dynamic overload and also the one between 

mesh stiffness variation and contact ratio. One of the first works that employs FE to evaluate 

gear dynamics is [72] in which different models of increasing complexity are studied and the 

influence of the engaging shifting due to teeth compliance on the dynamic overload is 

underlined. An interesting work focused on damping and friction was published by Vaishya 
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and Sing in [73] and later in [74]. They consider the friction coefficient as an explicit function 

of time by taking into account the instantaneous sliding velocities between the surfaces due 

to the kinematics and the vibration. They highlight that friction damping is present also at 

pitch point where theoretically no sliding effects are present and that the absence of 

instabilities in most practical applications is due to this effect, but that this friction effect is a 

source of excitation for out of line actions. A further model improvement was published in 

[75] where the effects of profile modifications, backlash, tooth separation, mesh and bearing 

damping were included.  

 

Figure 9: Coupled FE/Contact mechanics model from [41] 

 

Parker and Vijayakar [41] removed the need to provide the mesh stiffness as in input by 

coupling a FE model with a detailed analytical contact model a got close agreement with 

experimental data on the dynamic response of spur gears and also compared to 

experimental tooth root strains in [76]. The same method was later extended to the frequency 

domain in [77]. This approach was even employed to applications in planetary gears [78] and 

experimental comparisons can be found in [79] also against simpler lumped parameters 

models. Further improvements to the method were introduced in [80] [81] [82] where the 

effects of compliant ring and sun gear was studied and it was shown that a higher flexibility 

of those components can improve the load sharing on the planets and the overall dynamic 
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response. The effects of the presence of rolling elements was investigated in [83] using the 

same approach and comparing the results to those from a perturbation analysis. 

Improvements to reduce the computational effort were introduced in [84] [85] still 

considering several sources of non-linearities and the influence of flexibilities and also the 

effects of tooth profile modifications [86]. This model was the base upon which the Hybrid 

Analytical-Computational model was developed in [87]. The authors precompute a Force 

Deflection Function for various loads and apply that to a lumped parameters model obtaining 

extremely accurate results at a fraction of the computational time required by more complex 

analyses. Cooley and Parker also introduced an approach to the simulation of flexible gears 

by modeling a rotating elastic ring coupled to constant space-fixed foundations [88] [89] and 

a study on the parametric instabilities was later conducted introducing fluctuating values of 

the mesh stiffness [90]. The analytical nature of their model allows them to derive closed-

form solutions for the eigenvalues including rotor dynamics effects and study in detail 

veering and instability phenomena. An interesting paper from Cooley et al. [91] analyzes two 

different methodologies to compute the mesh stiffness during the engagement and they  

 

Figure 10: Force Deflection Function from [87] 
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show how to appropriately use it as input in lumped parameters or FE dynamic models. The 

first one is the average slope approach and it implies the calculation of the mesh stiffness 

simply dividing the load by the deflection during engagement: 

𝑘𝑎 =
𝐹𝑚
𝑞𝑚

 (2.8) 

where 𝑞𝑚 =
𝑑𝑏,1

2
휃1 − 

𝑑𝑏,2

2
휃2 − 𝜖 and 𝐹𝑚 is the tooth mesh load. In this expression the loaded 

TE from (2.5) can be recognized and 𝜖 is the NLTE. The local slope approach contemplates the 

following instead: 

 

𝑘𝑙 =
𝐹𝑚(𝑞𝑚 + ∆𝑞𝑚) − 𝐹𝑚(𝑞𝑚 − ∆𝑞𝑚)

2∆𝑞𝑚
 (2.9) 

 

where ∆𝑞𝑚 is a small variation in the mesh deflection. The authors find that using the average 

slope approach is correct for static analyses, but is incorrect for dynamic studies, where the 

local slope approach should be used instead, thus formulating the equations of motion as 

 

Figure 11: Average and Local slopes for the estimation of the mesh stiffness from [91] 
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𝑚𝑒�̈�𝑚 + 𝑘𝑙(𝑡)𝑞𝑚 = 𝑘𝑙(𝑡)𝑞0(𝑡) (2.10) 

 

where 𝑚𝑒 is the equivalent mass of the system and therefore the excitation depends on the 

STE 𝑞0(𝑡) which takes into account both the mean and the fluctuating components of the 

mesh stiffness. Hotait and Kahraman [92] went back and tried to experimentally deepen the 

understanding of the relationship between the DTE and the DF. They recorded for different 

torques and speeds the DF as the ratio between the tooth root strain under dynamic 

conditions and quasi-static ones (Figure 12): 

𝐷𝐹 =
[휀𝑑𝑦𝑛(𝑡)]𝑚𝑎𝑥
[휀𝑠𝑡𝑎𝑡(𝑡)]𝑚𝑎𝑥

 (2.11) 

 

At the same time, they recorded the DTE and found a strong relationship between the two 

factors finally formulating a linear relationship between them, allowing the estimation of one 

by knowing the other. Palermo et al. [93], starting from [41], proposed a scalable multibody 

model for spur and helical gears based on an instantaneous contact solution and considering 

also the effects of misalignments. Particularly interesting is the description of the shuttling, 

that is axial fluctuations due to mounting deviations, and its effects on the bearings loads 

and the dynamic moments along the plane of action. Lim and Singh [94] [95] [96] analyzed 

in detail the literature regarding the inclusion of the housing in the global 

 

Figure 12: Static and dynamic tooth root strains during engagement from [92] 
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dynamic response and coupled the gearbox assembly with its gears and rolling elements to 

study the overall response. Rigaud and Sabot used a FE model of the gearbox [97] and 

showed the effects of the inclusion of all components of a gearbox, such as shafts, bearings, 

couplings and external inertias, on the overall dynamic response. In [98] a detailed FE model 

of the gearbox was used to compute its vibroacoustic response, but the dynamics of the 

gears was decoupled from the FE and only later the excitation through the bearings was 

applied to the casing. Instead in [99] the dynamics of the gears and the housing was coupled 

directly by a FE/contact mechanics model. In statics the rolling elements of the bearings were 

described in detail, while in dynamics they were included as an equivalent lumped-

parameter model to reduce their otherwise enormous computational cost. 
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III. 2D teeth contact analysis 

 

 

 

 

III.1 Introduction 

 

In this chapter an algorithm for 2D teeth contact analysis and the calculation of STE of spur 

gears will be developed. First, the needed parameters relating to the geometry of the teeth 

defined to be used for the calculation of the deflections during engagement are defined. Next, 

the procedure to obtain the deflections under operation of the different contributions of the 

teeth and the gear body is shown and introduced in an nonlinear iterative algorithm which 

seeks equilibrium between the actual contact point considering the deformations and the 

actual load sharing factor between the engaged teeth pairs. Then a non-Hertzian contact 

model will be shown and the iterative contact detection taking into account tooth 

deformations under load will be introduced. The proposed model, as well as the 3D 

counterpart shown afterwards, will couple this precise non-Hertzian contact model in a 

nonlinear procedure in which both the actual contact point considering profile deformation 

and the load sharing coefficients will be iteratively sought. This is done without using finite 

elements or schemes such as the Lagrange multipliers method, but will use only semi-
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analytical formulations, resulting in a fast, detailed, and precise tool. The proposed model will 

be compared to a 2D FE model and against literature results. Finally, the notion of the tip 

relief tooth surface modification will be introduced, and its effects analyzed.  

 

III.2 Parameters definition 

 

The first step for an analysis is to determine the geometry and any spur gear can be defined 

by knowing the following parameters: 

o number of teeth 𝑧 

o modulus 𝑚 

o face width 𝑏  

o pressure angle 𝛼𝑃  

o root fillet radius 𝑟 

o addendum ℎ𝑎 (usually ℎ𝑎 = 𝑚) 

o dedendum ℎ𝑓 (usually ℎ𝑓 = 1.25𝑚) 

The definition of the profiles of the teeth, namely the involute flank profile, the root fillets and 

the addendum and dedendum circles follows the well-established machine design criteria 

that can be found for example in [100]. Cornell [21] further specifies between two types of 

teeth profiles: 

o Low Contact Ratio Gears (LCRG)  

o High Contact Ratio Gears (HCRG) 

The discriminant between the two types of gears lies in the position of the beginning of the 

tooth root fillet with respect to the base radius. Gears whose fillet radius begins above the 

base radius are called “Standard gears” and their profile is called “form S” and therefore they 

verify the following inequality: 

(𝑅𝑟
2 + 2𝑟 𝑅𝑟) ≥  𝑅𝐵

2  (3.1) 

 

Where 𝑅𝑟 is the radius of the root circle and 𝑅𝐵is the radius of the base circle defined as 𝑅𝐵 =

𝑅𝑃𝑐𝑜𝑠𝛼 and 𝑅𝑃 is the pitch radius defined as 𝑅𝑃 = 𝑧 ∙ 𝑚.  If instead the tangent point of the 
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fillet radius to the involute portion of the flank lies below the base circle, the gears are called 

“Undercut tooth gears” and their profile is called “form A” and verifies the following inequality: 

(𝑅𝑟
2 + 2𝑟 𝑅𝑟) <  𝑅𝐵

2  (3.2) 

 

In Figure 13 are visualized the meanings of the terms mentioned above and others, while in 

Figure 14 the differences between “form S”  and “form A”  profiles can be appreciated. This 

distinction had to be specified since some of the parameters that will be detailed in the 

following will change depending on the tooth form. In Figure 14 it is also possible to observe 

the radius 𝑅𝑓 which defines the beginning of the active portion of the involute profile. In the 

next paragraph the procedure to compute the deflections under load of a teeth will be carried 

out mostly according to the work of Cornell [21] and therefore it is better to define all the 

relevant parameters that will be used. Some of those are valid for the entire tooth and don’t 

change depending on the point of the flank considered, while others do and will vary along 

the profile. Indeed, during the generation of the geometry of the teeth and the entire gears, 

which was omitted because trivial and extremely well established in literature, the profiles 

are discretized in a number of points 𝑁𝑖 . The calculation procedure that will follow is  

 

Figure 13: Main gear nomenclature 
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Figure 14: Form S and Form A differences from [21] 

 

 

Figure 15: Parameters for the definition of the tooth fillet radius from [101] 
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computationally inexpensive and therefore 𝑁𝑖  can as well be in the range of thousands, thus 

increasing the resulting accuracy since the non-Hertzian contact model that will be 

presented in III.4 and the iterative contact detection strongly rely on this discretization. The 

definition of the fillet radius and its geometry have been implemented by simulating the 

meshing action between a rack cutter and the generated gear according to [101] [102] and 

in Figure 15 are visible the main parameters needed, which are mainly the radii of curvatures 

𝜌1, 𝜌2 for the drive and coast sides which define the beginning and end points (𝑐, 𝑒 and 𝑑, 𝑓 

respectively) and their arc length 𝑙𝑐 and 𝑙𝑏 if an asymmetric profile of the generating rack 

cutter is considered, while obviously 𝜌1 = 𝜌2 and 𝑙𝑐 = 𝑙𝑏 for a symmetric one. For further 

details on the process of generating a profile from the simulation of the meshing action 

between a rack cutter and a workpiece the reader can refer to [101] and [102] or for a more 

comprehensive treaty to [103].In the following it is implied that the different parameters will 

depend upon the gear in consideration and therefore the suffix 𝑗 = 1,2 , where 1 indicates 

the pinion gear and 2 the driven gear (Figure 17), will be dropped where not explicitly needed. 

The parameters that do not change depending on the coordinates of the point considered 

are: 

o 𝑡𝑝 tooth thickness at pitch circle 

o 𝐵 =
𝑡𝑝

2 𝑅𝑃
+ tan𝛼𝑃 − 𝛼𝑃 (3.3) the angle between the midline of the tooth and the 

intersection point between the base circle and the flank, measured at the center of 

rotation of the gear 

o �̅� = √(𝑅𝑟 + 𝑟)
2 − 2𝑟 √(𝑅𝑟 + 𝑟)

2 − 𝑅𝐵
2 + 𝑟2 (3.4) radius of the circle passing 

through the tangency point between the tooth flank and the fillet 

o cos ̅ = 
𝑅𝐵 

�̅�
⁄  (3.5) 

o ̅ = 𝐵 − tan ̅+ ̅ (3.6) 

o ℎ̅ = 2�̅�  sin ̅ (3.7) thickness of the tooth at radius �̅� 

o ̅  angular extension of the tooth root fillet radius, defined as 

o  ̅ = ̅− ̅  (3.8) for “form S” teeth 

o  ̅ = 𝐵  (3.9) for “form A” teeth 

o 𝑟 = sin
−1 (

𝑟

𝑟+𝑅𝑅
) (3.10) angle between the midline of the tooth and the center 

point of the root fillet, measured at the center of the gear and defined only for gears 

with “form A” teeth. 
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A visualization of those parameters is available in Figure 16. The parameters that instead 

change depending on which 𝑖𝑡ℎ node of the 𝑁𝑖  discretizing the profile of the tooth are: 

o 𝑅𝐿𝑖 , contact radius defined as the radial position of the 𝑖𝑡ℎ point form the center of 

rotation of the gear 

o 
𝐿𝑖
= 𝑐𝑜𝑠−1 (

𝑅𝐵

𝑅𝐿𝑖
) (3.11) contact pressure angle  

o 𝐿𝑖 = 𝐵 − tan 𝐿𝑖
+ 

𝐿𝑖
(3.12) contact included tooth angle  

o ′𝐿𝑖 = 
𝐿𝑖
− 𝐿𝑖 (3.13) contact load angularity with L 

o 𝑅𝑜𝑠𝑐𝑖 = 𝑅𝐿𝑖 sin𝐿𝑖
(3.14) curvature at the 𝑖𝑡ℎ point of the flank (radius of the 

osculating circle) 

 

Figure 16: Tooth form depending parameters [21] 

 

o ℎ𝐿𝑖 = 2𝑅𝐿𝑖 sin𝐿𝑖(3.15) thickness of the tooth at the contact point  

o 𝑙�̅� distance between the intersection of the line of action on the midline of the tooth 

and �̅� projected on the midline:  
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Figure 17: Definitions of the parameters changing for each 𝑖𝑡ℎ  point on the flank of gear 𝑗 = 1,2 from [21] 
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o 𝑙�̅� = 𝑅𝐿𝑖 cos𝐿𝑖 − 
(ℎ𝐿𝑖 tan 

′
𝐿𝑖
)

2
− �̅� cos ̅  (3.16) “form S” teeth 

o 𝑙�̅� = 𝑅𝐿𝑖 cos𝐿𝑖 − 
(ℎ𝐿𝑖 tan 

′
𝐿𝑖
)

2
− (𝑅𝑟 + 𝑟) cos(𝐵 + 𝑟) − 𝑟 sin𝐵 cos𝐵  (3.17) 

“form A” teeth 

o ℎ̅𝐻𝑒𝑟𝑡𝑧,𝑗 =
1
2⁄ ℎ𝐿𝑖,𝑗

cos′𝐿𝑖,𝑗

 (3.18)  

 

The above-mentioned parameters are visible in Figure 17. The parameters of the material of 

the gears also needs to be specified, name the Young modulus 𝐸𝑗  and the Poisson coefficient 

𝜈𝑗 . 

 

III.3 Operative deflections 

 

Now that the constant and point-dependent parameters have been defined it is possible to 

proceed to the calculation of the deflections that the gear experiences under load. Those 

deformations can be distinguished between the one due to teeth flexibility and the ones of 

the gear body as will be detailed in the following. 

 

III.3.1 Tooth deflections 

 

The compliance of the tooth is due to three main contributions: 

o The bending and shear deformation of the tooth 𝑦𝐵 

o The deformation of the fillet region 𝑦𝐹 

o The local deformation due to contact between teeth 𝑦𝐿 

Using the superposition principle, the compliance of the tooth is given by 

𝐶 =
(𝑦𝐵,1 + 𝑦𝐵,2) + (𝑦𝐹,1 + 𝑦𝐹,2) + 𝑦𝐿

𝐿
 (3.19) 
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where 𝐿 is the applied load. The bending and shear deformation of the tooth is computed 

assuming the tooth as a clamped-free beam using the analytical formula from Cornell [21] 

instead of the integral approach of Weber [14]. The expression is 

𝑦𝐵 =
𝐿 cos2𝜙𝐿

′  

𝐸
·∑𝛿𝑖

𝑛

𝑖=1

· {
𝑙𝑖
2 − 𝑙𝑖𝛿𝑖 +

1
3
𝛿𝑖
2

𝐼�̅�
+
2.4(1 + 𝜈) + tan2 𝜙𝐿

′

�̅�𝑖
} (3.20) 

 

where 𝛿𝑖  is the thickness of the  𝑖𝑡ℎ slice of the tooth cross-section defined by the two 

consecutive points 𝑖 and 𝑖 + 1 (𝑖 = 1,2,… ,𝑁𝑖 ) of the discretization of the profile (Figure 18). 

Given that the coordinates 𝑋𝑆𝑖 and 𝑌𝑆𝑖 of each of the profile nodes are known, the average 

area �̅�𝑖 , the average moment of inertia 𝐼�̅� , the thickness of the slice 𝛿𝑖  and its distance from 

the point of application of the load  𝑙𝑖 are defined as: 

 

 

Figure 18: Clamped-free beam representation of the tooth cross-section from [21] 

 

�̅�𝑖 =
4𝑏 ∙ 2𝑌𝑠𝑖+1 ∙ 2𝑌𝑠𝑖
𝑌𝑠𝑖+1 + 𝑌𝑠𝑖

 

 

(3.21) 

𝐼�̅� =
𝑏 ∙ (2𝑌𝑠𝑖+1)

3
∙ (2𝑌𝑠𝑖)

3
 

6 [(2𝑌𝑠𝑖+1)
3
+ (2𝑌𝑠𝑖)

3
]
 (3.22) 
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𝛿𝑖 = 𝑋𝑠𝑖+1 − 𝑋𝑠𝑖  (3.23) 

 

𝑙𝑖 = 𝑅𝐿 ∙ cos𝛼𝐿 −
1

2
ℎ𝐿 ∙ tan𝜙𝐿

′ −𝑋𝑠𝑖  (3.24) 

 

The nodes above the point of application of the load 𝐿 do not experience elastic deflections, 

just a rigid rotation of an angle 𝛼𝑟𝑔 whose expression is: 

𝛼𝑟𝑔 = tan
−1 (

𝑦𝐵,𝐿 ∙ cos𝜙𝐿
′

𝑙 ̅
) (3.25) 

 

where 𝑦𝐵,𝐿 is the deflection of the point where the load is applied. The contribution to the 

tooth deflection due to the presence of the fillet and the foundation takes into account the  

bending, shear and compression due to the applied load and is expressed as 

𝑦𝐹 =
𝐿 cos2𝜙𝐿

′  

𝑏𝐸
· (1 − 𝜈2)

∙ {
16.67

𝜋
(
𝑙𝐹
ℎ𝐹
)
2

+ 2(
1 − 𝜈 − 2𝜈2

1 − 𝜈2
)(
𝑙𝐹
ℎ𝐹
)

+ 1.534(1 +
tan2 𝜙𝐿

′

2.4(1 + 𝜈)
)} 

(3.26) 

 

where: 

𝑙𝐹 = 𝑙̅ + 𝑟 ∙ (sin 𝛾𝐹 − sin �̅�) (3.27) 

 

ℎ𝐹 = ℎ̅ + 2𝑟 ∙ (cos �̅� − cos 𝛾𝐹) (3.28) 

 

The value of 𝛾𝐹 depends upon  𝑙
̅
ℎ̅
⁄  , �̅�

ℎ̅
⁄  , �̅� and 𝜙𝐿

′  and is the one which maximizes the value 

of the deflection 𝑦𝐹 and its value is interpolated based on the curves visible in Figure 19. This 

is one of the improvements in Cornell’s model with respect to the one from O’ Donnel [22]. 

Indeed, in his work O’ Donnel fixed this angle to be 𝑦𝐹 = 75.5° but this underestimates the  



2D TEETH CONTACT ANALYSIS 

   

  
 49 

 

 

Figure 19: Curves for the determination of the angle 𝛾𝐹 from [21] 

 

Figure 20: Variation of the flexibility 𝑦𝐹  as a function of 𝛾𝐹  and  𝑙
̅
ℎ̅
⁄  from [21] 
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flexibility 𝑦𝐹 especially for HCRG, characterized by high values of the ratio 
𝑙 ̅

ℎ̅
 (
𝑙 ̅

ℎ0
 in Figure 19), 

while the approximation is close for LCRG. For completeness, the local deformation due to 

contact 𝑦𝐿 as approximated by Cornell will be briefly discussed to further highlight the 

differences with the contact model that will be introduced in III.5. Due to their local nature 

however, these deformations will not be taken into account in the iterative calculations that 

will be detailed in paragraph III.4. His model is based on the classical Hertz theory for 

conforming elastic bodies and it is used to calculate the deformations of two contacting 

bodies. From Figure 21 it is possible to see that during contact under load, the rigid contact 

point 𝑃 will displace based on the deformations 𝛼1 and 𝛼2 of the two bodies. The other points 

will first experience a rigid translation 𝑧1 and 𝑧2 and subsequently once adherence is reached 

a deformation 𝑤1 and 𝑤2. So, for a generic point in contact, the following equation is valid: 

𝛼1 + 𝛼2 = 𝑤1 +𝑤2 + 𝑧1 + 𝑧2 (3.29) 

 

In Cornell’s model the local deflection due to contact  𝑦𝐿 is the sum of the contribution of the 

deformation due to Hertzian contact 𝑦𝐻 and the local compression between the teeth 𝑦𝐶 . At 

the rigid contact point 𝑃 he expresses this deformation as:  

𝑦𝐿 = 𝑦𝐻 + 𝑦𝐶 ≈ 
2𝐿

𝜋𝑏
 {(

1 − 𝜈1
2

𝐸1
) ∙ [ln

2ℎ̅𝐻𝑒𝑟𝑡𝑧,1
𝑤

− (
𝜈1

2(1 − 𝜈1)
)] + (

1 − 𝜈2
2

𝐸2
) ∙

∙ [ln
2ℎ̅𝐻𝑒𝑟𝑡𝑧,2

𝑤
− (

𝜈2
2(1 − 𝜈2)

)]} 

(3.30) 

 

 

Figure 21: Displacements and deformations of the contact area 
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where 𝑤 is the semi-width of the elliptical contact area computed as: 

𝑤 = √
4𝐿

𝜋𝑏
[(
1 − 𝜈1

2

𝐸1
) + (

1 − 𝜈2
2

𝐸2
)] [

1

𝑅𝑜𝑠𝑐1
+

1

𝑅𝑜𝑠𝑐2
]⁄  (3.31) 

 

The value of the deflection 𝑦𝐿 is valid only for the contact point 𝑃, while the points that lie 

within a segment of length 2𝑤 and positioned so that the contact point 𝑃 coincides with the 

mid-point of the segment, will deflect in a parabolically decreasing way from the maximum 

𝑦𝐿 , down to 0 at the extremes of the segment defining the contact area as visible in Figure 

22. The simplifications of this model lie in the fact that only the radii of curvature 𝑅𝑜𝑠𝑐1  and 

𝑅𝑜𝑠𝑐2  of the contact point 𝑃 are considered, but the curvature of the involute profile changes 

continuously from root to tip and even inside the contact area and therefore cannot be 

considered constant. Furthermore, if the contact point 𝑃 lies close to or at the tip of the tooth, 

up to 𝑤 of the contact area computed in this way actually has no material underneath it, 

resulting in an erroneous pressure distribution and deflection. These limitations will be 

overcome in paragraph III.5. 

 

Figure 22: Local deflection in the contact area according Hertz theory 
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III.3.2 Gear body deflections  

 

Under load the body of the gear deflects tangentially and this deformation influence also the 

unloaded teeth close to the loaded one and are defined in [20]. The tangential deflection can 

be calculated by observing an infinitesimally portion of the gear body with vertices 

𝐴, 𝐵, 𝐶 and 𝐷 as defined in Figure 23. Under load this volume will undergo a rotation 휃𝑡,𝑖 which 

will move it to the deformed configuration 𝐴′𝐵′𝐶′𝐷′. The rotation can be expressed as 

휃𝑡 =
𝑄𝑝 ∙ 𝑟

4𝜋𝑏𝐺
∙ (
1

𝑟𝑠
2
−
1

𝑟𝑓
2) (3.32) 

 

Where 𝑟 is the radial distance from the center of the infinitesimal volume, 𝑟𝑠 is the radius of 

the shaft on which the gear is mounted, 𝑟𝑓 is the radius of the root circle, 𝑄𝑝 is the tangential 

load and 𝐺 is the shear modulus  

𝐺 =
𝐸

2(1 + 𝜈)
 (3.33) 

 

Hence, the rotation of point 𝑃 can be written as 

휃𝑡,𝑃 =
𝑄𝑝 ∙ 𝑅𝐿,𝑃

 2

2𝜋𝑏𝐸
∙ (1 + 𝜈) ∙ [

1

𝑟𝑠
2
−

𝑧2

𝑟𝑝
2(𝑧 − 1,25)

] (3.34) 

 

and the displacement of any 𝑖𝑡ℎ point of the profile in the tangential direction is then  

𝑦𝐺𝐵,𝑖 =
𝐿 ∙ cos𝜙𝐿

′ ∙ 𝑅𝐿,𝑃
2𝜋𝑏𝐸

∙ (1 + 𝜈) ∙ [
1

𝑟𝑠
2
−

𝑧2

𝑟𝑝
2(𝑧 − 1,25)

] ∙ 𝑅𝐿,𝑖 (3.35) 

 

This approach however has been proven to not be accurate when compared with 

experimental measurements and therefore it will not be used. Instead, a more refined model 

proposed by Sainsot et al. [23] is here implemented to calculate the deflection of the gear 

body. Based on Muskhelishvili’s theory applied to elastic rings they proposed the following 

formula for the gear body deflection: 
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Figure 23: Tangential gear body deflections under load from [20] 

 

𝑦𝐴 =
𝐹𝑐𝑜𝑠2𝛼

𝑏𝐸
∙ [𝐿∗(ℎ, 휃𝑓) (

𝑢

𝑠𝑓
)

2

+𝑀∗(ℎ, 휃𝑓)
𝑢

𝑠𝑓
+ 𝑃∗(ℎ, 휃𝑓) ∙ (1 + 𝑄

∗(ℎ, 휃𝑓)𝑡𝑔
2𝛼)] (3.36) 

 

Where ℎ = 𝑟𝑜/𝑟𝑖 and 휃𝑓 is the angle between the tooth centerline and the junction with the 

root circle.  The coefficients 𝐿∗(ℎ, 휃𝑓),𝑀
∗(ℎ, 휃𝑓), 𝑃

∗(ℎ, 휃𝑓) and 𝑄∗(ℎ, 휃𝑓) have been curve-

fitted as polynomial functions of the form  

𝑋𝑖(ℎ, 휃𝑓) =
𝐴𝑖

휃𝑓
2 +𝐵𝑖ℎ

2 +
𝐶𝑖ℎ

휃𝑓
+
𝐷𝑖
휃𝑓
+ 𝐸𝑖ℎ + 𝐹𝑖  (3.37) 

 

Where the constants 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝐸𝑖  and 𝐹𝑖 are listed in Table 1. The deflection of the teeth 

adjacent to the loaded one can be computed considering the portion of the gear rim 

connecting tooth B and C (Figure 24) as a beam on an elastic foundation subject to a normal 

load 𝑁 and a bending moment 𝑀. The elastic deflection curve can be expressed as 
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Table 1: Constants for gear body contribution from [23] 

 𝐴𝑖  𝐵𝑖  𝐶𝑖 𝐷𝑖 𝐸𝑖  𝐹𝑖 

𝐿∗(ℎ, 휃𝑓) -5.574e-5 -1.9986e-3 -2.3015e-4 4.7702e-3 0.0271 6.8045 

𝑀∗(ℎ, 휃𝑓) 60.111e-5 28.100e-3 -83.431e-4 -9.9256e-3 0.1624 0.9086 

𝑃∗(ℎ, 휃𝑓) -50.952e-5 185.50e-3 0.0538e-4 53.300e-3 0.2895 0.9236 

𝑄∗(ℎ, 휃𝑓) -6.2042e-5 9.0889e-3 -4.0964e-4 7.8297e-3 -0.1472 0.6904 

 

𝐸𝐼
𝑑4𝑦

𝑑4𝑥
= −𝑘𝑦 (3.38) 

 

where 𝑦 is the deflection, 𝑥 is the coordinate in the direction orthogonal to the line 𝑂1𝑂2̅̅ ̅̅ ̅̅ ̅ 

connecting the centers of rotation of the gears, 𝐼 is the moment of inertia of rim and 𝑘 is the 

stiffness of the foundation, defined  

as  

𝑘 =
384𝐸𝐼

𝑥1 + 𝑥2+𝑥3 + 𝑥4
 (3.39) 

 

𝑥1, 𝑥2, 𝑥3 and 𝑥4 are visible in Figure 24. The general equation for solution of this problem is  

𝑦 = 𝑒𝛽𝑥(𝐴 ∙ cos 𝛽𝑥 + 𝐵 ∙ sin𝛽𝑥) + 𝑒−𝛽𝑥(𝐶 ∙ cos 𝛽𝑥 + 𝐷 ∙ sin𝛽𝑥) (3.40) 

 

where  

𝛽 = (
𝑘

4𝐸𝐼
)

1
4
 (3.41) 

 

Applying the correct boundary conditions and solving (3.40) yields 

𝑦 =
𝑒−𝛽𝑥

2𝛽3𝐸𝐼
∙ [𝑁 ∙ cos 𝛽𝑥 −𝑀 ∙ (cos𝛽𝑥 − sin𝛽𝑥)] (3.42) 
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Therefore, the rigid rotations 휃𝐵 and 휃𝐶  that must be applied to teeth B and C respectively, 

knowing the intensity of the load  

𝐹 = 𝑇 𝑅𝐵
⁄  (3.43) 

 

where 𝑇 is the torque, can be computed as:  

휃𝐵 = tan
−1 {

𝑒−𝛽𝑥1

2𝛽3 ∙ 𝐸𝐼 ∙ 𝑥3

∙ [
𝐹

cos 𝛼
∙ sin𝜙𝐿

′ ∙ cos 𝛽𝑥1 −𝛽𝑌𝐴 ∙
𝐹

cos𝛼

∙ cos𝜙𝐿
′ ∙ (cos 𝛽𝑥1−sin𝛽𝑥1)]} 

(3.44) 

 

휃𝐶 = tan
−1 {

𝑒−𝛽𝑥2

2𝛽3 ∙ 𝐸𝐼 ∙ 𝑥4

∙ [
𝐹

cos 𝛼
∙ sin𝜙𝐿

′ ∙ cos 𝛽𝑥2 −𝛽𝑌𝐴 ∙
𝐹

cos𝛼
∙ cos𝜙𝐿

′ ∙ (cos 𝛽𝑥2−sin𝛽𝑥2)]}  

(3.45) 

 

It is evident from Figure 24 that those rotations act in the opposite direction of application of 

the load, both for the pinion and the driven gear. The inclusion of this effect leads to an 

increase in the actual contact ratio 휀𝛼,𝑎𝑐𝑡 due to the fact that the adjacent teeth come into, 

or lose, contact earlier or later than what could be predicted considering only the geometry 

of the engagement which is defined by the contact ratio  휀𝛼. The iterative inclusion of this 

effect and the other contributions in the calculation of the gear’s deformations will be 

discussed in the next paragraph. 
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Figure 24: Quantities to define the effect of the loaded teeth on the adjacent ones from [20] 

 

III.4 Iterative contact detection algorithm 

 

Using the approach presented in the previous paragraph, neglecting for the moment the 

effect of the load on the adjacent teeth 휃𝐴 and 휃𝐶 , the deflection 𝑦𝑡𝑜𝑡,𝑖 of the gears could be 

computed using the superposition principle in the direction of the application of the load as 

𝑦𝑡𝑜𝑡,𝑖 = 𝑦𝐵,𝑖 + 𝑦𝐹,𝑖 + 𝑦𝐴,𝑖 (3.46) 

 

In Figure 26 are visible the different contributions to the total deformation by applying the 

load 𝐹 = 𝑇 𝑅𝐵
⁄  to the geometrical contact point of a pinion, whose parameters are defined 

in Table 2, during single contact and 𝐹 2⁄  in double contact. The distinction between single 

and double contact zones is visible in Figure 25. 𝑁1 and 𝑁2 are the tangency points between 

the base circles of the mating gears and the line of action inclined of the pressure angle 𝛼. 

Points 𝐵1 and 𝐵2 are defined by the intersections between the addendum circles and the line 

of action. Point 𝐸, marking the beginning of single tooth contact, is placed at a distance equal 

to the transversal base pitch 𝑝𝑏,𝑡 = 𝑝𝑏 ∙ cos(𝛼) = 𝑚 ∙ 𝜋 ∙ cos(𝛼) from point 𝐵2, while the end 
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of single tooth contact, point 𝐹 is at the same distance from point 𝐵1. Knowing the 

intersection points and the distances between those notable points the actual coordinates of 

the points can be easily found and the positions in which the rigid profiles are in single or 

double contact can be obtained. In Figure 26 the point of application of the load on the tooth 

moves from the beginning of the flank towards the tip and therefore the bending and shear 

deformation dramatically increase with the mesh angle due to the combined effect of the 

increase of the distance from the point of application of the load to the portion of the tooth 

which is considered clamped and the progressive reduction of cross-section of the tooth. The 

deformation due to local contact has a similar but less extreme trend, which is due to the 

decreasing trend of the radius of curvature 𝑅𝑜𝑠𝑐1 . The effect of the fillet and foundation 

deflection increases as well, only due to the increasing distance of the application point of 

the load, while the gear body contribution stays constant since in this simple example only 

one tooth is considered. This is obviously a simplification and next the procedure for the 

calculation of the first iteration tentative load sharing coefficient will be described. When the 

system is in a single contact position it can be pictured as in Figure 27. Both the pinion 

(subscript 𝑝) and the driven gear (subscript 𝑔) can be seen as a series of springs each with its 

own stiffness. Starting from the center the stiffnesses of the gear bodies 𝐾𝑝 and 𝐾𝑔 are visible, 

then the global stiffness of the teeth 𝐾𝑡,𝑝 and 𝐾𝑡,𝑔 that include the bending of the teeth (𝐾𝐵,𝑔, 

𝐾𝐵,𝑝) and the effect of the fillet 

Table 2: Example gear pair parameters 

Parameter Pinion Gear 

Number of teeth 𝒛 [-] 20 20 

Module 𝒎 [mm] 3 3 

Pressure angle 𝜶𝑷 [°] 20 20 

Face width 𝒃 [mm] 23,5 23,5 

Shaft radius 𝒓𝒔 [mm] 10 10 

Torque 𝑻 [Nmm] 70000 70000 

Young modulus 𝑬 [MPa] 210000 210000 

Poisson coefficent 𝝂 [-] 0,3 0,3 

 

and foundation (𝐾𝐹𝐹,𝑔, 𝐾𝐹𝐹,𝑝), and lastly the stiffness due to the local contact between the 

teeth 𝐾𝑐. The values of those stiffnesses come from the calculations of the deflections 
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described in the previous paragraph, namely 𝐾𝑝 and 𝐾𝑔 from eq. (3.35), 𝐾𝐵,𝑔 and 𝐾𝐵,𝑝 from 

(3.20), 𝐾𝐹𝐹,𝑔 and 𝐾𝐹𝐹,𝑝 from (3.26) and lastly 𝐾𝑐 from (3.30). Therefore, the system can be seen 

as a succession of springs in series that see the same force applied due to the torque 

transmitted, then global stiffness of the system during single contact can be written as 

 

Figure 25: Geometrical distinction between single and double contact 

 

 

Figure 26: Contribution of the different effects to the total deformation 
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𝐾𝑇𝑂𝑇,1 =
1

1
𝐾𝑝
⁄ + 1 𝐾𝑔⁄ + 1 𝐾𝐹𝐹,𝑝

⁄ + 1 𝐾𝐹𝐹,𝑔⁄ + 1 𝐾𝐵,𝑝
⁄ + 1 𝐾𝐵,𝑔⁄ + 1 𝐾𝑐

⁄
   (3.47) 

 

During double contact the stiffnesses of the gear bodies 𝐾𝑝 and 𝐾𝑔 remain unchanged, but 

the two pairs of teeth in contact can be represented by their mesh stiffnesses 𝐾𝑚
𝐴  and 𝐾𝑚

𝐵  for 

the pairs 𝐴 and 𝐵 in contact. A schematization is visible in Figure 28. The mesh stiffnesses 𝐾𝑚
𝐴  

and 𝐾𝑚
𝐵  can be defined as 

𝐾𝑚
𝐴 = (1 𝐾𝐹𝐹,𝑝

⁄ )
𝐴

+ (1 𝐾𝐹𝐹,𝑔
⁄ )

𝐴

+ (1 𝐾𝐵,𝑝
⁄ )

𝐴

+ (1 𝐾𝐵,𝑔
⁄ )

𝐴

 (3.48) 

 

𝐾𝑚
𝐵 = (1 𝐾𝐹𝐹,𝑝

⁄ )
𝐵

+ (1 𝐾𝐹𝐹,𝑔⁄ )
𝐵

+ (1 𝐾𝐵,𝑝
⁄ )

𝐵

+ (1 𝐾𝐵,𝑔⁄ )
𝐵

 (3.49) 

 

 

Figure 27: Series of springs during single contact 
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Figure 28: Series of springs during double contact 

 

Therefore, the global stiffness during double contact can then be written as 

𝐾𝑇𝑂𝑇,2 =
1

1
𝐾𝑝
⁄ + 1 𝐾𝑔⁄ +

1
𝐾𝑚
𝐴 +𝐾𝑚

𝐵 +
1
𝐾𝑐
⁄

  [𝑁 𝑚𝑚⁄ ] 
(3.50) 

 

However, this is not a standard connection of springs in series where the two stiffnesses 

undergo the same deformation under the action of the applied load. Indeed, the two pairs of 

teeth at a given mesh angle have different contact points relative to their flank, and therefore 

they have different stiffnesses and deflections and hence also the load they will experience 

will be different. Namely the stiffer pair of teeth will take up most of the load, while the softer 

one a lower fraction of it. To quantify this relationship for each angular position in the mesh 

period considered the deflections of each pair of teeth in contact are computed considering 

a unit load at the instantaneous contact point, for the pinion and the driven gear as 

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 = 𝑦𝐵,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 + 𝑦𝐹,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 + 𝑦𝐿,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 + 𝑦𝐴𝑡𝑡𝑖𝑎,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 (3.51) 

 

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘 = 𝑦𝐵,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘 + 𝑦𝐹,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘 + 𝑦𝐿,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘 + 𝑦𝐴𝑡𝑡𝑖𝑎,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘  (3.52) 

 

where 𝑘 = 0, 1, 2 for a standard spur gear application with 1 ≤  휀𝛼  ≤ 2 and the meaning of 

𝑘 is explained in Figure 29. Therefore, for each pair of teeth in contact the following 

cumulative deflection can be considered 
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𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,𝑘 = 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,𝑝,𝑘 + 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,𝑔,𝑘 (3.53) 

 

Hence, for the first iteration three different conditions can be defined, and their load sharing 

factor coefficient 𝐶𝑘 can be specified: 

 

o Case 1: 𝑘 =  1, 2 

𝐶1 =
𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,2

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1 + 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,2
 (3.54) 

  

𝐶2 =
𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1 + 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,2
 (3.55) 

 

o Case 2: 𝑘 =  0, 1 

𝐶1 =
𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,0

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1 + 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,0
 (3.56) 

  

𝐶0 =
𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1

𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,1 + 𝑦𝑡𝑜𝑡,𝑃𝑢𝑛𝑖𝑡,0
 (3.57) 

 

o Case 3: 𝑘 =  1 single contact 

𝐶1 = 1 (3.58) 
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Figure 29: Numbering of teeth gear pairs 𝑘 

 

This relationship for the 40 angular positions considered in the previous example, whose data 

is listed in Table 2, is visible in Figure 30 when contact at the geometric or rigid contact point, 

and therefore valid only for the first iteration, is considered. Similar considerations apply 

when 휀𝛼 > 2 with minor adjustments to the conditions above. Furthermore, it is known that 

a deformation during contact between two bodies can shift the actual contact point from its 

location predictable by rigid body analysis, especially when bending deformations are 

involved as depicted in Figure 31. Indeed, if a rigid body is brought into contact via a vertical 

displacement with a flexible beam, the first point of contact is easily identifiable by rigid body 

kinematics. However, if the load is increased the point of contact will shift, thus changing the 

deformed shape of the beam. Numerically this results in an iterative search in which a natural 

equilibrium condition is sought for the load, the position of the contact point and the 

deformed shape of the beam as visible in Figure 31 a), while in b) the same concept is 

visualized for two teeth flank in contact. The rigid contact point on the left of the figure is 

visibly different from the actual contact point at equilibrium on the deformed profiles under 

load, both in terms of coordinates, since the profiles have undergone all deformations 

detailed earlier, but also in terms of position along the flanks. Indeed, the actual contact point 

is visibly further up on the profile of pinion since the flanks slide due to deformation against 
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each other. In most applications this secondary effect is neglected if the deformations are 

not large. In gears however, this effect, combined with the influence of the load on one tooth 

on the adjacent teeth, can significantly alter the position of the actual contact point and 

particularly the number of teeth pairs currently engaged. To model these effects, in the 

present work an iterative contact detection algorithm has been implemented. 

 

Figure 30: Load sharing factor coefficient 𝐶𝑘  evolution 

 

The start of the algorithm is the geometrical, or rigid, contact point, circled in green in Figure 

32, which can be found either by finding the pair of points with the minimal angular distance 

between all the possible teeth pairs, or by intersecting the active portions of the profiles with 

the line of action of the gears. Next, the load is applied to the contact point just found and 

deformations of the teeth and the gear body are computed according to the methodology 

discussed in the previous paragraph, including the model from [20], and applied to the 

discretized geometry as in Figure 33 where the deformations have been amplified by a factor 

of 100 to make them more evident. At this point the iterative contact point detection takes 

place. From each of the points of the flank of the pinion teeth circular arcs with center in the 

center of rotation of the pinion are defined. Their radius is 

𝑟𝑖 = √𝑥𝑖
2 + 𝑦𝑖

2 (3.59) 
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Where 𝑥𝑖 and 𝑦𝑖  are the coordinates of the 𝑖𝑡ℎ point of the pinion flank after deformation. 

These arcs span an angle 𝜗 that is at least equal to the sum of the maximum angular 

deformation experienced by the profiles taking into account all contributions, to be sure that 

at least one of them will intercept the profile of the driven gear. An example of this process is 

visible in Figure 34. The arcs are discretized in 𝑚 segments each spanning a sufficiently small  

 

Figure 31: Shift of the actual contact point after deformation, a) example on a simple beam, b) actual contact 

point after deformation of a tooth pair in engagement 
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angle ∆𝜗, thus defining 𝑚 − 1 segments whose endpoints have coordinates 

(𝑥𝑘 , 𝑦𝑘), (𝑥𝑘+1, 𝑦𝑘+1) where 𝑘 = 1, 2,… ,𝑚 − 1. The new contact point will be the one where 

the intersection between the discretized arcs and the deformed profile of the driven gear 

forms the minimum angle. To find the intersections it is possible to write the following system 

of equations [104] 

{
 
 

 
 
(𝑥𝑔+1−𝑥𝑔) ∙ 𝑡𝑔 = 𝑥0−𝑥𝑔
(𝑥𝑘+1−𝑥𝑘) ∙ 𝑡𝑘 = 𝑥0−𝑥𝑘
(𝑦𝑔+1−𝑦𝑔) ∙ 𝑡𝑔 = 𝑦0−𝑦𝑔

(𝑦𝑘+1−𝑦𝑘) ∙ 𝑡𝑘 = 𝑦0−𝑦𝑘

 (3.60) 

 

where 𝑥𝑔, 𝑦𝑔 are the coordinates of the driven gear profiles forming 𝑁𝑖 − 1 segments whose 

endpoints are (𝑥𝑔, 𝑦𝑔), (𝑥𝑔+1, 𝑦𝑔+1), while 𝑡𝑔 and 𝑡𝑘 are the distances from the starting point 

of the 𝑔, 𝑘 segment from the intersection point (𝑥0, 𝑦0) relative to the segment length 

𝑡𝑔 =
√(𝑥𝑔 − 𝑥0)

2
+ (𝑦𝑔 − 𝑦0)

2

√(𝑥𝑔 − 𝑥𝑔+1)
2
+ (𝑦𝑔 − 𝑦𝑔+1)

2
⁄  (3.61) 

 

and similarly, for 𝑡𝑘 . Rearranging (3.60) and writing it in matrix form yields 

[
 
 
 
 
 
(𝑥𝑔+1−𝑥𝑔) 0 −1 0

0 (𝑥𝑘+1−𝑥𝑘) −1 0

(𝑦𝑔+1−𝑦𝑔) 0 0 −1

0 (𝑦𝑘+1−𝑦𝑘) 0 −1]
 
 
 
 
 

{

𝑡𝑔
𝑡𝑘
𝑥0
𝑦0

} =

{
 
 

 
 
𝑥𝑔
𝑥𝑘
𝑦𝑔
𝑦𝑘}
 
 

 
 

 (3.62) 

 

Or  

𝑨𝒕 = 𝒃 (3.63) 

 

If the segments are not parallel or overlapping, (3.63) can be simply solved as 

𝒕 = 𝑨−1𝒃 (3.64) 
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Figure 32: Rigid contact point detection 

 

Figure 33: Profiles of teeth pair 2 after deformation. Note that the deformations have been amplified by a factor 

of 100. 
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Figure 34: Arcs for iterative contact detection 

 

An actual intersection between the segments is found only if the following conditions are 

simultaneously verified: 

{
0 ≤ 𝑡𝑔 < 1

0 ≤ 𝑡𝑘 < 1
 (3.65) 

Computationally, (3.64) would need to be solved [(𝑚 − 1)𝑁𝑖] ∙ (𝑁𝑖 − 1) times, leading to a 

bottleneck in the calculations. This number can however be greatly reduced by considering 

only the segments that can potentially intersect checking if the smallest enclosing rectangles 

of each segment pair overlap. This produces the following set of inequalities 

min(𝑥𝑔) ≤ max(𝑥𝑘) ∧ max(𝑥𝑔) ≥ min(𝑥𝑘)  ∧  min(𝑦𝑔) ≤ max(𝑦𝑘) ∧  max(𝑦𝑔) ≥ min(𝑦𝑘) (3.66) 

 

thus reducing the number of solutions of (3.64) to less than 𝑁𝑖 − 1. Of all the resulting 

intersection points (𝑥0𝑖 , 𝑦0𝑖) the one defining the new contact point (𝑥𝑐 , 𝑦𝑐) is found by 

(𝑥𝑐 , 𝑦𝑐) = {𝑥0𝑖 , 𝑦0𝑖   |  𝑚𝑖𝑛 (|tan
−1 (

𝑦𝑖
𝑥𝑖
) − tan−1 (

𝑦0𝑖
𝑥0𝑖
)|)} =  {𝑥0𝑖 , 𝑦0𝑖   |  𝑚𝑖𝑛(|∆휃𝑖|)} (3.67) 
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which means looking for the contact point where the angle between the pinion flank and the 

intersection of the arc with the driven gear is minimum. Point (𝑥𝑐 , 𝑦𝑐) belongs to the profile 

of the driven gear and the closest point to it of the discretization of the flank is then chosen. 

For the pinion the new contact point is automatically determined by looking at the 

coordinates (𝑥𝑖, 𝑦𝑖) from which the arc with the minimum |∆휃𝑖| was calculated. Since this is 

performed for each flank of the pinion, depending on the contact ratio of the gear and the 

angular position considered, multiple contact points will be found in general. However, not all 

those contact points that verify (3.67) are actual contact points. For a case with 휀𝛼 ≤ 2, 

considering the numbering of the flanks as shown in Figure 32, the |∆휃𝑖| of tooth 1 is 

compared with the ones eventually found for teeth 0 and 2. If those angles are lower or equal 

than the one for tooth 1 then those are actual contact points, otherwise are discarded and 

the corresponding tooth is the considered unloaded in the next iteration, and the load sharing 

factor coefficient is computed accordingly. This iterative process stops when between the 

coordinates of the contact point of previous iteration 𝑖𝑡𝑒𝑟 − 1 and the current one 𝑖𝑡𝑒𝑟 

change less than a tolerance value, so that  

|𝑥𝑐,𝑖𝑡𝑒𝑟−1 − 𝑥𝑐,𝑖𝑡𝑒𝑟| ≤  휀𝑥  ∧  |𝑦𝑐,𝑖𝑡𝑒𝑟−1 − 𝑦𝑐,𝑖𝑡𝑒𝑟| ≤  휀𝑦  (3.68) 

 

where 휀𝑥 and 휀𝑦 are usually in the order of 10−3 𝑚𝑚. Any 2D tooth profile modification or 

error can be included and taken into account into this process since no restriction has been 

specified for the shape on the teeth considered. Furthermore, in addition to the variation of 

the contact point, one must also consider a better approximation of the estimation of the 

load sharing coefficients to include the influence of the operative deflections. To do this, an 

approach as detailed in [105] is introduced. At each iterative step the deflection of the contact 

point in the direction of application of the load 𝛿𝑖  is registered, where 𝑖 indicates the tooth 

pair considered and can be 𝑖 = 1,2  for LCRG with 휀𝛼 ≤ 2 or 𝑖 = 1,2,3 for HCRG with 휀𝛼 > 2. 

In a general form, for a gear pair with 𝑁 teeth pairs in engagement under the effect of gear 

deflections the load sharing factor 𝐿𝑠𝑓𝑖 for the 𝑖𝑡ℎ teeth pair in engagement (𝑖 = 1,2, . . 𝑁) can 

be obtained as 

𝐿𝑠𝑓𝑖 =
𝐾𝑖

∑ 𝐾𝑗
𝑁
𝑗=1

(
1 + ∑ 𝐾𝑗

𝑁
𝑗=1 �̃�𝑖𝑗

𝐹
)  (3.69) 
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where �̃�𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗  and 𝐾𝑖 =
𝐹𝑖

𝛿𝑖
=

𝐹∙𝐿𝑠𝑓𝑖

𝛿𝑖
  at the previous iteration. The coefficients 𝐶𝑘 that will 

multiply the total load 𝐹 to be applied at each tooth pair considered can then be differentiate 

as before in various cases, yielding 

o Case 1: 𝑘 =  1, 2 

𝐶1 =
𝐾1

𝐾1 + 𝐾2
(
1 + 𝐾2�̃�12

𝐹
)  (3.70) 

 

𝐶2 = 1 − 𝐶1 =
𝐾2

𝐾1 +𝐾2
(
1 − 𝐾1�̃�12

𝐹
)  (3.71) 

 

o Case 1: 𝑘 =  0,1 

𝐶1 =
𝐾1

𝐾1 + 𝐾0
(
1 + 𝐾0�̃�10

𝐹
)  (3.72) 

 

𝐶0 = 1 − 𝐶1 =
𝐾0

𝐾1 +𝐾0
(
1 − 𝐾1�̃�10

𝐹
)  (3.73) 

 

o Case 3: 𝑘 = 1 single contact 

𝐶1 = 1  (3.74) 

 

And similarly, for HCRG with 휀𝛼 ≥ 2. This iterative load variation doesn’t add a convergence 

criterion since it’s based on the deflections, hence if the deflections are the same as the 

previous step also the load sharing coefficient will be, and if the deflections are the same also 

the actual contact point will be the same, meaning that (3.68) is sufficient to reach 

convergence. Therefore, the algorithm just presented can be resumed in the following steps: 

o Individuation of the rigid contact points and first estimation of the load sharing factor 

coefficient with the use of the correct equations between (3.54) trough (3.58) 

o Calculation of the operative deflections on the loaded teeth as described in Chapter 

III.3 including the deformations of the adjacent teeth 
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o Calculation of the updated load sharing coefficients with the use of the correct 

equations between (3.70) and (3.74) 

o Search of the new contact points between the deformed geometries with the arcs 

procedure described in this section 

o Iteration of the above steps until the number of teeth pairs in contact doesn’t change 

and (3.68) is verified 

o After convergence is reached, analyze the contact using the deformed profiles with 

the approach detailed in the next paragraph 

o Record the resulting STE by equation (2.5) 

A visual representation of the above algorithm is visible in Figure 35. 

 

III.5 2D Non-Hertzian contact model  

 

As stated in paragraph III.3.1 the simplified contact model summarized by equations (3.30) 

and (3.31) cannot be used to effectively estimate the contact stiffness during engagement 

since it lacks the capability to correctly treat the complicated geometry involved. Firstly, the 

curvature of the teeth changes continuously, and the above-mentioned model only 

considers the curvature at the contact point. Furthermore, when tip corner contact occurs 

there is no practical way to limit the contact area to where there actually is material to 

support the pressure, and similar situations occur when tooth profile modifications are to be 

modeled, such as linear and parabolic tip relief that will be introduced later. To overcome 

these limitations and obtain accurate pressure distributions and surface displacements a 

frictionless non-Hertzian numerical 2D line contact model was implemented. The contact 

conditions can be expressed in the so called Hertz-Signorini-Moreau problem [106] [107] 

[108]  

𝒉 ≥ 0,  𝒑𝒏 ≥ 0,  𝒉 ∙ 𝒑𝒏 = 0 (3.75) 

 

The first condition enforces that no interpenetration can occur between the contact bodies 

and therefore the gap function 𝒉, which measures the distances between the surfaces, can 

only be positive, or equal to 0 in the contact area. The second condition imposes that the 
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Figure 35: Pseudo-algorithm visualization 

 

contact is non-adhesive and therefore no tension force must be present in the contact area, 

formulated from the normal stress  

𝝈𝒏 = 𝒕 ∙ 𝒏  (3.76) 

 

where 𝒕  is the traction force vector and 𝒏  is the normal direction to the surface and 𝒑𝒏 =

 −𝝈𝒏. The third condition enforces that the normal pressures can only be different from 0 

inside the contact area where 𝒉 = 0 and null everywhere else. The gap function 𝒉 is 

expressed as  
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𝒉 = ℎ0 + 𝒈+ 𝜹  (3.77) 

 

where ℎ0 is the indentation between the profiles imposed as a rigid body motion, 𝒈 is the 

initial separation of the contacting surfaces and represents it topography, while 𝜹  represents 

the elastic deformation of the surfaces due to the applied normal pressure  𝒑𝒏 and can be 

expressed as [109] 

𝜹 = 𝑪 ∙ 𝒑𝒏 (3.78) 

 

where 𝑪 is a matrix of the influence coefficients which introduces the elasticity of the 

contacting surfaces. Its components 𝐶𝑖𝑗 (𝑖, 𝑗 = 0,1, …𝑁) relate the displacement 𝛿𝑖  at a point 

𝑖 due to the application of a unit pressure at point 𝑗.  If a pressure profile 𝑝𝑛(𝑥) is assumed, 

the dimensionless elastic deformation 𝛿∗(𝑥) can be expressed as [110] 

𝛿∗(𝑥) = −
1

𝜋
∫ 𝑙𝑛|𝑥𝑖 − 𝑥|

𝑥𝑏

𝑥𝑎

𝑝𝑛(𝑥) 𝑑𝑥 (3.79) 

 

If the pressure profile is approximated by a piecewise constant function 𝑝𝑛,𝑗 = 𝑝𝑛(𝑥𝑗) (Figure 

36) in the considered region 𝑥𝑗 −
∆𝑥

2
≤ 𝑥 ≤ 𝑥𝑗 +

∆𝑥

2
  where ∆𝑥 is the uniform mesh size ∆𝑥 =

𝑥𝑗+1 − 𝑥𝑗 , then the deformation at a point 𝑥𝑖 = 𝑥0 + 𝑖∆𝑥 can be written as  

𝛿∗(𝑥𝑖) = −
1

𝜋
 ∑𝐶𝑖𝑗

∗

𝑖=𝑁

𝑖=0

𝑝𝑛,𝑗 𝑑𝑥 (3.80) 

where  

𝐶𝑖𝑗
∗ = ∫ 𝑙𝑛|𝑥𝑖 − 𝑥| 𝑑𝑥

𝑥𝑗+
∆𝑥
2

𝑥𝑗−
∆𝑥
2

 (3.81) 
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Figure 36: Piecewise constant pressure distribution 

 

which can be solved analytically to yield  

𝐶𝑖𝑗
∗ = (𝑥𝑖 − 𝑥𝑗 +

∆𝑥

2
) ∙ (𝑙𝑛 |𝑥𝑖 − 𝑥𝑗 +

∆𝑥

2
| − 1) − (𝑥𝑖 − 𝑥𝑗 −

∆𝑥

2
)

∙ (𝑙𝑛 |𝑥𝑖 − 𝑥𝑗 −
∆𝑥

2
| − 1) 

(3.82) 

 

Since a constant mesh size ∆𝑥 has been chosen, (3.82) can be further simplified considering 

that  

𝑥𝑖 − 𝑥𝑗 = (𝑖 − 𝑗)∆𝑥 (3.83) 

 

Finally, the dimensional influence coefficients 𝐶𝑖𝑗 for unit thickness can be expressed as 

𝐶𝑖𝑗 =
4

𝐸∗
[(𝑖 − 𝑗 +

1

2
) ∆𝑥 ∙ (𝑙𝑛 |(𝑖 − 𝑗 +

1

2
)∆𝑥| − 1) − ((𝑖 − 𝑗 −

1

2
)∆𝑥)

∙ (𝑙𝑛 |(𝑖 − 𝑗 −
1

2
) ∆𝑥| − 1)] 

(3.84) 

 

where 𝐸∗ is the effective elastic modulus considering the material properties of the bodies 1 

and 2 in contact defined as: 
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1

𝐸∗
= (

1 − 𝜈1
2

𝐸1
) + (

1 − 𝜈2
2

𝐸2
) (3.85) 

 

To solve the problem stated in (3.75) and satisfy all conditions a sub-iterative process is 

needed. Firstly, only the values ℎ�̃�  of the nodes �̃� belonging to the domain 𝑥 that are in actual 

compenetration and hence satisfy 

�̃� = {𝑛 ∈ 𝑥|ℎ𝑛 < 0} (3.86) 

 

are selected to form the vector �̃� and consistently also the corresponding rows and columns 

of  𝑪 are selected to form the matrix �̃�, effectively setting all loads on nodes outside of the 

contact region to 0. The pressures �̃� pertaining to the compenetrating nodes are obtained 

by  

�̃� = �̃�−𝟏�̃� (3.87) 

 

Next, the list of �̃� nodes is updated by removing those where tensile pressures are registered 

and those who are not compenetrating anymore due to the elastic deflection of the 

contacting surfaces, leaving then only those who satisfy  

�̃� = {𝑛 ∈ 𝑥| 𝒑 > 0 ∧ 𝑪𝒑 < 𝒉} (3.88) 

 

This sub-iterative process stops when the list of �̃� nodes at the current sub-iterative step is 

the same as the previous one. Finally, given a certain ℎ0 after the solution of the sub-iterative 

procedure just explained, the load acting on the contacting bodies for unit thickness can be 

found as   

𝑓 =
∆𝑥

2
∑ (𝑝𝑛,𝑖 + 𝑝𝑛,𝑖+1)

𝑖=𝑁−1

𝑖=0

 (3.89) 

 

which in general will be different from the imposed load 𝐹 = 𝑇 𝑅𝐵
⁄ , hence further iterations 

are needed to obtain the correct  ℎ0. As a first guess the value resulting from (3.30) is used as 
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ℎ0,1 for the first iteration, while for the 𝑘𝑡ℎ iteration the value  ℎ0,𝑘 to be used is estimated the 

previous iterations by  

ℎ0,𝑘 = ℎ0,𝑘−1 +
ℎ0,𝑘−1 − ℎ0,𝑘−2
𝑓𝑘−1 − 𝑓𝑘−2

(𝐹 − 𝑓𝑘−1) (3.90) 

 

with good convergence rates. The iterations stop when the residual 

𝑟𝑘 =
𝐹 − 𝑓𝑘
𝐹

 (3.91) 

 

is below a certain tolerance value 휀𝐹 so that 𝑟𝑘 ≤ 휀𝐹 , where usually 휀𝐹 = 1𝑒 − 4. The elastic 

displacements of each contacting surface can be obtained by simply noting that  

1

𝐸∗
= (

1 − 𝜈1
2

𝐸1
) + (

1 − 𝜈2
2

𝐸2
) =

1

𝐸1
∗ +

1

𝐸2
∗ (3.92) 

 

Therefore, 𝑪 can be decomposed as 

𝑪 = 𝑪𝟏 + 𝑪𝟐 (3.93) 

 

where the influence coefficients of surfaces 1 and 2 are expressed by  

𝐶1,𝑖𝑗 =
4

𝐸1
∗ [(𝑖 − 𝑗 +

1

2
) ∆𝑥 ∙ (𝑙𝑛 |(𝑖 − 𝑗 +

1

2
)∆𝑥| − 1) − ((𝑖 − 𝑗 −

1

2
)∆𝑥)

∙ (𝑙𝑛 |(𝑖 − 𝑗 −
1

2
) ∆𝑥| − 1)] 

(3.94) 

 

𝐶2,𝑖𝑗 =
4

𝐸2
∗ [(𝑖 − 𝑗 +

1

2
) ∆𝑥 ∙ (𝑙𝑛 |(𝑖 − 𝑗 +

1

2
)∆𝑥| − 1) − ((𝑖 − 𝑗 −

1

2
)∆𝑥)

∙ (𝑙𝑛 |(𝑖 − 𝑗 −
1

2
) ∆𝑥| − 1)] 

(3.95) 

 

The elastic displacements are finally obtained  
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𝒉𝒌 = 𝑪𝒌𝒑 (3.96) 

 

where 𝑘 = 1,2. The above method is valid for rough frictionless non-Hertzian contact, but it’s 

still valid also for Hertzian problems, which allows a comparison. Two cylinders of radii 𝑟1 =

 100 𝑚𝑚 and 𝑟2 =  20 𝑚𝑚 are pressed together by a load 𝐹 = 1500 𝑁 per unit length as 

visible in Figure 37. The initial separation of the contacting surfaces 𝒈 is simply given by the 

difference between the circular cross-sections defining the topography of the cylinders: 

𝒈 = [√(𝑟1
2 − 𝒙𝟐) − 𝑟1] − [√(𝑟2

2 − 𝒙𝟐) + 𝑟2] (3.97) 

 

where 𝒙 spans the region [−2,2]𝑚𝑚 with a mesh size ∆𝑥 = 0.004 𝑚𝑚 and the material 

properties are listed in Table 3. 

 

Table 3: Material properties for cylinder-cylinder contact 

 Cylinder 1 Cylinder 2 

Young modulus 𝑬 [MPa] 210000 210000 

Poisson coefficent 𝝂 [-] 0,3 0,3 

 

The initial gap function 𝒉 = ℎ0 + 𝒈 and the deformed one at equilibrium 𝒉 = ℎ0 + 𝒈 + 𝜹 are 

visible in Figure 38 along with the pressure distribution, while the same pressure distribution 

is visible with the deformed profiles 𝒉𝟏 and 𝒉𝟐 in Figure 39. Then, the applied load per unit 

length 𝐹 has been varied from 100 𝑁 to 1500 𝑁. The maximum pressure values and the 

estimated contact area from the proposed method, have been compared to Hertz theory 

[106] and the relative percentage error between those values has been computed as  

%𝑒𝑟𝑟 =
𝑣𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 − 𝑣𝐻𝑒𝑟𝑡𝑧

𝑣𝐻𝑒𝑟𝑡𝑧
∙ 100 (3.98) 

 

where 𝑣𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑  and 𝑣𝐻𝑒𝑟𝑡𝑧 are the peak pressure or the estimated contact area obtained 

with the respective methods. The peak pressure values and those percentage relative errors 

are visible in Figure 40 and denote a good accuracy, with an error generally lower than 1%,  
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Figure 37: Cylinder topography close to the contact point 

 

 

Figure 38: Rigid and deformed gap function and pressure distribution for cylinder-cylinder contact 



III 

   

  
 78 

 

 

Figure 39: Deformed cylinders profiles and pressure distribution 

 

  

Figure 40: Peak pressure variation with increasing load (left), pressure and contact area relative percentage 

errors (right) 
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and a decreasing trend as the load increases since more contact points become part of the 

contact area. In such a simple example the estimation of the initial separation has been easy, 

but in order to apply the proposed method to gears with arbitrary profile modifications 

further steps are necessary. Since the equilibrium contact point is known trough the 

algorithm detailed in paragraph III.4, the mean tangent to both gear profiles is taken as the 

line where contact will happen. From this line normal lines are drawn and the intersection 

points, obtained with the line-to-line intersection method exposed in paragraph III.4, thus 

obtaining the initial separation as the normal distance between the intersection point and 

the mean common tangent at the equilibrium contact point. In the cylinder-cylinder contact 

 

 

Figure 41: Initial profiles separation 𝒈 estimation 

 

the imposed rigid body indentation ℎ0 was intended as a vertical displacement of either 

cylinder towards the other. In the pinion-gear contact instead, in order to respect the 

meshing kinematics, a rotation is imposed as a rigid body rotation of the pinion towards the 

gear. Therefore, at each iteration it’s needed to estimate again the initial separation 𝒈𝒌 
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obtained through a tentative rigid body rotation 휃0,𝑘 for the 𝑘𝑡ℎ iteration computed in the 

same way as (3.90), hence 

휃0,𝑘 = 휃0,𝑘−1 +
휃0,𝑘−1 − 휃0,𝑘−2
𝑓𝑘−1 − 𝑓𝑘−2

(𝐹 − 𝑓𝑘−1) (3.99) 

 

In order to test the proposed method on gear applications where the non-Hertzian approach 

would show results that a Hertzian approach couldn’t correctly analyze the contact is studied 

in the angular position when the tip corner of the gear comes in contact with the flank of the 

pinion as in Figure 41. The data of the gear pair considered is listed in Table 4. For a 

meaningful comparison only one teeth pair will be considered in contact in the position 

mentioned above and it will hence be applied with the full load 𝐹 = 𝑇 𝑟𝑏⁄  in order to compare 

the pressure distribution and highlight the influence of the different profiles modifications. 

The positioning of the equilibrium contact point and hence of the contact line results from 

the iterative algorithm detailed in the previous paragraph. The deformed profiles and the 

pressure distribution of an unmodified gear pair is shown in Figure 42 and displays an  

Table 4: Gear pair parameters 

Parameter Pinion Gear 

Number of teeth 𝒛 [-] 28 28 

Module 𝒎 [mm] 3,175 3,175 

Pressure angle 𝜶𝑷 [°] 20 20 

Face width 𝒃 [mm] 6,35 6,35 

Shaft radius 𝒓𝒔 [mm] 20 20 

Torque 𝑻 [Nmm] 101686 

Young modulus 𝑬 [MPa] 210000 210000 

Poisson coefficent 𝝂 [-] 0,3 0,3 
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Figure 42: Gear tip corner contact without modifications 

 

 

Figure 43: Effect of increasing tip fillet radius on tip corner contact 
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important pressure peak where the sharp corner of the driven gear contacts the flank of the 

pinion. Although the entity of the pressure peak is exaggerated by the fact that only a single 

teeth pair is considered taking the full load this is a better approach than considering the 

contact as Hertzian even in this case. In all upcoming graphs the 0 location of the x axis will 

be taken as the location of the corner contact point for an unmodified gear in order to also 

show the different location where contact happens. Indeed, in the industry particular care is 

taken to avoid this kind of interaction during meshing. Even if no special measure is taken a  

 

 

Figure 44: Tip relief nomenclature 

 

small tip fillet radius is present due to the machining process of the gears. The magnitude of 

the fillet tip radius 𝑟𝑓 influences the maximum value of the pressure peak and also the shape 

of the pressure peak as shown in Figure 43, but this reduction is limited and increasing its 

value even further wouldn’t decrease the overload by much. For this reason, and others as 

well such as minimizing the fluctuation of the STE and others, more elaborate tooth profiles 

modifications (TPM) are usually introduced during manufacturing. The TPM that can be 

studied in a 2D case are mainly the linear and parabolic tip relief modifications visible in 
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Figure 44. For the linear tip relief, the modification is characterized by the length of the 

material to be removed 𝑙𝑡 and by the maximum amount of material to be removed at the 

outer diameter ∆𝑡 . As the name implies the amount of material removed decreases linearly 

from the maximum value ∆𝑡 at the tip, to 0 after a length 𝑙𝑡 . Similarly, but with a parabolic 

trend, the parabolic tip relief is characterized by the length of the material to be removed 𝑙𝑝 

and by the maximum amount of material to be removed at the outer diameter ∆𝑝. Various 

configurations will now be analyzed to highlight the effects of those modifications on the 

pressure distribution when tip corner contact occurs, first for the linear then for the parabolic 

tip relief. In Figure 45 the length of the material removed 𝑙𝑡 is varied from 0.1 to 0.6 𝑚𝑚 with 

a constant ∆𝑡= 0.02 𝑚𝑚. It is evident that increasing the length reduces the maximum 

pressure experienced by the flank, but usually other considerations have to be taken into 

account since this increase would retard the approach of the profiles while anticipating the 

release condition thus increasing the single tooth contact region, which is not always 

desirable since it reduces the contact ratio. In Figure 46 the ∆𝑡 is varied from 0.05 to 0.3 𝑚𝑚 

with a constant 𝑙𝑡 = 0.4 𝑚𝑚. With those values as the material removed increases the  

 

Figure 45: Effect of the increase in length 𝑙𝑡  of linear tip relief 
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Figure 46: Effect of the increase in depth ∆𝑡 of linear tip relief 

 

 

Figure 47: Effect of the increase in length 𝑙𝑝 of parabolic tip relief 
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maximum pressure increases since a sharp corner is created because a discontinuity in the 

curvature of the profile is created and this affects the pressure distribution. Regarding the 

parabolic tip relief in Figure 47 the length of the material removed 𝑙𝑝 is varied from 0.1 to 

0.6 𝑚𝑚 with a constant ∆𝑝= 0.02 𝑚𝑚. It is evident that increasing the length reduces the 

maximum pressure experienced by the flank up to a point where the distribution is almost 

Hertz-like without any asymmetric pressure peak, but again considerations on the contact 

ratio must be taken into account. In Figure 48 the ∆𝑝 is varied from 0.05 to 0.3 𝑚𝑚 with a 

constant 𝑙𝑝 = 0.4 𝑚𝑚. The parabolic distribution doesn’t cause a discontinuity in the profile 

of the teeth flank, but however less material is left in the contact zone and therefore a 

pressure peak becomes progressively more noticeable as the amount of material removed 

is increased. In the tip corner contact condition, the non-Hertzian nature of this kind of 

contact is extremely evident, but when the corner is not involved anymore as the meshing 

process continues it becomes less important. However, this is approach is still more accurate 

since it considers the real curvature of the involute flank even considering arbitrary 

modifications and not just the osculating radius at the contact point with constant curvature 

as in classical analysis. More pressure distribution maps, with the real load distribution  

 

Figure 48: Effect of the increase in depth ∆𝑝 of linear tip relief 
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among the teeth in contact will be shown in the next paragraph, and the pressure peaks as 

the teeth come and leave contact will still be evident in the real meshing conditions. 

 

III.6 Results 

 

In this section the results of the Semi Analytical (SA) approach, including the iterative process 

and the detailed contact analysis, will be shown. The final expression for the STE is finally 

𝑆𝑇𝐸 = 휃𝑔𝑟𝑏,𝑔 − 휃𝑝𝑟𝑏,𝑝 (3.100) 

 

where the subscript 𝑝 indicates the pinion rotation, while 𝑔 indicates the driven gear. The 

rotations 휃𝑔 and 휃𝑝 are measured at the point of maximum displacement in the contact area 

from the contact analysis, therefore including also the elastic deflection 𝜹𝒑 and 𝜹𝒈, and taken 

as the maximum value between the different teeth pairs in contact, therefore for LCRG 

휃𝑔 = max (휃𝑔,1, 휃𝑔,2) 

휃𝑝 = max (휃𝑝,1, 휃𝑝,2) 
(3.101) 

 

and for HCRG 

휃𝑔 = max (휃𝑔,1, 휃𝑔,2, 휃𝑔,3) 

휃𝑝 = max (휃𝑝,1, 휃𝑝,2, 휃𝑔,3) 
(3.102) 

 

The first comparison of the results from the proposed SA model is against a 2D plane 

elements FE model from Ansys. In Ansys model only three teeth have been modeled in order 

to reduce the computational costs since a very refined mesh has been adopted for the 

contacting flanks of the teeth, which have a mesh size of 0.1 𝑚𝑚 to have correct contact 

results, while the mesh is coarser elsewhere. Quadratic 8-node shell elements (PLANE183) 

have been used to discretize the geometry, while the deformable contact pair is described 

by pairs of frictionless contact-target elements (CONTA172-TARGE169) for 2D line contact. 

The geometrical and material properties are listed in Table 2. The inner diameter of the pinion 
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Figure 49: Details of Ansys model, displacements distribution (a) and contact pressures (b) 

 

gear is connected through rigid body connection RBE2 elements to a central node where the 

torque is applied, and the STE is recorded. The inner diameter of the driven gear is constrained 

in the same way, but the central node is constrained against all displacements and rotations. 

The obtained results for one mesh cycle and the comparison against the current method are 

visible in Figure 50. The agreement between the two is good in terms of overall trend, while 

at the single contact a difference of 0.3𝑒 − 4 𝑟𝑎𝑑 is present. Ansys results are not symmetric 

in the mesh cycle due to the lack of adjacent teeth and for the same reason the approach of 

the following tooth after single contact is slightly retarded with respect to the SA model. The 

second comparison that has been made has been against the results coming from the 

Dynamic Analysis of Spur Gear Transmissions (DANST) code from NASA [111]. The tested 

gears have parameters listed in Table 2 and have been analyzed for different levels of torque 

ranging from 100 to 900 𝑙𝑏 − 𝑖𝑛 for one mesh cycle subdivided in 85 intermediate angular 

positions and the results are visible in Figure 51. The torque values correspond to a range 

11.3 − 101.7 𝑁𝑚. Again, the results compare really well except for an upward shift 

increasing with the torque applied which is constant throughout the meshing process and is 

probably caused by differences in the formulation employed to model the torsional 

displacement of the gear body. The two models agree particularly well in the determination 

of the reduction of the single contact portion of the engagement. In both comparisons no 

TPM was applied to the gears, but the effect to various levels of torque, ranging from 25.4 Nm  
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Figure 50: STE results from Ansys and Semi Analytical model 

 

Figure 51: Comparison of NASA DANST results and SA model for several torques 
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Figure 52: Effect of torque on gears with linear tip relief 

to 305.1 Nm, for the same gears tested on the NASA code but this time with a linear tip relief 

(∆𝑡= 0.0032 𝑚𝑚, 𝑙𝑡 = 0.96 𝑚𝑚) symmetric on both gears are analyzed in Figure 52 over two 

mesh cycles. As the torque increases also the mean value of the STE increases, but the region 

of single tooth contact strongly reduces, closely approaching the value of 2 for the highest 

level of torque. In Figure 53 a single STE for the same geometry under a torque of 101.7 𝑁𝑚 

is visible alongside with the load sharing coefficients for the different engaging teeth pairs. In 

this figure (Figure 53) and in the following ones the solid lines represents the load sharing 

coefficient for the main teeth pair 𝐶1, while the dashed lines for the pair leaving contact 𝐶0 

and the dash-dot lines for the pair coming into contact 𝐶2, as represented in Figure 29. The 

pressure distribution along the entire mesh process in these conditions is visible Figure 54 

and displays the pressure peak as expected and discussed in the previous paragraph. The 

maximum pressure value is a lot lower than what visible in Figure 42 since in the present case 

the load acting at the beginning of contact is lower. However, this condition could still cause 

damage to the flank since the maximum pressure value at the beginning of contact is equal 

to 1088 𝑀𝑃𝑎, which is larger than the maximum value in the single contact zone of the mesh 

cycle which is 763.3 𝑀𝑃𝑎, and is usually the value for which gears are  
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Figure 53: STE and load sharing coefficients without TPM  

 

 

Figure 54: Pressure distribution along the entire mesh process without TPM 
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Figure 55: Effect of the variation of the amount of the material removed ∆𝑡 in linear tip relief TPM 𝑙𝑡 = 0.96 𝑚𝑚 

 

  

 

Figure 56: Effect of the variation of the length of the material removed 𝑙𝑡in linear tip relief TPM ∆𝑡= 0.032 𝑚𝑚 

 

designed for. If not accounted for, this pressure peak could cause for example pitting on its 

surface and must hence be avoided. The effect of the linear tip relief is now analyzed. In 

Figure 55 the effect of the amount of material removed ∆𝑡 is visible for a fixed length of lt =

0.96 𝑚𝑚. 
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Figure 57: Pressure distribution along the entire mesh process with linear tip relief 𝑙𝑡 = 0.96 𝑚𝑚 ∆𝑡= 0.032 𝑚𝑚 

 

The values are varied from a minimum of 0.01 𝑚𝑚 up to 0.04 𝑚𝑚. The main effect is that, as 

the material removed increases, the length of the single contact zone increases since the 

teeth pair engage later and leave contact sooner than normal, effectively decreasing the 

expected contact ratio and leaving the peak to peak value of the STE unchanged. Also, the 

load sharing coefficient doesn’t improve since the passage from double to single contact 

becomes even more abrupt as the material removed increases, while in the double contact 

zone the values remain unchanged. In Figure 56 the effect of the length of the linear tip relief 

is analyzed alongside with the changes it creates in the load sharing coefficients. The length 

of the material removed 𝑙𝑡 is varied from 0.96 𝑚𝑚 up to 3 𝑚𝑚 and in this case some 

improvements on both the STE and the load sharing coefficients can be appreciated. Indeed, 

after a certain value the minimum value of the STE can be seen to increase thus effectively 

reducing its peak to peak value and at the same time smoothing the transition between the 

teeth since the fraction of the total load they experience changes without evident 

discontinuities. In Figure 57 the contact pressure on the flank during the mesh process can 

be observed for a linear tip relief TPM with lt = 0.96 mm and ∆t= 0.032 mm and it can be  
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Figure 58: Effect of the variation of the amount of the material removed ∆𝑝 in linear tip relief TPM 𝑙𝑝 = 0.96 𝑚𝑚 

 

 

Figure 59: Effect of the variation of the length of the material removed 𝑙𝑝in linear tip relief TPM ∆𝑝= 0.032 𝑚𝑚 

 

seen that thanks to this modification the pressure peak as the tooth comes into contact is 

reduced with respect to the unmodified case as in Figure 54. The peak value is equal to 

793.1 𝑀𝑃𝑎 which is still higher than the maximum pressure in the single contact zone of the 

mesh cycle but is less dangerous than the previous case, since it’s only 29,8 𝑀𝑃𝑎 higher than 
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the design value. In Figure 58 the effect on the STE and the load sharing coefficients of the 

amount of material removed in a parabolic tip relief is visible. Its effects are similar to those 

of the linear tip relief since its only effect is to increase the fraction of the mesh cycle during 

which single contact occurs. The peak to peak value of the STE remains constant and the 

load sharing variation doesn’t show evident beneficial effects.  In Figure 59 the effect of the 

length of the parabolic tip relief is analyzed and in this case, similarly to what happens for 

the linear tip relief, some improvements can be seen. As the length of the material removed 

increase the minimum value of the STE increases and therefore the peak to peak ratio 

decreases. At the same time, the variation of the load sharing coefficients  

 

Figure 60: Pressure distribution along the entire mesh process with parabolic tip relief 𝑙𝑝 = 0.96 𝑚𝑚 ∆𝑝=

0.032 𝑚𝑚 

 

become smoother as the variation becomes more gradual. The effect of this modification is 

lower with respect to the linear tip relief and indeed for the same values of modification the 

reduction in the peak to peak value of the STE is lower. This is due to the different geometry 

of the two kind of modifications, since for the same values the volume effectively removed is 
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higher for the linear tip relief, since the amount of material removed increases faster than 

with respect to the parabolic one. However, the pressure distribution along the entire mesh 

process for a gear modified with parabolic tip relief with lp = 0.96 mm and ∆p= 0.032 mm 

can be seen in Figure 60 and this kind of modification is evidently more effective in reducing 

the pressure peak as the flanks of the gears come into contact. Indeed, the peak is almost 

completely eliminated (370.4 𝑀𝑃𝑎) and is just slightly higher than the pressure value when 

the tip corner contact effect disappears (331.1 𝑀𝑃𝑎), but still less than half of the design value 

in the single tooth contact portion of the mesh cycle and therefore poses no dangers to the 

integrity of the flank surface. More results and comparisons will be show in chapter V where 

the experimental test bench and the tests conducted on it will be discussed. The results given 

here are just examples of the capabilities of the proposed model, but it is clear that in order 

to achieve a good gear design those analyses alone are not enough. Indeed, a combinatory 

analysis taking into account the design loads and the possible combination of the macro 

(module, pressure angle, profile shift, etc.…) and micro (tip or root relief, kind of TPM, length 

and amount of material removed) have to be considered at the same time so as to create a 

response surface in which the effects of all parameters are linked and can therefore be used 

to estimate the better combination to improve the reliability, wear resistance, fatigue life or 

noise related issues depending on the objective or objectives of the analysis. This 

optimization approach, common in literature ( [112], [113], [114]), is not in the scope of the 

current work but will be object of future research. 
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IV. 3D teeth contact analysis 

 

IV.1 Introduction  

 

In this chapter the extension to three dimensions of the previously presented model will be 

discussed. The needed modifications to the calculation of the gear’s deflections will be shown 

first to include the effects of the eventual axial loads previously neglected allowing the 

analysis of helical gears or gears with arbitrary profile modifications along the facewidth. 

Then the updated procedure for the iterative contact point detection will be presented since 

the surface of the teeth will be considered as a 3D surface rather than a 2D line. Next, two 

approaches of frictionless rough contact models will be presented and applied against 

Hertz’s theory and results available in literature in the 3D domain.  The first model will be only 

applicable to equilateral triangles, while the second one is valid for any triangle shape. 

However, the calculations of the influence coefficients of the second model is more 

cumbersome and it offers only limited advantages since a representation of the contact 

plane is possible most of the time with equilateral triangles. Therefore, the second model will 

be only applied when needed. Finally results will be shown for both spur and helical gears in 

terms of STE and load sharing coefficients and the effects of profiles modifications will be 

discussed also in terms of pressure distributions along the flank. 
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IV.2 Operative deflections and iterative contact point detection 

 

In order to take into account the gears as three dimensional bodies, which is necessary for 

helical gears, or for spur gears with profiles modifications over the facewidth rather than just 

uniform tip profile modifications, several changes are needed since in Cornell’s models [21] 

only the planar behavior is considered. Indeed, in his model all deflections were computed in 

the direction of the application of the load for spur gears and as such it wouldn’t be possible 

to include the effects of the helix angle and loads in the axial direction with just that approach. 

For simplicity and to keep the whole approach similar to the previously presented model, it 

was chosen to keep representing the teeth of the gears as clamped-free beams sectioned in 

thin slices as in Figure 16. Furthermore, the formulation of the root fillet influence on the 

displacements of the involute portion of the teeth will be dropped and the entire tooth, from 

the root to the tip radius, will be treated as a series of connected beam elements. To model 

each of the slices a Timoshenko beam element is computed as [115] 

𝑲𝒆 = 

=

[
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(4.1) 

 

Where the thickness of each slice 𝑙𝑏 is given by the distance between two consecutive points, 

𝑠𝑖  and 𝑠𝑖+1, along the 𝑋 axis 

𝑙𝑏 = 𝑋𝑠𝑖+1 − 𝑋𝑠𝑖 (4.2) 

 

The moment of inertia of the section in the 𝑍 direction is obtained as 
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𝐼𝑏,𝑧 =
4𝑏

3

(𝑌𝑠𝑖+1 ∙ 𝑌𝑠𝑖)
3

𝑌𝑠𝑖+1
3 + 𝑌𝑠𝑖

3   (4.3) 

 

while the one in the 𝑌 direction takes also into account the eventual presence of a helix angle 

𝛽 and hence is 

𝐼𝑏,𝑦 =
1

3
(

𝑏

cos(𝛽)
)
3

𝑌𝑠𝑖 cos(𝛽)
𝑌𝑠𝑖+1

𝑌𝑠𝑖+1 + 𝑌𝑠𝑖
  (4.4) 

 

Lastly, the polar moment of inertia can be computed as 

𝐽𝑏 =
1

3
𝜓𝑏𝑏ℎ

3 (4.5) 

 

Where 𝜓𝑏 = 3𝜓 interpolating the data from Table 5 with 𝑋𝑠𝑖+1 − 𝑋𝑠𝑖 ≥ 𝑌𝑠𝑖+1 − 𝑌𝑠𝑖using a 

piecewise cubic Hermite interpolating polynomial (“pchip”) [116] [117].  

Table 5: Data to obtain 𝜓𝑏  

(𝑋𝑠𝑖+1 − 𝑋𝑠𝑖)

 𝑌𝑠𝑖+1 − 𝑌𝑠𝑖
 1 1.2 1.5 2 2.5 3 4 5 10 100 

𝜓𝑏  0.141 0.166 0.196 0.229 0.249 0.263 0.281 0.292 0.313 0.333 

 

In Timoshenko beam theory shear correction factors in the 𝑌 and 𝑍 direction, 𝜒𝑦 and 𝜒𝑧 , are 

introduced to correctly take into account the shear effect which is not present in Euler-

Bernoulli beam theory and those are computed for the Y direction as 

𝜒𝑦 =
12𝐸𝑏𝐼𝑏,𝑧

𝐺𝑏𝑙𝑏
2 𝐴𝑖

𝑘𝑏,𝑦
⁄

  
(4.6) 

 

And for the 𝑍 direction 

𝜒𝑧 =
12𝐸𝑏𝐼𝑏,𝑦

𝐺𝑏𝑙𝑏
2 𝐴𝑖

𝑘𝑏,𝑦
⁄

  (4.7) 
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Both 𝜒𝑦 and 𝜒𝑧 depend on shear correction factors 𝑘𝑏,𝑦 and 𝑘𝑏,𝑧 which depend of the 

Poisson’s ratio of the material 𝜈 and for solid rectangular sections can be calculated as [118] 

𝑘𝑏,𝑦 = 𝑘𝑏,𝑧 =
10(1 + 𝜈)

12 + 11𝜈
  (4.8) 

 

Once all elemental 𝑲𝒆 are computed they are assembled into the global stiffness matrix 𝑲 

as per standard FEM procedures [119] and the rows and columns corresponding to the node 

at the base of the tooth are removed to represent the clamped constrain to be applied to 

obtain the correct representation. In this case the load and the corresponding force vector 

will be dependent on the location of the contact point which now lies in the 3D space. The 

points of the flank of each considered tooth are assembled to form a triangulated surface for 

both the pinion and the gear, as shown in Figure 61 for a single teeth pair and in Figure 62 

for all teeth considered. The triangulation in Figure 61 refers to a gear pair with a helix angle 

𝛽 = 30° and a facewidth 𝑏 =  10 𝑚𝑚, but the size of the triangles is actually much larger 

than what is used in the calculations, because otherwise it wouldn’t be recognizable in the 

figure. In Figure 62 the triangles lines have been removed altogether for the same reason. In 

order to find the actual contact point at each iteration the deformed surfaces of the flanks of 

the pinion are rotated towards those of the driven gear and the resulting intersection points 

are found through the application of the Möller –Trumbore ray-triangle intersection algorithm 

[120] in which each triangle edge of each surface is treated as an infinitely long ray and an 

intersection is sought with the triangular faces of the opposite surface. If an intersection is 

found between the infinitely long ray and the surface of one of the triangles it is checked if it 

is a true intersection by checking if the location of the intersection point 𝑝𝑐 lies between the 

endpoints of the considered edge (𝑝1, 𝑝2) by  

‖𝑝𝑐 − 𝑝1‖ + ‖𝑝𝑐 − 𝑝2‖ =  ‖𝑝𝑐 − 𝑝1‖  (4.9) 

 

Usually this kind of ray tracing is computationally heavy and almost unusable without 

complex and specific hardware GPU acceleration, but its speed can be extremely improved 

by using an octree data structure [121] [122] to partition the triangles in which the groups of 

triangles are recursively subdivided in eight bins thus greatly reducing the computational 

effort by a huge amount and making it usable in an iterative process such as the one being 
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Figure 61: Pinion and gear flanks triangulated surfaces 

 

presented without slowing it down. Once the coordinates of the contact point 𝑶 =

{𝑥𝑐𝑝, 𝑦𝑐𝑝, 𝑧𝑐𝑝}
𝑇

 are known as visible in Figure 63 the normal vector to the contact point can 

be computed for each tooth pair from the closest point in the triangulation 𝐴, 𝐵, 𝐶 and 𝐷 

visible in Figure 64. This is needed to compute the actual pressure and helix angle, 𝜇𝛼 and 𝜇𝛽 

respectively, which will be in general different from the rigid counterparts 𝛼 and 𝛽 due to 

teeth deflections. Since all triangles considered (𝑂𝐴�̂�,  𝑂𝐵�̂�, 𝑂𝐶�̂�, 𝑂𝐷�̂�) will have in general a 

different normal vector the average of them is found by constructing an orthogonal 

reference frame with origin in the contact point. The vector defining the local X axis is defined 

by  

𝒗𝒙 = 𝒖𝒋 −𝑶 (4.10) 

 

where 𝒖𝒋 = {𝑥𝑗, 𝑦𝑗 , 𝑧𝑗} and 𝑗 = 𝐴, 𝐵, 𝐶, 𝐷 alternatively. An accessory vector is defined by 

𝒗𝒂 = 𝒖𝒌 −𝑶 (4.11) 
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Figure 62: Surfaces of all considered flanks. Triangulations lines are removed for visualization purposes. 

 

 

Figure 63: Intersections between the deformed triangulated profiles and new contact points 
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where 𝒖𝒌 = {𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘} and 𝑘 =  𝐵, 𝐶, 𝐷, 𝐴 alternatively. The vectors defining the Y and Z axis 

are then obtained as 

𝒗𝒚 = 𝒗𝒛 × 𝒗𝒙 

𝒗𝒛 = 𝒗𝒙 × 𝒗𝒂 
(4.12) 

 

The versors are then obtained dividing the vectors with their norm 

𝒏𝒙 =
𝒗𝒙
‖𝒗𝒙‖

  𝒏𝒚 =
𝒗𝒚

‖𝒗𝒚‖
  𝒏𝒛 =

𝒗𝒛
‖𝒗𝒛‖

 (4.13) 

 

Finally, the averaged versor normal to the surface in the contact point is simply obtained by 

 �̅�𝒛 = {�̅�𝑧,1, �̅�𝑧,2, �̅�𝑧,3} = {𝒏𝒛, 𝑂𝐴�̂� ,𝒏𝒛, 𝑂𝐵�̂� ,𝒏𝒛, 𝑂𝐶�̂� ,𝒏𝒛, 𝑂𝐷�̂� ,}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4.14) 

  

 

 

Figure 64: Points for the calculation of the normal vector to the contact point 
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From the components of the �̅�𝒛 versor the actual pressure angle  𝜇𝛼 and helix angle  𝜇𝛽 can 

be found by  

𝜇𝛼 = tan
−1 (

�̅�𝑧,2 

�̅�𝑧,1 
)  

𝜇𝛽 = tan
−1 (

�̅�𝑧,3 

�̅�𝑧,1 
) 

(4.15) 

 

Using the obtained angles, the forcing terms to be applied to the Degrees Of Freedom (DOFs) 

pertaining the contact node can be obtained as 

𝒇𝒄𝒑 =

{
 
 

 
 
𝑓𝑥
𝑓𝑦
𝑓𝑧
𝑚𝑥

𝑚𝑦

𝑚𝑧}
 
 

 
 

=

{
  
 

  
 

𝐹𝑠𝑖𝑛(𝜇𝛼)

𝐹𝑐𝑜𝑠(𝜇𝛼) cos(𝜇𝛽)

𝐹𝑐𝑜𝑠(𝜇𝛼) sin(𝜇𝛽)

𝐹𝑐𝑜𝑠(𝜇𝛼) cos(𝜇𝛽) (𝑧𝑐𝑝 − 𝑏/2)

𝐹𝑠𝑖𝑛(𝜇𝛼)(𝑧𝑐𝑝 − 𝑏/2)

0 }
  
 

  
 

  (4.16) 

 

which takes into account the fact that the teeth beam elements are considered at the mid-

facewidth location (𝑏/2) and that the location of the contact point can be offset from this 

location introducing the moment terms 𝑚𝑥 and 𝑚𝑦 in its components to include this effect. 

The term 𝐹 is the magnitude of the force in the direction normal to the tooth profile 

𝐹 =
𝑇𝑐𝑜𝑠(𝛽)

𝑟𝑏𝑐𝑜𝑠(𝛼)
𝐶𝑘  (4.17) 

 

Where 𝐶𝑘 is the load sharing coefficient for the 𝑘𝑡ℎ teeth pair computed in the same way as 

detailed in chapter III. The complete force vector is obtained placing the terms of in their 

corresponding DOFs 

𝒇 = {0 0 0 ⋯𝒇𝒄𝒑  ⋯0 0 0}
𝑻
  (4.18) 

 

and finally, the displacements of each node of the beam are calculated from 

𝜹 = 𝑲−𝟏𝒇  (4.19) 
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in which the displacements and rotations of the 𝑗𝑡ℎ node in the beam 

𝜹𝒋 = {𝛿𝑥  𝛿𝑦 𝛿𝑧 𝜗𝑥  𝜗𝑦 𝜗𝑧}
𝑇

 (4.20) 

 

are then used to obtain the deflected 3D shape of the tooth profile for 𝑖𝑡ℎ node sharing the 

same X coordinate of the 𝑗𝑡ℎ node by 

𝒅𝒊 = 

= [{

𝑥𝑝,𝑖 − 𝛿𝑥 − 𝜗𝑦(𝑧𝑝,𝑖 − 𝑏/2)

𝑦𝑝,𝑖 − 𝛿𝑦 + 𝜗𝑥(𝑧𝑝,𝑖 − 𝑏/2)

𝑧𝑝,𝑖 + 𝛿𝑧

} − {

𝑥𝑜
𝑦𝑜
𝑧𝑜
}] [

𝑐𝑜𝑠(𝜑𝑏,𝑖 + 휃) −𝑠𝑖𝑛(𝜑𝑏,𝑖 + 휃) 0

𝑠𝑖𝑛(𝜑𝑏,𝑖 + 휃) 𝑐𝑜𝑠(𝜑𝑏,𝑖 + 휃) 0

0 0 1

] + {

𝑥𝑜
𝑦𝑜
𝑧𝑜
} 

(4.21) 

 

Where 𝑥𝑝,𝑖 , 𝑦𝑝,𝑖 and 𝑧𝑝,𝑖  are the undeformed coordinates of the 𝑖𝑡ℎ of the flank profile and 𝜑𝑏,𝑖 is 

the rotation angle due to the deflection of the gear body calculated from 𝑦𝐴 of eq. (3.36) 

𝜑𝑏,𝑖 = 𝑡𝑎𝑛
−1

(

 
𝑦𝐴𝑐𝑜𝑠(𝜇𝛼)

√𝑥𝑝,𝑖
2 + 𝑦𝑝,𝑖

2 𝑐𝑜𝑠(𝛼) − 𝑟𝑓)

  (4.22) 

 

where 𝑟𝑓 is the root radius of the gear and 휃 = 휃𝐴 or 휃 = 휃𝐶  due to the deflection of the adjacent teeth 

from eq. (3.44) or eq. (3.45) in which the subscript A or C depends on which teeth pair is being 

considered as visible in Figure 24. This process is repeated for each tooth pair considered, for both 

the pinion and the driven gear and thus all deformed profiles are obtained. The deformed profile of a 

teeth under load, with an helix angle 𝛽 = 30° and a facewidth 𝑏 =  10 𝑚𝑚, contacting almost at 

the tip edge is visible in Figure 65 in which the bending effect the effect of the body rotation and the 

influence of the adjacent teeth have been separated and increased by a factor of 1000 to make them 

clearly visible, while the flanks of the pinion and driven gear for two teeth pairs are visible in the initial 

and deformed configurations in Figure 66 scaled by the same factor. This iterative process is repeated 

until equilibrium is found as described by the algorithm in chapter III and when convergence is 

achieved a detailed 3D contact algorithm, which will be described next, is then employed to obtain the 

contact pressures and displacements which will contribute to the final calculation of the STE as already 

described.  
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Figure 65: Deformed tooth profile under load. Deformations have been increased by a factor of 1000 

 

Figure 66: Deformed flanks of different teeth pairs. The deformations have been increased by a factor of 1000 
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IV.3 3D Non-Hertzian contact model 

 

In this paragraph a 3D frictionless rough contact model will be presented. The basic 

formulation in terms of the Hertz-Signorini-Moreau problem is identical to what was 

discussed in III.5 and the same is valid for the iterative process to achieve the correct pressure 

distribution without traction (negative) pressures in any point of the computational domain. 

The differences lie in the fact that the contact line, discretized in uniform intervals, will be 

substituted by a contact plane, discretized through a triangular mesh, which obviously calls 

for a different formulation of the influence coefficients 𝐶𝑖𝑗 which will form the influence 

coefficients matrix 𝑪. Another difference is that in the 2D case the pressure distribution was 

considered as piecewise constant, while in the present case a linear pressure distribution will 

be employed. Two different formulations will be discussed, and the main difference is the kind 

of triangles on which they can be applied as well as the computational effort and complexity 

to obtain the final influence coefficients matrices. However, over the same triangulation and 

with the same parameters they will be shown to yield very similar results among each other. 

The first formulation that will be introduced is the simplest one in terms of complexity but will 

be only applicable to regions triangulated using equilateral triangles and is based on the 

analytical formulations by Marmo et al. from [123] and [124]. Those formulations were based 

on surface integrals which could practically be solved only by symbolic computational 

toolboxes and hence were extremely computationally intensive. However, the same 

formulations were later specialized for direct numerical implementations by the same  

 

Figure 67: Equilateral triangular mesh and pyramidal pressures interpolation from [125] 
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researchers [125] over equilateral triangular domains whose edge length is equal to 𝑙 and 

the pressure distribution is linearly interpolated over pyramidal domains as visible in Figure 

67. Using this formulation, in order to obtain the influence coefficient matrix, it only needed 

to obtain the distance between each pair of 𝑖 and 𝑗 nodes of the domain as 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
 (4.23) 

 

and then nondimensionalize it with respect to the edge length by 

𝜌𝑖𝑗 =
𝑟𝑖𝑗

𝑙
 (4.24) 

 

Then, using the nondimensional distance and the material shear modulus 𝐺 = 𝐸 2(1 + 𝜈)⁄ , 

the influence coefficients 𝐶𝑖𝑗 that form the 𝑪 matrix are directly obtained from  

𝐶𝑖𝑗 =

{
 

 
1 − 𝑣

2𝜋𝐺

𝑙

2.854
  𝑖𝑓 𝜌𝑖𝑗 = 0

1 − 𝑣

2𝜋𝐺

𝑙

1.159𝜌𝑖𝑗 − 0.09
 𝑖𝑓 𝜌𝑖𝑗 ≥ 1 

 (4.25) 

 

The second formulation that will be discussed is based on the closed-form solution of the 

contact problem proposed by Kalker and Van Randen [126] which was later fully derived 

and corrected by Boedo [127]. In this model a linearly varying normal pressure 𝑝(𝜉, 휂) is 

imposed on the half-space region as 

𝑝(𝜉, 휂) =
𝑃0휂

𝛾
 (4.26) 

 

in which 𝑃0 is the pressure in the apex (0, 𝛾) of the triangle in the local coordinate frame 

(𝜉, 휂) with 𝛾 > 0 as visible in Figure 68. The displacement equation is then integrated, and a 

closed-form solution is obtained 
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𝐼(𝑎, 𝑏, 𝑐, 𝑡) =
(𝑎 + 𝑏𝑐)(𝑡 − 𝑐)[(𝑎 + 𝑏𝑡)2 + (𝑡 − 𝑐)2]1/2  

4𝜋(1 + 𝑏)2𝑎𝑏𝑠(𝑡 − 𝑐)

+
𝑡2 − 𝑐2

4𝜋
arcsinh (

𝑎 + 𝑏𝑡

𝑡 − 𝑐
) +

(𝑎 + 𝑏𝑐)(2𝑐 − 𝑎𝑏 + 𝑏2𝑐)

4𝜋(1 + 𝑏2)3/2
ln (𝐴 + 𝐵) 

(4.27) 

 

where 

𝐴 =
2𝑏(𝑎 + 𝑏𝑡) + 2(𝑡 − 𝑐)

(1 + 𝑏2)1/2
 (4.28) 

 

𝐵 =
2(𝑡 − 𝑐)[(𝑎 + 𝑏𝑡)2 + (𝑡 − 𝑐)2]1/2

𝑎𝑏𝑠(𝑡 − 𝑐)
 (4.29) 

 

Figure 68: Local reference system for second contact formulation from [127] 

 

The complete solution can then be written as: 

• For �̅� < 0 

𝛿 = 𝐼(�̅� − �̅�,−�̅�, �̅�, 1) − 𝐼(�̅� − �̅�,−�̅�, �̅�, 0) − 𝐼(�̅� − �̅�,−�̅�, �̅�, 1)

+ 𝐼(�̅� − �̅�, −�̅�, �̅�, 0) 
(4.30) 
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• For 0 < �̅� < 1 

𝛿 = 𝐼(�̅� − �̅�, −�̅�, �̅�, 0) − lim
𝑡→�̅�−

𝐼(�̅� − �̅�, −�̅�, �̅�, 𝑡) + 𝐼(�̅� − �̅�,−�̅�, �̅�, 0)

− lim
𝑡→�̅�+

𝐼(�̅� − �̅�,−�̅�, �̅�, 𝑡) − 𝐼(�̅� − �̅�, −�̅�, �̅�, 0)

+ lim
𝑡→�̅�−

𝐼(�̅� − �̅�,−�̅�, �̅�, 𝑡) − 𝐼(�̅� − �̅�, −�̅�, �̅�, 1)

+ lim
𝑡→�̅�+

𝐼(�̅� − �̅�,−�̅�, �̅�, 𝑡) 

(4.31) 

 

• For �̅� > 1 

𝛿 = 𝐼(�̅� − �̅�,−�̅�, �̅�, 0) − 𝐼(�̅� − �̅�,−�̅�, �̅�, 1) − 𝐼(�̅� − �̅�,−�̅�, �̅�, 0)

+ 𝐼(�̅� − �̅�, −�̅�, �̅�, 1) 
(4.32) 

 

• For �̅� = 0 

𝛿 = 𝐼(�̅� − �̅�, −�̅�, 0,1) − lim
𝑡→0+

𝐼(�̅� − �̅�,−�̅�, 0, 𝑡) − 𝐼(�̅� − �̅�,−�̅�, 0,1)

+ lim
𝑡→0+

𝐼(�̅� − �̅�,−�̅�, 0, 𝑡) 
(4.33) 

 

• For �̅� = 1 

𝛿 = 𝐼(�̅� − �̅�, −�̅�, 1,0) − lim
𝑡→1−

𝐼(�̅� − �̅�, −�̅�, 1, 𝑡) + lim
𝑡→1−

𝐼(�̅� − �̅�, −�̅�, 1, 𝑡)

− 𝐼(�̅� − �̅�, −�̅�, 1,0) 
(4.34) 

 

where �̅� = 𝛼\𝛾, �̅� = 𝛽\𝛾, �̅� = 𝛼\𝛾,  �̅� = 𝑥\𝛾, �̅� = 𝑦\𝛾, 𝜉̅ = 𝜉\𝛾 and  휂̅ = 휂\𝛾 are the 

nondimensional distances. The evaluation of the one-sided limits is needed since eq. (4.27) is 

undefined when 𝑡 = 𝑐. Then the dimensional pressure-displacement coefficients are 

obtained as 

𝑤𝑖𝑗,𝑘 = 𝛿
1 − 𝜈

𝐺
 (4.35) 
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where the values of 𝑤𝑖𝑗,𝑘 with 𝑘 = 1, 2, 3 for the entire triangulation need to be obtained three 

times, considering as the apex 𝛾 a different vertex of each triangle. Once this is done, the final 

influence coefficient is found by 

𝐶𝑖𝑗 =∑𝑤𝑖𝑗,𝑘

𝑛

𝑗=1

 (4.36) 

 

where 𝑛 is the number of nodes in the triangulation and the summation is carried out by 

choosing the appropriate 𝑘 in which node 𝑖 is the vertex 𝛾 in the local coordinate frame. The 

two proposed models essentially give the same results when used on the same triangulation 

and therefore if not differently specified the coefficients from (4.25) will be used for the 

reasons mentioned earlier. The iterative solution process is the same as detailed in III.5. To 

validate the results obtained from the current approach a simple sphere to sphere contact is 

compared to the results from Hertz theory. The two contacting spheres have radii 𝑅1 =

100 𝑚𝑚 and 𝑅2 = 20 𝑚𝑚 respectively pressed together by a normal a load 𝐹 = 6500 𝑁 on 

a 2 × 2 𝑚𝑚 (𝒙 × 𝒚) contact plane with triangles with a side length 𝑙 = 0.06 𝑚𝑚. The initial 

rigid body separation is simply obtained by 

 

Figure 69: Pressure distribution 𝑝/𝑝𝑚𝑎𝑥 on the contact plane for the sphere-sphere contact 
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Figure 70: Pressure distribution for the sphere-sphere contact on the contact plane 

 

 

Figure 71: Sphere-sphere contact percent errors versus Hertz theory 



3D TEETH CONTACT ANALYSIS 

   

  
 113 

 

 

𝒈 = [(𝑅1
2 − 𝒙𝟐 − 𝒚𝟐)

1
2 − 𝑅1] − [(𝑅2

2 − 𝒙𝟐 − 𝒚𝟐)
1
2 − 𝑅2] (4.37) 

 

The distribution of the unit pressure p/pmax is visible in Figure 69 while in Figure 70 the same 

distribution is visible with the color bar defining the pressure values and the white line 

indicates the predicted solution from Hertz theory [106]. The visual comparison shows a very 

good agreement and a numerical comparison is shown in Figure 71 where the obtained 

values for a varying load between 500 ÷ 7500 𝑁 show an error for both the maximum 

pressure and the contact area always lower than 1.5%. The influence of the mesh size is also 

visible in the same figure for the maximum load and shows a trend quickly approaching lower 

errors as the length of the triangles sides decreases. Next, and ellipsoid to ellipsoid contact is 

compared to the results from Hertz theory. The two contacting ellipsoids have major radii 

𝑅1 = 100 𝑚𝑚 and 𝑅2 = 20 𝑚𝑚 and minor radii 𝑟1 = 40 𝑚𝑚 and 𝑟2 = 5 𝑚𝑚  respectively 

pressed together by a normal a load 𝐹 = 10500 𝑁 on a 2 × 2 𝑚𝑚 (𝒙 × 𝒚) contact plane with 

triangles with a side length 𝑙 = 0.06 𝑚𝑚. The initial rigid body separation is simply obtained 

by 

𝒈 = [
𝒙2

2𝑅1
+
𝒚2

2𝑟1
] − [

𝒙2

2𝑅2
+
𝒚2

2𝑟2
] (4.38) 

 

The distribution of the unit pressure p/pmax is visible in Figure 72 while in Figure 73 the same 

distribution is visible with the color bar defining the pressure values and the white line 

indicates the predicted solution from Hertz theory [106]. The visual comparison shows a very 

good agreement and a numerical comparison is shown in Figure 74 where the obtained 

values for a varying load between 1000 ÷ 15000 𝑁 show again an error for both the 

maximum pressure and the contact area always lower than 1.6%. The influence of the mesh 

size is also visible in the same figure for the maximum load and shows a trend quickly 

approaching lower errors as the length of the triangles sides decreases. In order to verify the 

non-Hertzian results a model of a crowned roller bearing contacting with a cylindrical inner 

race has been compared with the results from de Mul et al. [128] and the geometrical and 

material data can be seen in Figure 75 and the resulting cross-sections in the 𝑋 and 𝑌 planes  
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Figure 72: Pressure distribution 𝑝/𝑝𝑚𝑎𝑥 on the contact plane for the ellipsoid-ellipsoid contact 

 

Figure 73: Pressure distribution for the ellipsoid-ellipsoid contact on the contact plane 
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Figure 74: Ellipsoid-ellipsoid contact percent error versus Hertz theory 

 

Figure 75: Crowned roller and disk geometrical and material properties 
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Figure 76: Profiles cross sections in 𝑋 and 𝑌 direction of the crowned roller and disk 

 

Figure 77: Pressure distribution on the contact plane for the crowned roller contact 
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Figure 78: Pressure distribution along the 𝑋 direction and comparison with results from [128] 

 

in Figure 76. Due to the nature of the contact a mesh for the contact plane made with right 

triangles is chosen with equal sides of 0.02 mm and therefor the influence coefficient matrix 

𝑪 is formed using the approach from Boedo [127]. The resulting non-Hertzian pressure 

distribution resulting from the application of the current method can be seen in Figure 77 for 

a load 𝐹 = 33800 𝑁 where two distinct pressure peaks can be distinguished on the contact 

plane, while the central part has a trend similar to the ellipsoid to ellipsoid contact seen 

earlier. The pressure variation along the 𝑋 direction can be seen in Figure 78 along with the 

same results from [128] for the symmetric part of the contact. The pressure at 𝑋 = 0 is close 

to 4000 𝑀𝑃𝑎 in both cases and the trends are also very similar as well as the maximum 

 

Figure 79:Pressure distribution along the 𝑋𝑌 plane and comparison with results from 
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pressure at the edge of contact, which for the case from literature is just slightly above 

6000 𝑀𝑃𝑎, while for the current model is 5987 𝑀𝑃𝑎, thus they agree well with each other. A 

comparison of the view on the 𝑋𝑌 plane can be instead seen in Figure 79 where it can be 

appreciated also the agreement between the results since the maximum width at 𝑋 = 0 is 

just above 0.4 𝑚𝑚 (0.42 𝑚𝑚 for the current model) and also the width of the contact patch 

is around 7.2 𝑚𝑚 for the reference results and has the same value in the current case. The 

slight differences in the results are mainly due to different discretization since the exact value 

of the pressure and of the contact patch depends on this. Also, in [128] the contact plane is 

discretized using contact pressure rectangles, but the size of those elements is not given. In 

order to apply this method to the contact between gears a way to obtain the initial separation 

between the contacting profiles 𝒈 is needed, since up to now the profiles were simple enough 

so that it could be found through simple analytical expressions. To do so, the equilibrium 

deformed contact point is used to compute a rotation matrix that will bring the profile normal 

to the 𝑋𝑌 contact plane. This rotation matrix for each of the contacting flanks is obtained 

from the versors from equations (4.10) through (4.14). The rotation matrix is then obtained as 

𝑹𝜽 = [  

𝒏𝒙
𝒏𝒚
�̅�𝒛

] = [

𝑛𝑥,1 𝑛𝑥,2 𝑛𝑥,3
𝑛𝑦,1 𝑛𝑦,2 𝑛𝑦,3
�̅�𝑧,1 �̅�𝑧,2 �̅�𝑧,3

] (4.39) 

 

and the new coordinates of each point of the flanks 𝒖′𝒑 = {𝑥′𝑝, 𝑦′𝑝, 𝑧′𝑝}
𝑇

 in this position are 

then computed with 

{

𝑥′𝑝
𝑦′𝑝
𝑧′𝑝

} = 𝑹𝜽 ({

𝑥𝑝
𝑦𝑝
𝑧𝑝
} − {

𝑥𝑐𝑝
𝑦𝑐𝑝
𝑧𝑐𝑝

})  (4.40) 

 

where 𝒖𝒑 = {𝑥𝑝, 𝑦𝑝, 𝑧𝑝}
𝑇

 are the coordinates of each of the point of the considered flank and 

𝑶 = {𝑥𝑐𝑝, 𝑦𝑐𝑝, 𝑧𝑐𝑝}
𝑇

 are again the coordinates of the equilibrium contact point after 

deformation. Next, the rotated flanks are interpolated using polynomials of degree 𝑛 in 𝑋 and 

𝑌 so that the final value of g can be directly obtained substituting the 𝑋 and 𝑌 coordinates of 

the triangulation of the contact plane. The degree of the polynomial 𝑛 is automatically 

chosen so as to minimize the difference between the original points and the interpolated 

values below a certain threshold which is usually set at 1𝑒 − 6 𝑚𝑚, so that even the finest 
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TPM would be represented correctly, however those values are generally much lower as can 

be seen in Figure 80 for a gear with 𝛽 = 45° and a facewidth 𝑏 = 26 𝑚𝑚, in which for a 

computed 𝑛 = 9 the errors Δ𝑧 are in the order of 1𝑒 − 8 𝑚𝑚.  

 

Figure 80: Example of interpolation errors of the flanks 

 

In the next paragraph results will be shown for helical gears, but since the STE and load 

sharing coefficients have already been deeply discussed for spur gears in the previous 

chapter and since changing the approach from 2D to 3D doesn’t affect the results, those will 

not be discussed however, contact results are of a different nature. The parameters of the 

gear pair analyzed here and in the upcoming paragraph are listed in Table 6, and the helix 

angle, if any, will be specified case by case. The pressure distribution on the flank of a spur 

gear (𝛽 = 0°) as experienced along its entire time in contact is visible in Figure 81, where no 

profile modification has been applied. As visible the single contact zone is distinguishable by 

its higher pressures, but again non-Hertzian pressure peaks are found at the tip of the tooth, 

and in this case also at its edges and those are further amplified at the corners of the flank 

where the tip and edges meet creating even higher pressure overloads. Again, those peaks  
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Table 6: Gear pair parameters 

Parameter Pinion Gear 

Number of teeth 𝒛 [-] 28 28 

Module 𝒎 [mm] 3,175 3,175 

Pressure angle 𝜶𝑷 [°] 20 20 

Face width 𝒃 [mm] 16,35 16,35 

Shaft radius 𝒓𝒔 [mm] 20 20 

Torque 𝑻 [Nmm] 200000 

Young modulus 𝑬 [MPa] 210000 210000 

Poisson coefficent 𝝂 [-] 0,3 0,3 

 

 

Figure 81: Flank pressure distribution without TPM 

 

can be mitigated or removed altogether by modifying the profile of the flank introducing 

tooth profile modifications. Using the proposed 3D contact model is now possible to analyze 

also the effects of modifications made on the facewidth of the teeth, such as symmetric 

parabolic crowning, in which a certain amount of material Δ𝑐 is removed in a parabolic trend 

starting from the mid width of the gear as visible in Figure 82. When a symmetric parabolic 

crowing of Δ𝑐 = 0.0025 𝑚𝑚 is applied to the gear pair under analysis the resulting pressure 

distribution is then visible in Figure 83. The distinction between the single and double tooth 

contact is now even more visible and edge peaks are now absent, since when crowning is 

applied the contact between the flanks becomes similar to an ellipsoid-ellipsoid contact 
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rather than a cylinder-cylinder contact as when the ideal involute is considered. However, 

pressure peaks at the tip and root of the tooth are still visible, which are generated when 

teeth enter and leave contact. To remove those peaks tip profile modifications can be 

manufactured along with crowning and the effects of a linear and a parabolic tip relief, can 

be appreciated in Figure 84 and Figure 85 respectively along with the same crowning seen 

 

Figure 82: Crowning profile modification 

 

 

Figure 83: Flank pressure distribution with crowning 𝛥𝑐 = 0.0025 𝑚𝑚 
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before. As a result of the application of said modifications to the flanks the single contact 

zone is larger due to the fact that teeth come into contact later and leave contact earlier 

confirming the reduction of the double tooth contact seen in the previous chapter. However, 

the pressure peaks at the tip and root of the flank are almost completely removed for the 

linear modification, and even lower for the parabolic one. The results are similar, but again in 

this case the reduction of the pressure overload is higher and smoother for the parabolic tip 

relief since no discontinuity and sharp edge is introduced on the flank 

 

Figure 84: Flank pressure distribution with crowning 𝛥𝑐 = 0.0025 𝑚𝑚 and linear tip relief 𝛥𝑡 = 0.032 𝑚𝑚, 𝑙𝑡 =

0.96 𝑚𝑚 

 

 

Figure 85: Flank pressure distribution with crowning 𝛥𝑐 = 0.0025 𝑚𝑚 and parabolic tip relief 𝛥𝑝 =

0.032 𝑚𝑚, 𝑙𝑝 = 0.96 𝑚𝑚 
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IV.4 Results 

 

In this paragraph the proposed model is applied to the gear pair whose data is listed in Table 

6 for various different helix angles and tooth profile modifications. The first comparison has 

been made to analyze the effect of the introduction of a helix angle which is probably the 

modification which impacts more the quasi static behavior and load sharing characteristics 

in a gear pair. In Figure 86 the helix angle 𝛽 has been varied from 0° (spur gear) up to 45°. 

The impact of this change is indeed evident and the single tooth contact region, which is 

noticeable for the spur gear, is almost completely eliminated already for 𝛽 = 7.5° and totally 

gone for 𝛽 = 15°, which is expected since the helix angle increases the tooth contact ratio. 

Furthermore, as the helix angle increases the tooth becomes stiffer and both the mean and 

peak-to-peak ratio of the STE are reduced. In Figure 87 the torque applied on a gear pair with 

𝛽 = 22.5° and linear tip relief (𝑙𝑡 = 0.96 𝑚𝑚, Δ𝑡 = 0.032 𝑚𝑚) is varied from 0.1 to 3 times its 

nominal value. As the torque increases both the mean and peak-to-peak ratio of the STE tend 

to increase, reaching a maximum for around 300 Nm of torque, but after that it reduces as 

the contact ratio increases. The pressure distribution on the flank of a gear pair with 𝛽 =

45° and no TPM is visible in Figure 88. Said distribution is dominated by the pressure peaks, 

especially on the edges of the gear and not much can be said of the distribution in the middle 

 

Figure 86: Effect of helix angle on the STE and load sharing coefficient 𝐶𝑘 
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Figure 87: Effect of torque on the STE with 𝛽 = 22.5° and linear tip relief 

 

 

Figure 88: Flank pressure distribution for 𝛽 = 45° without TPM 
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Figure 89: Effect of linear tip relief amount of material removed on the STE and load sharing 𝐶𝑘 coefficient for 

𝛽 = 22.5° with 𝑙𝑡 = 0.96 𝑚𝑚 

 

 

 

Figure 90: Effect of linear tip relief amount of material removed on the STE and load sharing 𝐶𝑘 coefficient for 

𝛽 = 45°with 𝑙𝑡 = 0.96 𝑚𝑚 
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of the flank. The peaks are especially accentuated at the bottom-right and top-left corners 

since those are the regions where the teeth first engage and leave contact at the end of their 

contact cycle. Next the effect of the combination of a helix angle and linear tip relief is  

 

Figure 91: Effect of linear tip relief length of modification on the STE and load sharing 𝐶𝑘 coefficient for 𝛽 = 22.5° 

with 𝛥𝑡 = 0.032 𝑚𝑚 

 

 

Figure 92: Effect of linear tip relief length of modification on the STE and load sharing 𝐶𝑘 coefficient for 𝛽 = 45° 

with 𝛥𝑡 = 0.032 𝑚𝑚 
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Figure 93: Effect of parabolic tip relief amount of material removed on the STE and load sharing 𝐶𝑘 coefficient 

for 𝛽 = 22.5° with 𝑙𝑝 = 0.96 𝑚𝑚 

 

analyzed. In Figure 89 the amount of material removed is varied for a fixed length of 

modification 𝑙𝑡 = 0.96 𝑚𝑚 and 𝛽 = 22.5°. As the amount of material removed increases the 

triple tooth contact region gets narrower and then vanishes thus increasing the peak-to-peak 

value of the STE and lowering the contact ratio, while the same analysis for 𝛽 = 45° visible 

in Figure 90 shows much less variation as the amount of material removed increases. Similar 

trends are obtained when the length of the modification is varied for a fixed Δ𝑡 = 0.032 𝑚𝑚 

as visible in Figure 91 and Figure 92 for 𝛽 = 22.5° and 𝛽 = 45° respectively. In this case 

however the influence of this modification parameter is noticeable even for the maximum 

helix angle since the triple contact region displays a significant reduction as the length of the 

modification increases. The same analyses are then conducted for the parabolic tip relief 

starting from increasing the amount of material removed for a fixed length of modification 

𝑙𝑝 = 0.96 𝑚𝑚 as visible in Figure 93 for 𝛽 = 22.5° and for 𝛽 = 45° in Figure 94. The trend is 

again similar to the linear profile modification and for the lower helix angle the reduction of 

the triple tooth contact region and its consequent increase of the peak-to-peak value of the 

STE is noticeable, but less than before since the total amount of material removed is lower 

due to its parabolic nature, while its impact on the higher helix angle is still very low. Similarly, 
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the length of the modification is varied for a fixed Δ𝑝 = 0.032 𝑚𝑚 as visible in Figure 95 and 

Figure 96 for 𝛽 = 22.5° and for 𝛽 = 45° respectively. The effects are similar to before, and  

 

Figure 94: Effect of parabolic tip relief amount of material removed on the STE and load sharing 𝐶𝑘 coefficient 

for 𝛽 = 45° with 𝑙𝑝 = 0.96 𝑚𝑚 

 

 

Figure 95: Effect of parabolic tip relief length of modification on the STE and load sharing 𝐶𝑘 coefficient for 𝛽 =

22.5° with 𝛥𝑝 = 0.032 𝑚𝑚 



3D TEETH CONTACT ANALYSIS 

   

  
 129 

 

 

Figure 96: Effect of parabolic tip relief length of modification on the STE and load sharing 𝐶𝑘 coefficient for 𝛽 =

45° with 𝛥𝑝 = 0.032 𝑚𝑚 

 

 

Figure 97: Flank pressure distribution with crowning 𝛥𝑐 = 0.025 𝑚𝑚 

 

also the sensitivity of the maximum helix angle is again higher to the modification of this 

parameter. While the crowning doesn’t influence much the STE, its effect can be appreciated 

when considering the pressure distribution on the flank as visible in Figure 97. Evidently the 

pressure peaks at the edges are almost completely removed, greatly lowering the maximum 

pressure, while the peaks at the tip and root of the flank are still present and an evident 
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pressure drop and reduction in the contact area is noticeable during the triple contact region 

of the engagement. The combination of crowning with linear and parabolic tip relief can be  

 

Figure 98: Effect of combinations of crowning and linear tip relief modifications on the STE and load sharing 𝐶𝑘 

coefficient for 𝛽 = 22.5° 

 

 

Figure 99: Effect of combinations of crowning and parabolic tip relief modifications on the STE and load sharing 

𝐶𝑘 coefficient for 𝛽 = 22.5° 
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Figure 100: Flank pressure distribution with crowning 𝛥𝑐 = 0.025 𝑚𝑚 and linear tip relief 𝛥𝑡 = 0.032 𝑚𝑚, 𝑙𝑡 =

0.96 𝑚𝑚 

 

 

Figure 101: Flank pressure distribution with crowning 𝛥𝑐 = 0.025 𝑚𝑚 and parabolic tip relief 𝛥𝑝 =

0.032 𝑚𝑚, 𝑙𝑝 = 0.96 𝑚𝑚 

 

appreciated in Figure 98 and Figure 99 respectively for 𝛽 = 22.5° where it can be seen that 

the amount of crowning does not influence too much the STE or the load sharing coefficients. 

The combination of the effects of crowning and tip relief modifications on the flank pressure 

distribution is visible in Figure 100 for linear tip relief and in Figure 101 for parabolic tip relief. 

The cumulative effect of those profile modifications effectively removes the pressure peaks 

at the tip, root, and edges of the flank, greatly lowering the maximum pressure and confining 

the contact zone entirely inside the flank for this level of torque considered. Considering the 

linear tip modification case, the pressure still rises in the zone where the discontinuity from 
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the ideal crowned involute is machined. For the parabolic modification case, the removal rate 

of the material is lower going from the start of the modification towards the tip and also no 

discontinuity is introduced allowing the contact zone to extend further up towards the tip 

and also down towards the root of the flank thus lowering even more the maximum pressure 

experienced by the flank during its engagement. 
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V. Experimental test bench 

 

V.1 Introduction 

 

In this chapter a test bench for measuring the Static Transmission Error of two mating gears 

is presented and a comparison with the results obtained with the previously presented 

methods will be presented. The test bench illustrated here is designed to evaluate the actual 

STE of two gears under load in quasi-static conditions. In particular, this testbed can be 

divided in two macro elements: the first one is the mechanism composed by weights and 

pulleys that generates a driving and a braking torque up to 500 𝑁𝑚. The second element is 

composed by two structures called “supports”: one fixed to the floor and the other movable 

in order to be as much as possible flexible to set tests for every kind of gears (spur, helical, 

bevel, hypoid, etc.). Above these two supports the kinematic chain (shafts, bearings, gears), 

the torque-meter to measure the instantaneous torque and two high precision angular 

encoders to detect angular differences up to 10−6 𝑟𝑎𝑑 are mounted. In literature, the most 

common existing typologies of test benches for these kinds of applications are:  

● Open loop 

● Power recirculation  
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One example of open-loop single-stage test bench developed by Baud and Velex [129] whose 

operating scheme is shown in Figure 102. This typology is more flexible, but the power 

supplied by the motor is completely dissipated and therefore the motor and the braking 

component need to be constantly powered, limiting the maximum power in most 

applications. This type of test bench is suggested if different kinds and dimensions of gears 

have to be tested and the power involved is limited. Those researchers used this testbed to 

find a relationship between the dynamic transmission error (DTE) and the dynamic factor that 

represents the overload at different spin speed. For the experimental measurement they 

mounted a set of strain gauges placed at the root of the teeth of the pinion and across the 

 

Figure 102: Open loop test bench typical layout 

 

 

Figure 103: Closed loop power recirculation test bench typical layout 

 

face width of the driven gear. Instead, the power recirculation test bench has higher 

performance because it permits a substantial recovery from the output torque of the tested 
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gears, through the use of a secondary gears coupling called reaction pair. The input power 

is lower than the previous test bench, however, if a different dimension gear pair has to be 

analyzed, both test and reaction pairs must be designed again. Anyway, the secondary 

gearbox must be designed in order to resist much longer than any tested gearbox. Figure 

103 shows a typical layout involved in a power recirculation test bench. Both Benatar et al. 

[130] and Palermo et al. [131] used a set of two rotary encoders to measure the actual 

angular position of the two different shafts, from which they derived the Transmission Error. 

The first research group assembled two incremental encoders Heidenhain RON 287 with 

± 2.5" accuracy and 18000 lines per revolution, whereas the second one mounted two 

incremental encoders Heidenhain RON 285C with ± 5" accuracy and 18000 lines count per 

revolution. The aim of the test bench described here is to measure the quasi-static 

transmission error of a couple of gears and to overcome some limits of both the above-

mentioned typologies. On one hand, it has the flexibility of an open-loop testbed without 

energy dissipation, indeed the torque transmission is provided by a system of moving masses 

and pulleys. On the other hand, it is useful to analyze every typology of gears with a 

particular setup that will be described in the next paragraphs. 

 

V.2 Test bench description 

 

Figure 104 shows the whole experimental setup that can be summarized into five main 

groups of components:  

● Structural parts 

● Transmission of loads 

● Measurement system 

● Security system 

 

The structural parts are those that sustain the transmission of the motion and the 

measurement system, ensuring simultaneously high stiffness and high flexibility in terms of 

the layout of gears coupling guaranteeing a wide range of testable gears. The transmission 

of the motion provides an input torque and a braking torque trough the same substructure. 

The measurement system reads with high precision the information about the deformations 
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involved. Since the masses of the components are consistent, and the risk of harm is high, a 

security system set the rules for safe setup and test. 

 

 

Figure 104: Test bench assembly including all components 

 

V.2.1 Structural parts 

 

The structural parts comprehend five main sub-components: 

● Weights support 

● Fixed support 

● Movable support 

● Tie rods 

● Fixed platform 
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In the first one, two sets of “gym” weights are placed at the right and left side of the support. 

Respectively the right weights are used for the input torque, the left ones for the braking 

torque and vice versa. The weights are transferred by a series of pulleys to the fixed and 

movable supports. In particular, the upper part of the support has an Einhell hoist lever arm 

that can transfer the braking/driving torque from the weight support to the braking/driving 

shaft on the movable support. This arm can be easily adapted to the position of the movable 

support through a rotation and through two movable brackets. The fixed support is 

composed by rigid metal profiles on which the input shaft group is located. Furthermore, it is 

doweled to the ground through a 10 mm steel plate. The movable support, on which the 

output shaft group is located, can be shifted for the setup over the metallic fixed platform. 

Once the setup is finished, firstly the tie rods have to be mounted to connect directly the fixed 

and the movable supports, in order to close the forces loop. Finally, the movable support has 

to be fixed to the platform through two SPD electro-permanent chucks that apply each 

100 𝑘𝑁 in the vertical direction and can resist up to 20 𝑘𝑁 in the tangential direction which 

are visible in Figure 105. The movable support is the main component of the whole testbed. 

Once the test gears are mounted on the two shafts, the movable support has to be regulated 

to ensure the correct engagement. Firstly, the macro-dimensional shifts have to be done  

 

Figure 105: SPD electro-permanent chuck to clamp the movable support 
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Figure 106: Movable support for macro and micro position adjustments and its reference frame 

 

through a transpallet to approach the driven gear to the driving one at the initial position of 

the engagement. In Figure 106 the reference frame is established: axis 𝑍 along the vertical 

direction, axis 𝑌 along the approaching direction, axis 𝑋 along the horizontal direction. Since 

the movable support can be moved around the fixed one, it allows different types of 

couplings. For instance, if the two shafts are both parallel to the axis 𝑌, cylindrical gear 

couples can be tested. If the movable shaft lays on axis 𝑋, perpendicular or skewed with 

respect to the fixed one, bevel and spiral bevel gears can be tested. In such a way, all possible 

gears configuration can be tested, by varying that angle. Afterwards, once the macro-

adjustment is done, the movable support is provided with different mechanisms to ensure 

micro-adjustment in order to achieve correct contact between the tested gears or even to 

introduce intentional misalignments and measure their effects. The permitted micro-

adjustments are linear motion along 𝑌 and 𝑍, rotational motion around 𝑋 and 𝑍. The output  



EXPERIMENTAL TEST BENCH 

   

  
 139 

 

 

Figure 107: Detail of the plate in the movable support which allows for rotational adjustments around the 𝑍 axis 

 

 

Figure 108: Detail of the backside of the movable support highlighting the trapezoidal screw allowing the vertical 

adjustments in the 𝑍 direction 
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shaft is mounted on a rotatable platform, shown in Figure 107. This platform can rotate 

through an adjusting screw with very fine threads around axis 𝑍. This regulation can be used 

to remove angular misalignment or to see the effect of an imposed misalignment of this kind 

on the STE. The backside of the support in Figure 108 shows the mechanism that allows the 

vertical adjustment along the axis 𝑍: a Bimeccanica s.r.l. trapezoidal threaded spindle 

mechanism controlled through a handwheel allows the vertical motion of the gears. 

Thisregulation can be used to see the effect of a higher center distance of the shafts on the 

contact ratio and therefore on the STE. Furthermore, there are four threaded screws 

positioned at the vertices of a rectangle of a vertical plate, with the axis along 𝑌: in particular, 

depending on which screws and on if they are tightened or loosened, it is possible to obtain 

fine adjustments along 𝑌 or induce a small rotation around axis 𝑋. 

 

V.2.2 Transmission of loads 

 

The transmission of the motion transmits the torque from the weights support to the tested 

gears, respectively the input torque to the gear on the fixed support and the braking torque 

to the gear on the movable support and vice versa. This transmission is guaranteed by the 

following sub-groups of components: 

• Pulleys and brackets 

• Shafts 

 

Once the macro and the micro-adjustments are done, the weights dedicated to the input 

torque have to be lifted before the test through a hoist, whereas the braking weights have to 

lay at the bottom. When the test is run, the input torque weights descend while the braking 

weights start to ascend generating opposing torques in the test gears. Since the 

measurement has to be done in quasi-static conditions, during the setup of the machine it is 

necessary to choose the correct amount of weights and the discrepancy between the two 

sides that, overcoming the internal friction of the system, guarantees a continuous motion at 

low spin velocity of the gears. The two groups possess a total amount of 125 𝑘𝑔 each one, 

discretely selectable from 5 𝑘𝑔 to 125 𝑘𝑔. To control the discrepancy needed or to add other 

weights the system provides two further appendices which can be loaded for a total of 20 𝑘𝑔. 
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Figure 109: Pulleys setup and path of the forces for the braking weights 

 

The total height of the support is 2 𝑚, whereas the average distance run by the weights is 

about 1.3 𝑚. The load generated by the weights is transmitted by means of a 5 𝑚𝑚 diameter 

steel rope that passes through a series of 110 𝑚𝑚 diameter pulleys. The path of the forces 

for the braking torque run through the ropes is represented in figure 9, in the case in which 

the load of 125𝑘𝑔 is lifted. Both paths for the input and the brake are divided identically into 

two parts, depending on the amount of the force that stresses the rope. Firstly, due to the 

gravity the force is about 1250 𝑁. The force is then doubled by means of a guide pulley that 

moves horizontally on the weight support: this means that with the maximum weights it is 
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possible to apply a tangential force of 2500𝑁 at the shafts. At the extremities of the shafts 

on the fixed and movable supports, two identical pulleys are fixed: their diameter is 400 𝑚𝑚. 

A maximum input torque of 500 𝑁𝑚 is therefore guaranteed. All the pulleys installed on the 

weights support are made of steel and integrate a ball bearing designed in accordance with 

EN10204 standard. The pulleys on the two shafts are manufactured by Poggi Trasmissioni 

Meccaniche S.p.A., with minor pitch diameter designed according to ISO R 419 and DIN 2211. 

These pulleys are designed for being coupled with the shaft through a tapered adapter 

sleeve: due to construction requirements of the testbed, both internal housings have been 

processed to have a shaft-hub connection through key. 

 

V.2.3 Measurement system 

 

The measurement system is composed by all the items that are used to measure the STE and 

to monitor the parameters involved during the analysis. In particular, the STE depends strictly 

on the level of torque, therefore it is necessary to detect the instantaneous trend of the 

exchanged torque. For this reason, a torque meter has been interposed between the two 

shafts on the fixed support, through two R+W BKM 100 model couplings by R+W Italia s.r.l. 

The torque meter is a T22/500Nm from HBM GmbH that only detects the torque value without 

any retroactive feedback on the weights, up to 500 𝑁𝑚. Figure 110 shows these components. 

The two Heidenhain RCN8580 encoders shown in Figure 111 have been mounted: they are 

absolute angle encoders of 1” accuracy with measuring standard DIADUR circular scale with 

absolute and incremental track of 32768 lines per revolution, which are hence much more 

accurate than the ones commonly used in literature as discussed in the introduction. The STE 

is measured by means of the difference of the angular position between the input and the 

output gears as measured by the encoders. The main difference with the other test benches 

is the connection between the encoders and the rest of the system. Indeed, in the previous 

test benches the encoders are fixed at the free-ends of the shafts near the gears and 

therefore the Transmission Error (TE) is detected from the torsional deformation of the shafts. 

Whereas, here the STE is measured directly on the gears through the decoupling mechanical 

joint shown in Figure 112. The decoupling joint is commonly known as quill drive in literature 

and has been extensively used in the past especially in the railways industry. This mechanism 

is made of two collars, the one on the left is connected to the rotational part of the encoder, 
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whereas the right one to the gear test article. Between the two collars, a series of elements 

are used to unite cinematically the two parts: an example of these items’ assembly is shown  

 

Figure 110: Detail of the torque sensor and the flexible couplings 

 

 

Figure 111: Heidenhein RCN 8580 Encoder 
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Figure 112: Detail of the quill drive mechanism as designed for the test bench 

 

 

Figure 113: Detail of the quill drive mechanism 
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in Figure 113. The stationary part of the encoder is fixed on a vertical plate, the shaft passes 

through them with a significant tolerance and is axially fixed to the test article through five 

screws. In this way, the deformations coming from the gear are decoupled: the torsional one, 

that is the one of interest for the STE evaluation, is transferred from the collar on the right to 

the left one and therefore is read by the encoder; whereas the others, in the radial and axial 

directions due to the respective loads acting on the test gears, are absorbed by the elements 

between the two collars. Thus, essentially this kind of joint is employed to decouple the 

tangential deformation from the other ones, ensuring that the encoder reads the correct 

deformation and is unloaded if its inner reacting torque due to internal friction is neglected. 

 

V.2.4 Security system 

 

The test bench does not require a certification in accordance with machinery directive 

2006/42/CE, however it has to respond to the essential requirements of security according 

to the law. Therefore, it is necessary to provide appropriate safety systems not to expose 

people to any kind of danger. Consequently, a perimetral safety grate surrounds the whole 

test bench and an access door with an interlocked retention system is provided, as shown in 

Figure 114. The latter is connected with a pressure air system that blocks the weights and 

unblocks the electro-permanent chucks of the movable support when the entrance door is 

open, in order to avoid accidental movements of the weights. The test can be run only when 

the operator stays outside the tested area, outside safety grate. The test bench as assembled 

in the laboratory of Politecnico di Torino is visible in Figure 115. 
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Figure 114: Safety grating and control panel of the test bench 

 

 

Figure 115: Test bench as assembled in the laboratory 
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V.3 Results 

 

The gear pair tested is visible in Figure 116 and the main parameters of the two identical 

gears are listed in Table 7. Those are scraps of production provided by Licat s.r.l. for free and 

as such they haven’t undergone the process of case hardening as expected by design 

requirements and more importantly they haven’t undergone the final processes to finish the 

engaging flanks and thus still have machining allowances which strongly impact their  

 

Table 7: Test gear pair parameters 

Gear Parameters Dimensions 

Module 𝑚 3 𝑚𝑚 

Profile shift 𝑥 −1.11 𝑚𝑚 

Number of teeth 𝑍 46 

Pressure angle 𝛼 20° 

Face width 𝑏 20 𝑚𝑚 

Material Ovako 255G Value 

Chemical composition 18NiCrMo14-6 

𝐸 210 𝐺𝑃𝑎 

𝜈 0.3 
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Figure 116: Test gear pair 

 

engaging. The reason why those gears were scrapped during production is that during the 

manufacturing operation, right after the teeth were roughed, an important run-out error was 

found, which at that point was impossible to correct, and were therefore discarded. In order 

to at least mitigate this defect, the initial meshing position of the gears was chosen to line-up 

the angular positions in which the gear on the fixed support has the maximum (positive) run-

out error with the one in which the gear on the movable support has the minimum (negative) 

run-out error so that during the engagement the two effects partially compensate each 

other. Completely removing this error has not been possible as will be visible later since the 

average error for both gears is in the order of ±0.6 𝑚𝑚. Furthermore, the gears have suffered 

significant damages due to poor handling and storing as visible in Figure 117, where 

important scores and signs of oxidation are visible. By design those gears were not meant to 

engage with each other and indeed both have a negative profile shifting, rather than a 

symmetric one, or some other combination which would result in an approximate equality in 

bending strength factors or in an approximate equality of ratios of specific sliding or slide/roll 

ratio. Despite those circumstances some preliminary tests have been performed which, while 

not useful for the experimental validation of the proposed approaches earlier presented, 

have highlighted some needed changes that are currently in production to solve slight 

unforeseen design flaws. The first step was to verify the repeatability of the measurements 

despite the aforementioned issues. The gears have been made to mesh together by slowly 

turning the pulley of the movable support at a rather constant speed and applying the bare  
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Figure 117: Examples of the damages on the flanks 

 

 

Figure 118: No Load Transmission Error 
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Figure 119: Test results at 110 𝑁𝑚 

 

 

Figure 120: Detail of the test results at 110 𝑁𝑚 
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minimum load so as to measure the NLTE which is shown in Figure 118. The acquired signal 

is extremely repeatable and shows the huge impact that the run-out error has during the 

rotation of the gears which causes oscillations of about ±1°. Nevertheless, tests have been 

also performed at different torque levels for example the results at 110 Nm are shown in 

Figure 119 where the acquired signals of both the torque meter and encoders are shown with 

a load difference between the sides small enough just to overcome internal frictions. The end 

of the signal acquisition is determined by the termination of the descent of the weights which 

stops the rotation of the gears but keeps them under load. Aside for the impact on the 

measured STE of the run-out error also the torque is oscillating which makes a correlation of 

the experimental data with the computed values even harder. Indeed, there is a strong 

correlation with the fluctuation of the torque and the measured values as is visible in Figure 

120 where the torque is seen varying up to 15 𝑁𝑚, considerably impacting the results, which 

are made even worse by the damages on the flanks. The cause of the torque oscillation has 

been found in the alternating pivoting motion occurring in the load weight packs as they 

descend or ascend. The weight packs are commercially available and are sold together with 

the 20 𝑚𝑚 round steel guides set 250𝑚𝑚 apart from each other. The guides and the weights 

are connected only through a pair of short (20 𝑚𝑚) plastic bushings placed on the first weight 

ingot as visible in Figure 121. Since the bushings are very compliant and the holes have not 

been precisely manufactured, when the weights descend one of the two bushings is pressed 

harder than the other against its guide rod, generating friction, while the other descends 

more and then finds itself hardly pressed against the guide, freeing the other one which then 

descends more than its counterpart. This process repeats itself up until the weights have 

completed their descent and cause the oscillations in the torque seen before. This has been 

verified firstly by inspecting the bushings, which appear already damaged even tough very 

few tests have been performed at relatively low loads, but also by increasing the difference 

in weights as much as possible thus increasing their descent speed. The results of this test 

are visible in Figure 122 in which severe torque fluctuations are evident and indeed, during 

the quick descent of the weights the guide rods were seen to be severely oscillating from side 

to side due to this alternating pivoting motion in the compliant bushings. To remove this issue 

a solution is being manufactured. The plastic bushings will be substituted with much stiffer 

and longer linear bearings with ball recirculation housed in a support in which they will be 

placed in holes precisely manufactured 250 𝑚𝑚 from each other. This should remove the 

pivoting effect since the guides and the linear bearings will be at the correct 
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Figure 121: Oscillation of the weight pack causing torque fluctuations 

 

Figure 122: Test results at 80 𝑁𝑚 with increased weight difference 
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distance and will also be much stiffer, thus smoothly guiding the weights. As evident the 

results here presented are not suitable for any kind of experimental comparison, but they will 

be updated as soon as the new parts are manufactured and precision gears, with allowable 

tolerances, will be available. Unfortunately, due to the emergency and lockdown due to the 

COVID-19 pandemic the laboratory was not accessible for any kind of test. Furthermore the 

manufacturers of the needed parts to improve the behavior of the test bench and remove 

the defects described above have severely limited their operation, focusing entirely to the 

production of parts needed by the agribusiness industry, causing severe delays in the 

procurement and production of components. At the time of writing the suppliers have not 

fixed an estimated date of shipping for the upgrades and due to the time constraints for 

imposed by the university it is not known if further results will be available before the final 

dissertation.  
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VI. Compliant gear dynamics 

 

VI.1 Introduction 

 

In this chapter a scheme to compute the dynamic response in the time domain for a gear 

using a set of Reduced Order Models (ROM) will be described. In order to get the most 

accurate response possible a FE representation of the gear will be used, and therefore the 

formulation of the employed element, an 8-node solid brick, will be described first. Next, the 

algorithm used to obtain the dynamic behavior of the considered gear will be detailed which 

will use a Newmark scheme using a constant angular difference between two successive 

time instants, rather than a constant time step as common in literature. Then, the proposed 

algorithm will be applied to a gear with flexible teeth, but a rigid web and several results will 

be shown, including the effect of the gyroscopic effect on its dynamics. Finally, the same 

approach will be applied to a gear with a thin compliant web and again several results will 

be shown, including the effect of the introduction of the stress stiffening phenomenon and 

that of different profile modifications. 

   

VI.2 FE formulation 
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In order to simulate the dynamic response of a compliant gear, a FE model is required, and 

the implemented formulation will be described here. The element chosen is an isoparametric 

8-node brick element, also known as Hexa8, whose global reference frame (𝑋, 𝑌, 𝑍) and the 

local one (𝜉, 휂, 휁) in which the nodes coordinates assume the values of ±1 is visible in Figure 

123 [132] [133]. For a generic element the coordinates in the local reference frame (𝑥, 𝑦, 𝑧) 

are obtained from the coordinates of the nodes in the global reference (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)  frame as 

𝑥 =∑𝑛𝑖(𝜉, 휂, 휁)𝑥𝑖

8

𝑖=1

 

𝑦 =∑𝑛𝑖(𝜉, 휂, 휁)𝑦𝑖

8

𝑖=1

 

𝑧 =∑𝑛𝑖(𝜉, 휂, 휁)𝑧𝑖

8

𝑖=1

 

(6.1) 

 

Where the shape functions 𝑛𝑖 are defined as  

𝑛1 =
1

8
 (1 − 𝜉)(1 − 휂)(1 − 휁)  𝑛2 =

1

8
 (1 + 𝜉)(1 − 휂)(1 − 휁) 

𝑛3 =
1

8
 (1 + 𝜉)(1 + 휂)(1 − 휁) 𝑛4 =

1

8
 (1 − 𝜉)(1 + 휂)(1 − 휁) 

𝑛5 =
1

8
 (1 − 𝜉)(1 − 휂)(1 + 휁)  𝑛6 =

1

8
 (1 + 𝜉)(1 − 휂)(1 + 휁) 

𝑛7 =
1

8
 (1 + 𝜉)(1 + 휂)(1 + 휁)  𝑛8 =

1

8
 (1 − 𝜉)(1 + 휂)(1 + 휁) 

(6.2) 

 

 

Figure 123: Global (𝑋, 𝑌, 𝑍) and local (𝜉, 휂, 휁) reference frames [132] 
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The derivatives of the shape functions with respect to the natural reference frame are then  

𝜕𝑛1
𝜕𝜉

= −
1

8
 (1 − 휂)(1 − 휁) 

𝜕𝑛2
𝜕𝜉

=
1

8
 (1 − 휂)(1 − 휁) 

𝜕𝑛3
𝜕𝜉

=
1

8
 (1 + 휂)(1 − 휁) 

𝜕𝑛4
𝜕𝜉

= −
1

8
 (1 + 휂)(1 − 휁) 

𝜕𝑛5
𝜕𝜉

= −
1

8
 (1 − 휂)(1 + 휁) 

𝜕𝑛6
𝜕𝜉

=
1

8
 (1 − 휂)(1 + 휁) 

𝜕𝑛7
𝜕𝜉

=
1

8
 (1 + 휂)(1 + 휁) 

𝜕𝑛8
𝜕𝜉

= −
1

8
 (1 + 휂)(1 + 휁) 

 

𝜕𝑛1
𝜕휂

= −
1

8
 (1 − 𝜉)(1 − 휁) 

𝜕𝑛2
𝜕휂

= −
1

8
 (1 + 𝜉)(1 − 휁) 

𝜕𝑛3
𝜕휂

=
1

8
 (1 + 𝜉)(1 − 휁) 

𝜕𝑛4
𝜕휂

=
1

8
 (1 − 𝜉)(1 − 휁) 

𝜕𝑛5
𝜕휂

= −
1

8
 (1 − 𝜉)(1 + 휁) 

𝜕𝑛6
𝜕휂

= −
1

8
 (1 + 𝜉)(1 + 휁) 

𝜕𝑛7
𝜕휂

=
1

8
 (1 + 𝜉)(1 + 휁) 

𝜕𝑛8
𝜕휂

=
1

8
 (1 − 𝜉)(1 + 휁) 

𝜕𝑛1
𝜕휁

= −
1

8
 (1 − 𝜉)(1 − 휂) 

𝜕𝑛2
𝜕휁

= −
1

8
 (1 + 𝜉)(1 − 휂) 

𝜕𝑛3
𝜕휁

= −
1

8
 (1 + 𝜉)(1 + 휂) 

𝜕𝑛4
𝜕휁

= −
1

8
 (1 − 𝜉)(1 + 휂) 

𝜕𝑛5
𝜕휁

=
1

8
 (1 − 𝜉)(1 − 휂) 

𝜕𝑛6
𝜕휁

=
1

8
 (1 + 𝜉)(1 − 휂) 

𝜕𝑛7
𝜕휁

=
1

8
 (1 + 𝜉)(1 + 휂) 

𝜕𝑛8
𝜕휁

=
1

8
 (1 − 𝜉)(1 + 휂) 

 

(6.3) 

 

The displacements in the global reference frame are transformed to the local one in the same 

way, as 

𝑢 =∑𝑛𝑖(𝜉, 휂, 휁)𝑢𝑖

8

𝑖=1

 

𝑣 =∑𝑛𝑖(𝜉, 휂, 휁)𝑣𝑖

8

𝑖=1

 

𝑤 =∑𝑛𝑖(𝜉, 휂, 휁)𝑤𝑖

8

𝑖=1

 

(6.4) 

 

where 𝑢𝑖, 𝑣𝑖 , 𝑤𝑖 are the displacements of the nodes with respect to the undeformed 

configuration (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). The stiffness matrix 𝑲𝒆 of each element can be obtained by 

integrating over its volume the energy of deformation as 
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𝑲𝒆 = ∫ 𝑩𝑻𝑫𝑩 𝑑𝑉
𝑉

 (6.5) 

 

where 𝑩 is the strain-displacement relationship matrix 

𝑩 = 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦

𝜕𝑛1
𝜕𝑧

…
𝜕𝑛𝑖
𝜕𝑧

…
𝜕𝑛8
𝜕𝑧

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦

𝜕𝑛1
𝜕𝑧

…
𝜕𝑛𝑖
𝜕𝑧

…
𝜕𝑛8
𝜕𝑧

𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑧

…
𝜕𝑛𝑖
𝜕𝑧

…
𝜕𝑛8
𝜕𝑧

𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(6.6) 

 

and 𝑫 is the matrix defining the elastic properties of the material 

𝑫 =
𝐸

(1 + 𝜈)(1 − 𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈
𝜈 1 − 𝜈 𝜈
𝜈 𝜈 1 − 𝜈

1 − 2𝜈

2
1 − 2𝜈

2
1 − 2𝜈

2 ]
 
 
 
 
 
 
 
 

 (6.7) 

 

while 𝑉 is the volume of the element. In the previous formulas and in the following ones empty 

places in the matrices denote zeroes. In the strain-displacement matrix 𝑩 the derivatives of 

the shape functions with respect to the global reference frame are present and those can be 

obtained trough 
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{
  
 

  
 
𝜕𝑛𝑖
𝜕𝜉
𝜕𝑛𝑖
𝜕휂
𝜕𝑛𝑖
𝜕휁 }
  
 

  
 

= 𝑱

{
  
 

  
 
𝜕𝑛𝑖
𝜕𝑥
𝜕𝑛𝑖
𝜕𝑦
𝜕𝑛𝑖
𝜕𝑧 }
  
 

  
 

 (6.8) 

 

where 𝑱 is the Jacobian of the coordinate transformation 

𝑱 =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉
𝜕𝑥

𝜕휂

𝜕𝑦

𝜕휂

𝜕𝑧

𝜕휂
𝜕𝑥

𝜕휁

𝜕𝑦

𝜕휁

𝜕𝑧

𝜕휁]
 
 
 
 
 
 

 (6.9) 

 

And the components are obtained as: 

𝜕𝑥

𝜕𝜉
=∑

𝜕𝑛𝑖
𝜕𝜉

8

𝑖=1

𝑥𝑖,
𝜕𝑦

𝜕𝜉
=∑

𝜕𝑛𝑖
𝜕𝜉

8

𝑖=1

𝑦,…  (6.10) 

 

And similarly, for the other components. Finally, the partial derivatives of the shape functions 

needed to form the 𝑩 matrix are obtained as 

{
  
 

  
 
𝜕𝑛𝑖
𝜕𝑥
𝜕𝑛𝑖
𝜕𝑦
𝜕𝑛𝑖
𝜕𝑧 }
  
 

  
 

= 𝑱−𝟏

{
  
 

  
 
𝜕𝑛𝑖
𝜕𝜉
𝜕𝑛𝑖
𝜕휂
𝜕𝑛𝑖
𝜕휁 }
  
 

  
 

 (6.11) 

 

Therefore, in the natural coordinates frame the infinitesimal volume for integration can hence 

be expressed as 𝑑𝑉 = det(𝑱) 𝑑𝜉𝑑휂𝑑휁 and therefore the integral in becomes 

𝑲𝒆 = ∫ ∫ ∫ 𝑩𝑻𝑫𝑩
1

−1

1

−1

1

−1

det(𝑱) 𝑑𝜉𝑑휂𝑑휁 (6.12) 
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In order to evaluate this integral a numerical integration scheme is employed and for this 

kind of element a 2x2x2 Gauss scheme is used, in which each integration point has unit 

weight and coordinates  [134] 

𝐼: (−
√3

3
,−
√3

3
,−
√3

3
) , 𝐼𝐼: (

√3

3
,−
√3

3
,−
√3

3
) 

𝐼𝐼𝐼: (
√3

3
,
√3

3
,−
√3

3
) , 𝐼𝑉: (−

√3

3
,
√3

3
,−
√3

3
) 

𝑉: (−
√3

3
,−
√3

3
,
√3

3
) , 𝑉𝐼: (

√3

3
,−
√3

3
,
√3

3
) 

𝑉𝐼𝐼: (
√3

3
,
√3

3
,
√3

3
) , 𝑉𝐼𝐼𝐼: (−

√3

3
,
√3

3
,
√3

3
) 

(6.13) 

 

As visible in Figure 124. However, this simple implementation suffers from shear and 

volumetric locking which lead to an overestimation of the element stiffness matrix. In order 

to relieve this phenomenon for isotropic materials the material tensor 𝑫 from eq. (6.7) is split 

into its two subcomponents 

𝑫𝟏𝟏 =
𝐸

(1 + 𝜈)(1 − 𝜈)
[
1 − 𝜈 𝜈 𝜈
𝜈 1 − 𝜈 𝜈
𝜈 𝜈 1 − 𝜈

] 

  𝑫𝟐𝟐 =
𝐸

(1 + 𝜈)(1 − 𝜈)

[
 
 
 
 
 
1 − 2𝜈

2
1 − 2𝜈

2
1 − 2𝜈

2 ]
 
 
 
 
 

 

(6.14) 

 

 

Figure 124: 2x2x2 Gauss integration points location 
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As well as the strain-displacement matrix 𝑩  

𝑩𝟏 = 

=

[
 
 
 
 
 
 
𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦 ]

 
 
 
 
 
 

 

 

𝑩𝟐 = 

=

[
 
 
 
 
 
 

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦

𝜕𝑛1
𝜕𝑧

…
𝜕𝑛𝑖
𝜕𝑧

…
𝜕𝑛8
𝜕𝑧

𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑧

…
𝜕𝑛𝑖
𝜕𝑧

…
𝜕𝑛8
𝜕𝑧

𝜕𝑛1
𝜕𝑥

…
𝜕𝑛𝑖
𝜕𝑥

…
𝜕𝑛8
𝜕𝑥

𝜕𝑛1
𝜕𝑦

…
𝜕𝑛𝑖
𝜕𝑦

…
𝜕𝑛8
𝜕𝑦 ]

 
 
 
 
 
 

 

 

(6.15) 

 

Then the integral for the stiffness matrix is also split as 

𝑲𝒆 = ∫ 𝑩𝑻𝑫𝑩 𝑑𝑉
𝑉

= ∫ 𝑩𝟏
𝑻𝑫𝟏𝟏𝑩𝟏 𝑑𝑉

𝑉

+∫ 𝑩𝟐
𝑻𝑫𝟐𝟐𝑩𝟐 𝑑𝑉

𝑉

 (6.16) 

 

This technique is called selective underintegration since it separates the integration of the 

normal strains from the shear ones. Indeed, the stiffness portion due to the normal strains is 

integrated using the same 2x2x2 Gauss scheme presented earlier, while the shear terms are 

integrated using only one point in the center of the element with a weight of 8. The obtained 

matrix is then less stiff and does not suffer from shear or volumetric locking. However, 

another problem is introduced since spurious zero strain energy modes arise. Those are 

elastic deformation modes in which the deformation strain energy is zero and hence could 

be assimilated to rigid body modes, but those are not rigid and hence are unphysical and 

must be eliminated to obtain the correct results. For the 8-node brick there are 3 of these 

modes which are visible in Figure 125. 
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Figure 125: Spurious zero strain energy modes for the 8-node brick 

 

In order to avoid these spurious modes several techniques have been studied in literature. 

The simplest one consists in computing the selectively reduced matrix for each element as 

is, and then applying a corrective stiffness matrix to remove a posteriori the spurious modes. 

The procedure is as follows: 

1- Compute the selectively reduced stiffness matrix 𝑲𝒆 

2- Compute the eigenvalues and eigenvectors 𝜔𝑠 , 𝝓𝒔 

3- Obtain the nodal forces for each eigenvector 𝝓𝒔,𝟎 whose eigenvalue is 0 

𝑓𝑛 = 𝑲𝒆𝝓𝒔,𝟎  

4- Finally, the corrective stiffness term is obtained as 

𝑲𝒄 = 𝑭𝟎𝚽𝒔
−𝟏 
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where 𝚽𝒔 is the matrix of the eigenvectors 𝝓𝒔 and 𝑭𝟎 is a matrix of zeros in which the nodal 

forces are inserted in the corresponding columns of the spurious eigenvectors 𝝓𝒔,𝟎 as they 

are sorted in 𝚽𝒔. While this method is effective, it is extremely computationally heavy since 

it requires the solution of an eigenproblem for each element of the FE model. Jacquotte and 

Oden proposed a procedure applicable to the final assembled matrix [135] [136] in which the 

orthogonality of the solution is imposed with respect to the spurious modes identified and as 

such those hidden mechanisms can never be excited. Another approach which allows the a 

priori elimination has been presented in [137]. The procedure is similar to the a posteriori 

method, but the spurious modes eigenvectors are assumed to be known and constant and 

therefore the corrective stiffness can be computed only once and applied to all elements, but 

this is applicable only in uniform meshes. The solution implemented in the current model is 

based on the work of MacNeal [119] in which instead of using only the central node for 

underintegration one virtual node is used for each face. Those nodes, whose location is 

shown in Figure 126 are virtual since the actual values to be used in the calculation are 

actually obtained averaging the values obtained in the neighboring Gauss points, weighted 

by their Jacobian in order for the elements to pass the patch test. 

 

Figure 126: Selective underintegration scheme used in the current model, from [119] 

 

Even with these precautions the formulation still suffers from volumetric locking. In order to 

solve this remaining problem some authors, like Wilson [138] and Taylor [139], proposed to 

introduce additional shape functions, known as “bubble functions”, and therefore also 
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increasing the number of DOFs. Again, this approach is slow and complex, but MacNeal 

proposed a solution by introducing instead of additional shape functions an Enhanced 

Assumed Strain (EAS) field which extends the 𝑩𝟏 matrix as 

𝑩𝟏
′ = [𝑩𝟏 𝑩𝒂] (6.17) 

 

Where the additional EAS field is defined as 

𝑩𝒂 =
1

𝑑𝑒𝑡(𝑱)
[

𝜉 0 0
0 휂 0
0 0 휁

𝜉휂 0 𝜉휁
𝜉휂 휂휁 0
0 휂휁 𝜉휁

] (6.18) 

 

In which again the factor 1 det (𝑱)⁄  is needed to satisfy the patch test. The combination of 

this EAS approach with the selective reduced integration solves all locking problems and 

doesn’t introduce spurious modes, however it is only applicable is the strains are aligned to 

global (𝑋, 𝑌, 𝑍) reference frame. Therefore, a transformation is needed to pass from the 

strains in the deformed reference frame 휀�̅� , 휀𝑦̅̅̅, 휀�̅�, 𝛾𝑥𝑦̅̅ ̅̅ , 𝛾𝑥𝑧̅̅ ̅̅ , 𝛾𝑦𝑧̅̅ ̅̅  to the corresponding ones 

aligned to the local one. For this purpose, three angles are defined as visible in Figure 127: 

• 𝛼: angle between 𝑌 and �̅�  

• 𝛿: angle between 𝑍 and 𝑧̅ 

• 𝜗: angle between the 𝑋 axis and the projection of 𝑧̅ on the 𝑋𝑌 plane 

 

Figure 127: Definition of the angles to obtain the aligned strains 
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The versors 𝒊,̅ 𝒋,̅ �̅� of the distorted reference frame expressed in the correct one are: 

𝒊̅ = (1, 0, 0)

𝒋̅ = (sin𝛼 , cos 𝛼 , 0)

�̅� = (cos 𝜗 , sin𝜗 , cos 𝛿 )

 (6.19) 

 

The position of a point 𝒑 can then be described with the versors 𝒊,̅ 𝒋,̅ �̅� in the distorted 

reference frame 

𝒑 = �̅�𝒊̅ + �̅�𝒋̅ + 𝑧̅�̅� (6.20) 

 

And its coordinates in the global reference frame are then 

𝑥 = �̅� + �̅� sin𝛼 + 𝑧̅ cos 𝜗 sin𝛿
𝑦 = �̅� cos 𝛼 + 𝑧̅ sin𝜗 sin 𝛿

𝑧 = 𝑧̅ cos 𝛿

 (6.21) 

 

Thus, writing the transformation matrix and inverting it, the rotation matrix from the global 

reference frame to the distorted one can be obtained as 

{
�̅�
�̅�
𝑧̅
} = [

1 𝑡𝑎𝑛(𝛼) −sec (𝛼)𝑡𝑎𝑛(𝛿)𝑐𝑜𝑠(𝑡 + 𝑎)

0 𝑠𝑒𝑐(𝛼) −𝑠𝑒𝑐(𝛼)𝑡𝑎𝑛(𝑑)𝑠𝑖𝑛(𝑡)

0 0 𝑠𝑒𝑐(𝛿)
] {
𝑥
𝑦
𝑧
} (6.22) 

 

In order to obtain the correct deformation matrix, the integrand 𝑩𝑻𝑫𝑩 will have to be 

multiplied not only for the Jacobian of the transformation from global to natural coordinates, 

but also for the Jacobian of the transformation from the global cartesian to the distorted one, 

which is obtained by 

𝑱𝒅 =

[
 
 
 
 
 
 
𝜕𝑥

𝜕�̅�

𝜕𝑦

𝜕�̅�

𝜕𝑧

𝜕�̅�
𝜕𝑥

𝜕�̅�

𝜕𝑦

𝜕�̅�

𝜕𝑧

𝜕�̅�
𝜕𝑥

𝜕𝑧̅

𝜕𝑦

𝜕𝑧̅

𝜕𝑧

𝜕𝑧̅]
 
 
 
 
 
 

 →   𝑱𝒅 = [
1 0 0

sin𝛼 cos𝛼 0
cos 𝜗 sin 𝛿 sin𝜗 sin 𝛿 cos 𝛿

] (6.23) 

 

Which yields 
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det(𝑱𝒅) = cos𝛼 cos 𝛿 (6.24) 

 

The displacements instead follow a projective rule and therefore to obtain the components 

of a displacement vector 𝒔{𝑢, 𝑣, 𝑤} in the distorted reference frame from the global one a 

simple scalar product between the distorted versors and the displacement vector as  

�̅� = 𝑢
�̅� = 𝑢 sin𝛼 + 𝑣 cos𝛼

�̅� = 𝑢 cos𝜗 sin𝛿 + 𝑣 sin 𝜗 sin 𝛿 + 𝑤 cos𝛿
 (6.25) 

 

Or, in matrix form 

{
�̅�
�̅�
�̅�
} = [

1 0 0
𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼) 0

𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝜗) 𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜗) 𝑐𝑜𝑠(𝛿)
] {
𝑢
𝑣
𝑤
} (6.26) 

 

Under the small displacements, small strains hypothesis the strains are usually written as 

휀𝑥 =
𝜕𝑢

𝜕𝑥
, 휀𝑦 =

𝜕𝑣

𝜕𝑦
,          휀𝑧 =

𝜕𝑤

𝜕𝑧
 

 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
, 𝛾𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
, 𝛾𝑥𝑧 =

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
 

(6.27) 

 

but with respect to the distorted reference frame the partial derivatives of the displacements 

are 

𝜕�̅�

𝜕�̅�
=
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕�̅�
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕�̅�
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕�̅�
 

 

𝜕�̅�

𝜕�̅�
= (

𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕�̅�
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕�̅�
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕�̅�
) sin𝛼 +(

𝜕𝑣

𝜕𝑥

𝜕𝑥

𝜕�̅�
+
𝜕𝑣

𝜕𝑦

𝜕𝑦

𝜕�̅�
+
𝜕𝑣

𝜕𝑧

𝜕𝑧

𝜕�̅�
) cos 𝛼 

 

𝜕𝑤

𝜕𝑧
=  (

𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑧̅
) cos 𝜗 sin 𝛿 + (

𝜕𝑣

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+
𝜕𝑣

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
+
𝜕𝑣

𝜕𝑧

𝜕𝑧

𝜕𝑧̅
) sin 𝜗 sin𝛿

+ (
𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑧̅
+
𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑧̅
+
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑧̅
) cos 𝛿 

(6.28) 
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And similarly, for the omitted components of the partial derivatives needed. For computer 

implementation the whole transformation for the strains can be summed up by a matrix-

vector product 

{
 
 

 
 
휀�̅�
휀𝑦̅̅̅

휀�̅�
𝛾𝑥𝑦̅̅ ̅̅

𝛾𝑦𝑧̅̅ ̅̅

𝛾𝑥𝑧̅̅ ̅̅ }
 
 

 
 

= 𝑳

{
 
 

 
 
휀𝑥
휀𝑦
휀𝑧
𝛾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧}
 
 

 
 

 (6.29) 

 

Where 𝑳 is the transformation matrix  

𝑳 = 

=

[
 
 
 
 
 

1 0 0
𝑠𝑖𝑛2(𝛼) 𝑐𝑜𝑠2(𝛼)  0

𝑠𝑖𝑛2(𝛿)𝑐𝑜𝑠2(𝛼) 𝑠𝑖𝑛2(𝛿)𝑠𝑖𝑛2(𝛼) 𝑐𝑜𝑠2(𝛿)

0 0 0
𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼) 0 0

𝑠𝑖𝑛2(𝛿)𝑐𝑜𝑠(𝜗)𝑠𝑖𝑛(𝜗) 𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝛿)𝑠𝑖𝑛(𝜗) 𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝛿)𝑐𝑜𝑠(𝜗)

2𝑠𝑖𝑛(𝛼) 0 0

2𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝜗) 2𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝜗) 0
2𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝜗) 0 0

𝑐𝑜𝑠(𝛼) 0 0

𝑠𝑖𝑛(𝛿)𝑐𝑜𝑠(𝜗 − 𝛼) 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝛼)𝑐𝑜𝑠(𝛿)

𝑠𝑖𝑛(𝛿)𝑠𝑖𝑛(𝜗) 0 𝑐𝑜𝑠(𝛿) ]
 
 
 
 
 

 
(6.30) 

 

In the global cartesian reference frame the strains are usually obtained by 

𝜺 = 𝑩𝒔 (6.31) 

 

And similarly, in the distorted one 

�̅� = �̅��̅� (6.32) 

 

To transform the displacement vector from the global to the distorted frame, the following 

transformation matrix can be defined  

𝑻𝒓 =

[
 
 
 
 
 
 

1 0 0
sin𝛼 cos𝛼 0

cos 𝜗 sin𝛿 sin𝜗 sin𝛿 cos 𝛿
1 0 0

sin𝛼 cos𝛼 0
cos𝜗 sin𝛿 sin𝜗 sin𝛿 cos 𝛿

…]
 
 
 
 
 
 

 (6.33) 

 

So that 
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�̅� = 𝑻𝒓𝒔 (6.34) 

 

Similarly, for the strains 

�̅� = 𝑳𝒔 (6.35) 

 

Therefore 

𝜺 = 𝑳−𝟏�̅�𝑻𝒓𝒔 (6.36) 

 

Where �̅� is the strain-displacement relationship matrix obtained in the distorted reference 

frame using the selective reduced integration and the EAS field, which can then be written 

with respect to the global one by 

𝑩 = 𝑳−𝟏�̅�𝑻𝒓 (6.37) 

 

Substituting in (6.5) the following is obtained 

�̃�𝒆 = ∫(𝑳−𝟏�̅�𝑻𝒓)
𝑻
𝑫(𝑳−𝟏�̅�𝑻𝒓)𝑑𝑉

𝑉

 (6.38) 

 

Also including the Jacobians of the successive transformation the final matrix formulation is 

expressed by 

�̃�𝒆 = ∫ ∫ ∫ (𝑳−𝟏�̅�𝑻𝒓)
𝑻
𝑫(𝑳−𝟏�̅�𝑻𝒓) det(𝑱) det (𝑱𝒅)𝑑𝜉𝑑휂𝑑휁

1

−1

1

−1

1

−1

 (6.39) 

 

However, due to the introduction of the additional EAS field �̃�𝒆 has 6 more additional DOFs 

which need to be eliminated since they do not correspond to any physical DOF. Including the 

selectively underintegrated matrix 𝑩𝟐
′̅̅ ̅̅  and the EAS, matrix �̅� is partitioned as follows 

�̅� = [
�̅�𝟏 �̅�𝒂
𝑩𝟐
′̅̅ ̅̅ 𝟎

] (6.40) 
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Therefore, �̃�𝒆 is partitioned as 

�̃�𝒆 = [
𝑲𝒊𝒔𝒐,𝒊𝒔𝒐 𝑲𝒊𝒔𝒐,𝒂
𝑲𝒂,𝒊𝒔𝒐 𝑲𝒂,𝒂

] (6.41) 

 

Where 𝑲𝒊𝒔𝒐,𝒊𝒔𝒐 represents the isoparametric part of the matrix, 𝑲𝒂,𝒂 the part due to the EAS 

field and 𝑲𝒊𝒔𝒐,𝒂 = 𝑲𝒂,𝒊𝒔𝒐
𝑻  the connecting portions. The final matrix 𝑲𝒆 can be obtained by 

static condensation [140] as 

𝑲𝒆 = 𝑲𝒊𝒔𝒐,𝒊𝒔𝒐 −𝑲𝒊𝒔𝒐,𝒂𝑲𝒂,𝒂
−𝟏𝑲𝒊𝒔𝒐,𝒂

𝑻  (6.42) 

 

For a dynamic analysis also the inertial properties are needed, which are expressed by the 

mass matrix  

𝑴𝒆 = 𝜌∫ 𝒏𝑻𝒏 𝑑𝑉
𝑉

  (6.43) 

 

Where n is a matrix containing all shape functions 

𝒏 = [

𝑛1 … 𝑛𝑖 … 𝑛8

𝑛1 … 𝑛𝑖 … 𝑛8

𝑛1 … 𝑛𝑖 … 𝑛8
] (6.44) 

 

The volume integral can be again expressed as 

𝑴𝒆 = 𝜌∫ ∫ ∫ 𝒏𝑻𝒏
1

−1

1

−1

1

−1

det(𝑱) 𝑑𝜉𝑑휂𝑑휁  (6.45) 

 

Which is again numerically evaluated on a 2x2x2 Gauss grid. For the purposes of this work 

further matrices will be needed, and they will be defined later when the effect considered will 

be introduced in the algorithm. 

 

 

 



VI 

   

  
 170 

 

 

VI.3 Algorithm description 

 

In this paragraph the iterative algorithm to obtain the time domain response of gears 

including most possible flexibilities will be detailed. In order to achieve the desired results a 

consistent pre-processing phase is needed. The first step is obtaining the mesh discretization 

as nodes and elements to be input to generate the required mass and stiffness matrices. This 

is done in a parametric way by separating the half-tooth region in its involute, fillet and web 

portions as visible in Figure 128 similarly to [141], [103] or [142] and others. The number of 

nodes in each region can be controlled almost independently, except for the number of nodes 

in the thickness direction of the half tooth, which must be constant throughout the three 

regions to give continuity to the mesh. Through various parameters combinations different 

element sizes and densities can be obtained as visible in Figure 129. Next, a selection of the 

nodes on the entire inner radius region of the web is selected to be connected through a rigid 

joint connection to a central node. To do this, 6 rows and columns are added to the obtained 

matrices  

𝑲𝒇 = [
𝑲 𝟎𝒏,𝟔
𝟎𝟔,𝒏 𝟎𝟔,𝟔

] ,𝑴𝒇 = [
𝑴 𝟎𝒏,𝟔
𝟎𝟔,𝒏 𝟎𝟔,𝟔

]  (6.46) 

 

Figure 128: Parametric mesh generation and subdivision areas of the teeth 
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Figure 129: Parametric gear FE meshes with varying element sizes 

 

to leave space for an additional virtual node in the center of rotation of the gear, which will 

be the master node of this rigid joint connection, while the nodes on the inner radius will be 

the slaves, all connected to the same central master node. For each master-slave pair the 

rigid joint transformation matrix is computed as [143] 

{
𝒖𝒎
𝒖𝒔
} = 𝑻𝒓𝒋𝒖𝒎 =

[
 
 
 
 
 

1
1

1
0 −Δ𝑧 +Δ𝑦
+Δ𝑧 0 −Δ𝑥
−Δ𝑦 +Δ𝑥 0 ]

 
 
 
 
 

𝒖𝒎 (6.47) 

 

where 𝒖𝒎 indicates the master node DOFs, while 𝒖𝒔 the slave ones. Δ𝑥, Δ𝑦 and Δ𝑧 are the 

distances between the ℎ𝑡ℎ slave node and the master central node. For each ℎ𝑡ℎ slave node 
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considered a 𝑻𝒓𝒋,𝒉 transformation matrix is hence computed and assembled into the entire 

transformation matrix  

𝑻𝑹𝑱 =

[
 
 
 
𝑰 𝟎
𝟎 𝑻𝒓𝒋,𝟏
⋮ ⋮

𝑻𝒓𝒋,𝒉]
 
 
 
 (6.48) 

 

where 𝑰 is an identity matrix of suitable dimension. The DOFs of matrices 𝑲𝒇 and 𝑴𝒇 are 

sorted placing first all DOFs that are not interested in this transformation (𝒖𝒂𝒍𝒍), then the DOFs 

of the virtual node created which will be the master node (𝒖𝒕) and lastly the h slave nodes in 

the same order as their transformation matrix has been placed in 𝑻𝑹𝑱. The matrices with the 

embedded rigid joint connection towards the central node are then simply obtained by  

𝑲𝒋 = 𝑻𝑹𝑱
𝑻 𝑲𝒇𝑻𝑹𝑱 ,𝑴𝒋 = 𝑻𝑹𝑱

𝑻 𝑴𝒇𝑻𝑹𝑱  (6.49) 

 

 

Figure 130: Master nodes locations. Blue dots: Contact mesh stiffnesses. Green dots: Sensor nodes. Orange dots: 

Additional nodes. Black dot: Rigid joint master node, torque application and DTE readout 
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Figure 131: Detailed view of the additional nodes (orange dots) computed using MoGeSeC 

 

The virtual node thus created, which connects all inner radius points selected to itself, will 

have three translational DOFs as well as three rotational DOFs. All those additional DOFs will 

be constrained, by deleting the appropriate rows and columns of the matrices, except for the 

rotational DOF around the 𝑍 axis, where the torque 𝑇 to the gear will be applied and the DTE 

will be read. As stated in the introduction of the chapter, the proposed scheme will employ a 

ROM in order to decrease the matrices sizes and reduce the otherwise impossibly long 

computational times. The idea is to exploit the periodic nature of the meshing action to obtain 

a ROM containing only the necessary DOFs to represent the interaction and the cyclical 

excitation that is typical of gears. The geometrical properties of a gear are also cyclically 

symmetric with a period angle 휃 = 360/𝑍 and so can be considered the properties of FE 

model. For example a force can be applied to any node on the flank of one teeth and results 

obtained, but if the same properly rotated force is applied to the homologous node on 

following or previous flank the results will be the same, except for a delay angle equal to ±휃. 

In the proposed approach this cyclic repletion will be exploited by reducing as much as 

possible the number of DOFs of the ROM by considering only a limited number of loaded or 

observed nodes to one sector spanning the angle 휃, while the typical travelling excitation 

wave will be created by expanding, sorting and reducing the obtained displacements, 

velocities and accelerations in the time domain each time the angle 휃 has been spanned. The 

master nodes, and their related DOFs are visible in Figure 130, and their meaning is as follows: 
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• Sensor nodes 𝒖𝑺 (green dots): The dynamic displacements of these nodes will be used 

to read and analyze the dynamic response of the gear in the radial and axial 

directions, simulating the behavior of a proximity sensor in an experimental test. For 

this reason, a number of them is needed, enough to span the angle 휃. How a single 

displacement is obtained from all those nodes will be detailed later. 

• Contact mesh stiffness nodes  𝒖𝑲𝒄𝟏, 𝒖𝑲𝒄𝟐 (blue dots): The source of excitation of the 

whole system will be the periodic variation of the location of the connection point of 

the contact stiffness and also its intensity. All nodes pertaining to the flank at a 

determined axial coordinate are selected and two teeth are needed to model LCRG, 

while three or more would be needed to model HCRG. 

• Additional nodes 𝒖𝒂𝒅𝒅 (orange dots): Those nodes are selected thanks to a Modal-

Geometrical Selection Criterion (MoGeSeC) [144] in order to select the nodes where 

the most modal content is located as visible in Figure 131 to improve the accuracy of 

the ROM. These are not strictly needed since they won’t play any part in the 

calculations and could be avoided in order to further reduce the matrices dimensions, 

at a cost in accuracy. 

• Central node 𝒖𝒕 (black dot): This node is the master node of the rigid joint connection, 

linking the selected nodes on the inner radius to itself as describe earlier. The torque 

will be applied on the rotational DOF left unconstrained and its displacement will be 

taken as the output DTE from the time domain response, imitating the readout of an 

angular encoder. 

Hence, the final vector of the master DOFs is assembled as 

𝒖𝒎 = {𝒖𝑺
𝑻 𝒖𝑲𝒄𝟏

𝑻 𝒖𝑲𝒄𝟐
𝑻  𝒖𝒂𝒅𝒅

𝑻  𝒖𝒕
𝑻 }

𝑻
 (6.50) 

In order to use always the same set of master DOFs and to describe the meshing process a 

set of matrices, each rotated of a small angle Δ휃 = 휃/𝑁, is first obtained, where 𝑁 is the 

number subdivisions of the mesh cycle chosen as visible in Figure 132. This will imply that the 

angular distance covered between each time step will be Δ휃 and hence the interval Δ𝑡 

between the successive time instants will vary with the speed. Given a starting rotational 

velocity Ω𝑠  and a final one Ω𝑓   the constant angular acceleration is simply obtained by 

Ω̇ =
Ω𝑓−Ω𝑠

𝑡
   (6.51) 

 



COMPLIANT GEAR DYNAMICS 

   

  
 175 

 

where 𝑡 is the total time in which the speed sweep will happen. The instantaneous rotational 

velocity Ω𝑖  at a generic time instant 𝑡𝑖 is obtained by 

Ω𝑖 = Ω𝑖−1 + Ω̇(𝑡𝑖 − 𝑡𝑖−1)  (6.52) 

 

where  

𝑡𝑖 = 𝑡𝑖−1 +
Ω𝑖−1 +√Ω𝑖−1

2 + 2Δ휃Ω̇

Ω̇
 

(6.53) 

 

The matrices at each angular position in the mesh cycle are obtained by matrix rotation, in 

which the nodal rotation matrix for a generic node is 

𝑹𝚫𝛉,𝐢 = [
cos (Δθ ∙ (z − 1)) 𝑠𝑖𝑛(Δθ ∙ (z − 1)) 0
−𝑠𝑖𝑛(Δθ ∙ (z − 1)) cos (Δθ ∙ (z − 1)) 0

0 0 1

] (6.54) 

 

where 𝑧 = 1,2, . . , 𝑁, which are then assembled on the diagonal of the full rotation matrix 

𝑹𝚫𝛉,𝐳 of suitable dimension to perform matrix rotation as 

𝑲𝒛 = 𝑹𝚫𝛉,𝐳
𝑻 𝑲𝒋𝑹𝚫𝛉,𝐳,𝑴𝒛 = 𝑹𝚫𝛉,𝐳

𝑻 𝑴𝒋𝑹𝚫𝛉,𝐳 (6.55) 

 

 

Figure 132: Incremental rotation of the gear 
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For each of those matrices a Craig-Bampton (CB) [145] Component Mode Synthesis (CMS) is 

obtained, first by partitioning the matrices separating the masters and slaves DOFs as 

[
𝑴𝒎𝒎 𝑴𝒎𝒔

𝑴𝒔𝒎 𝑴𝒔𝒔
] {
�̈�𝒎
�̈�𝒔
} + [

𝑲𝒎𝒎 𝑲𝒔𝒎
𝑲𝒔𝒎 𝑲𝒔𝒔

] {
𝒖𝒎
𝒖𝒔
} = {

𝒇𝒎
𝒇𝒔
} (6.56) 

 

The transformation matrix of the CB-CMS 𝑻𝒄𝒃 is obtained by 

{
𝒖𝒎
𝒖𝒔
} = 𝑻𝒄𝒃,𝒛 {

𝒖𝒎
𝒒𝒎
} = [

𝑰 𝟎
𝚿𝒄 𝚽𝒍

] {
𝒖𝒎
𝒒𝒎
} (6.57) 

 

where 𝚿𝒄 is the static part of the reduction  

𝚿𝒄 = −𝑲𝒔𝒔
−𝟏𝑲𝒔𝒎 (6.58) 

 

And 𝚽𝒍 is the matrix of eigenvectors 𝝓𝒊 obtained by modal analysis on the equivalent 

matrices where the master DOFs are constrained, i.e. by keeping only the rows and columns 

pertaining to the slave DOFs 𝒖𝒔 

𝚽𝒍 = [𝝋𝟏 ⋯ 𝝓𝒊 ⋯ 𝝓𝒏𝒎] (6.59) 

 

The CB-CMS mass matrix for the 𝑧𝑡ℎ angular position is then obtained as 

𝑴𝒛
𝒓 = 𝑻𝒄𝒃,𝒛

𝑻 𝑴𝒛𝑻𝒄𝒃,𝒛 (6.60) 

 

and similarly, for the 𝑧𝑡ℎ stiffness matrix 

𝑲𝒛
𝒓 = 𝑻𝒄𝒃,𝒛

𝑻 𝑲𝒛 𝑻𝒄𝒃,𝒛 (6.61) 

 

Alternatively, for faster computation, the reduced matrices can be obtained by calculating 

separately their components, namely for the mass matrix 

𝑴𝒛
𝒓 = [

𝑴𝒎𝒎 +𝚿𝒄
𝑻𝑴𝒔𝒔𝚿𝒄 𝚿𝒄

𝑻𝑴𝒔𝒔𝚽𝒍

[𝚿𝒄
𝑻𝑴𝒔𝒔𝚽𝒍]

𝑻 𝑰
] (6.62) 
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and for the stiffness matrix 

𝑲𝒛
𝒓 = [

𝑲𝒎𝒎 +𝑲𝒎𝒔𝚿𝒄 𝟎
𝟎 𝝎𝒍

] (6.63) 

 

Where 𝝎𝒍 are the corresponding eigenvalues to the eigenvectors 𝚽𝒍. The damping model 

chosen is proportional Rayleigh damping of the form 

𝑪𝒛 = 𝛼𝑐𝑴𝒛 + 𝛽𝑐𝑲𝒛 (6.64) 

 

Where the values of 𝛼𝑐 and 𝛽𝑐 will be detailed later, while the reduced matrix is again 

obtained as 

𝑪𝒛
𝒓 = 𝑻𝒄𝒃,𝒛

𝑻 𝑪𝒛 𝑻𝒄𝒃,𝒛 (6.65) 

 

All 𝑲𝒛
𝒓, 𝑪𝒛

𝒓,𝑴𝒛
𝒓 matrices are obviously saved to be used in the integration scheme, while all 

others are discarded, except for the following ones: 

• The rotation matrix of the angle Δθ 

𝑹𝚫𝛉 =

[
 
 
 
 
 
 [
cos (Δθ) 𝑠𝑖𝑛(Δθ) 0
−𝑠𝑖𝑛(Δθ) cos (Δθ) 0

0 0 1

]

⋱

[
cos (Δθ) 𝑠𝑖𝑛(Δθ) 0
−𝑠𝑖𝑛(Δθ) cos (Δθ) 0

0 0 1

]
]
 
 
 
 
 
 

 (6.66) 

 

• The matrix that will be used to expand the displacements, velocities, and 

accelerations once 𝑧 = 𝑁 

 𝑻𝒄𝒃,𝑵 (6.67) 

 

• The reduction matrix that will be used to reduce the displacements, velocities, and 

accelerations to begin the new mesh cycle for 𝑧 = 1 

𝑻𝒓,𝟏 = (𝑻𝒄𝒃,𝟏
𝑻 𝑻𝒄𝒃,𝟏)𝑻𝒄𝒃,𝟏

𝑻  (6.68) 
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whose use will be apparent next. This preprocessing phase is computationally heavy, but it 

can be done only once if the macro-geometrical parameters of the considered gear do not 

change. Once this phase is completed, the iterative integration scheme can proceed, which 

is based on the Newmark [146] scheme with constant acceleration. The constants used are 

𝛼𝑁𝑀 =
1

4
, 𝛿𝑁𝑀 =

1

2
 (6.69) 

 

In the Newmark integration scheme, regrouping the terms of the equation of motion to be 

solved the following expression is obtained for the 𝑖𝑡ℎ time step, which corresponds to the 

𝑧𝑡ℎ angular position 

�̈�∗𝒊 = 𝑺𝒊𝜹𝒓𝒊 (6.70) 

 

where  

𝑺𝒊 = 𝑴𝒛,𝒊
𝒓 + Δ𝑡𝑖𝑪𝒛,𝒊

𝒓 + Δ𝑡𝑖
2𝛼𝑁𝑀(𝑲𝒛,𝒊

𝒓 +𝑲𝒄,𝒊
𝒓 ) (6.71) 

 

Where the time interval Δ𝑡𝑖 changes from step to step. The residual vector 𝜹𝒓𝒊 is obtained 

from the following matrices 

𝑫𝒊 = −(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 ) 

 

𝑽𝒊 = −𝑪𝒛,𝒊
𝒓 − Δ𝑡𝑖(𝑲𝒛,𝒊

𝒓 +𝑲𝒄,𝒊
𝒓 ) 

 

𝑨𝒊 = −𝑪𝒛,𝒊
𝒓 (1 − 𝛿𝑁𝑀)Δ𝑡𝑖 − (𝑲𝒛,𝒊

𝒓 +𝑲𝒄,𝒊
𝒓 ) (

1

2
− 𝛼𝑁𝑀)Δ𝑡𝑖

2 

(6.72) 

 

which are then assembled as 

𝛿𝒓𝒊 = 𝒇 + 𝑫𝒊𝒖𝒊−𝟏 + 𝑽𝒊�̇�𝒊−𝟏 + 𝑨𝒊�̈�𝒊−𝟏 (6.73) 

 

Where 𝒖𝒊−𝟏, �̇�𝒊−𝟏, �̈�𝒊−𝟏 are respectively the displacements, velocities, and accelerations 

vectors at the previous time step. The external force vector 𝒇 will be considered constant 

throughout the entirety of simulation and its only non-null value will be the torque 𝑇 applied 
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to the only free DOF of the central master node of the rigid joint connection. The acceleration 

at the current time step is then computed as 

�̈�∗𝒊 = 𝑺𝒊
−𝟏𝛿𝒓𝒊 (6.74) 

 

Using this acceleration vector and the displacements, velocities, and accelerations of the 

previous step the new ones can then be computed, namely for the velocities 

�̇�∗𝒊 = �̇�𝒊−𝟏 + (1 − 𝛿𝑁𝑀𝑀)�̈�𝒊−𝟏 + 𝛿𝑁𝑀�̈�
∗
𝒊Δ𝑡𝑖 (6.75) 

 

And for the displacements 

𝒖∗𝒊 = 𝒖𝒊−𝟏 + Δ𝑡𝑖�̇�𝒊−𝟏 + Δ𝑡𝑖
2 (
1

2
− 𝛼𝑁𝑀) �̈�𝒊−𝟏 + 𝛼𝑁𝑀�̈�

∗
𝒊Δ𝑡𝑖

2 (6.76) 

 

The displacements, velocities and accelerations 𝒖∗𝒊, �̇�
∗
𝒊, �̈�

∗
𝒊 thus obtained are marked by 

the apex ∗ since they have been obtained with the 𝑧𝑡ℎ rotated matrices along the mesh cycle, 

but for the next time step the (𝑧 + 1)𝑡ℎ matrices will have to be used. Since the only 

difference between the two sets of matrices is a rigid rotation of Δθ, the same rotation will be 

applied to the current results to obtain a suitable set of inputs for the next time step as 

𝒖𝒊 = 𝑹𝚫𝜽𝒖
∗
𝒊 , �̇�𝒊 = 𝑹𝚫𝜽�̇�

∗
𝒊 , �̈�𝒊 = 𝑹𝚫𝜽�̈�

∗
𝒊 (6.77) 

 

This iterative time advancement can continue for each 𝑧𝑡ℎ angular position of the mesh 

cycle, until 𝑧 = 𝑁 when special measures have to be taken since the cycle has to be reset to 

its initial condition, while keeping the travelling wave of excitation continuous. To do so, the 

displacements, velocities and accelerations obtained for the 𝑖𝑡ℎ time step where 𝑧 = 𝑁 are 

first expanded to obtain again the values for all DOFs of the full FE model. This is done by 

employing the saved  𝑻𝒄𝒃,𝑵 as 

𝒖𝒊,𝑭 = {
𝒖𝒎
𝒖𝒔
} = 𝑻𝒄𝒃,𝑵𝒖𝒊 , �̇�𝒊,𝑭 = {

�̇�𝒎
�̇�𝒔
} = 𝑻𝒄𝒃,𝑵�̇�𝒊 , �̈�𝒊,𝑭 = {

�̈�𝒎
�̈�𝒔
} = 𝑻𝒄𝒃,𝑵�̈�𝒊 (6.78) 

 

where the subscript 𝐹 indicates that they represent the full FE model. Then the obtained 

vectors are sorted so that for the next mesh cycle the master DOFs selected will be the ones 
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geometrically corresponding to ones of the last cycle, but with an angular difference of 휃 =

360/𝑍, meaning that that the homologous nodes currently selected will be taken on the next 

tooth, following the sense of rotation. Thus, the same geometrical points will be chosen, but 

advanced of one tooth and then the new set of displacements, velocities, and accelerations, 

sorted in this new configuration, is reduced using the reduction matrix for 𝑧 = 1  

𝒖𝒊,𝑭 = 𝑻𝒓,𝟏𝒖
′
𝒊,𝒇 = 𝑻𝒓,𝟏 {

𝒖′𝒎
𝒖′𝒔

}  

�̇�𝒊,𝑭 = 𝑻𝒓,𝟏�̇�
′
𝒊,𝒇 = 𝑻𝒓,𝟏 {

�̇�′𝒎
�̇�′𝒔

} 

�̈�𝒊,𝑭 = 𝑻𝒓,𝟏�̈�
′
𝒊,𝒇 = 𝑻𝒓,𝟏 {

�̈�′𝒎
�̈�′𝒔

}  

(6.79) 

 

Where {
𝒖′𝒎
𝒖′𝒔

} , {
�̇�′𝒎
�̇�′𝒔

} , {
�̈�′𝒎
�̈�′𝒔

}  are the newly sorted sets of masters and slaves DOFs. In this 

way the cycle can begin again with 𝑧 = 1 and the (𝑖 + 1)𝑡ℎ time step can be computed, while 

this process is repeated each time that 𝑧 = 𝑁 resetting then the counter to 𝑧 = 1 until the 

completion of all required time steps. As stated, the external force vector 𝒇 will be considered 

constant throughout the entire simulation, but the excitation of the dynamic system comes 

from the time-varying and moving contact mesh stiffness 𝑲𝒄,𝒊
𝒓 which acts upon the DOFs 𝒖𝑲𝒄𝟏 

and 𝒖𝑲𝒄𝟐 of the two teeth pairs considered as in Figure 130 in the reduced matrices. The 

time-varying contact mesh stiffness is simulated by a grounded spring whose matrix form is 

𝑲𝒄𝒎 = 𝑐𝑛𝑘𝑝,𝑖 [
𝑐𝑜𝑠(𝛼) 0 0
0 𝑠𝑖𝑛(𝛼) 0
0 0 0

] (6.80) 

  

in which 𝑘𝑝,𝑖 is the instantaneous value of the mesh contact stiffness at time 𝑖 for tooth pair 

𝑝 and 𝑐𝑛 is a weight coefficient which changes from 0 to 1 and is different for each node 

considered, and 𝛼 is the pressure angle. At the 𝑧𝑡ℎ angular position the location of the contact 

point is known trough one of the proposed models from Chapters III or IV and its location is 

compared to the coordinates of the 𝑛𝑡ℎ selected node on the flank for the reduced systems: 

if the location of the contact point coincides with one of the selected nodes then the 

corresponding coefficient is set to one and all others are set to zero, while if the contact point 

lies between two nodes the coefficient linearly varies similarly to 1D shape functions as 
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𝑐𝑛−1 =
𝑥𝑛 − 𝑥

𝑥𝑛 − 𝑥𝑛−1
 , 𝑐𝑛 =

𝑥𝑛−1 − 𝑥

𝑥𝑛 − 𝑥𝑛−1
  (6.81) 

 

where 𝑥𝑛 is the pseudo coordinate of the node on the flank as seen on a line, and this verifies 

∑ 𝑐𝑛 = 1
𝑚𝑛
𝑛=1  for every angular position considered, where 𝑚𝑛 is the number of mesh nodes  

selected on the flank to which the DOFs 𝒖𝑲𝒄𝟏 or 𝒖𝑲𝒄𝟐 correspond. Therefore, to simulate both 

the time variation of the value of the contact stiffness due to the meshing interaction and the 

motion of said stiffness along the flank as it varies during the mesh cycle, for every 𝑖𝑡ℎ time 

instant the matrices are assembled placing the grounded springs on the DOFs related for 

each of the considered nodes on the flank, so for the first tooth pair the matrices are placed 

on the DOFs of 𝒖𝑲𝒄𝟏 

𝑲𝟏,𝒊
𝒓 = 

=

[
 
 
 
 
 
 
 
 
⋱

𝑐1𝑘1,𝑖 [
𝑐𝑜𝑠(𝛼) 0 0
0 𝑠𝑖𝑛(𝛼) 0
0 0 0

]

⋱

𝑐𝑚𝑛𝑘1,𝑖 [
𝑐𝑜𝑠(𝛼) 0 0
0 𝑠𝑖𝑛(𝛼) 0
0 0 0

]

⋱ ]
 
 
 
 
 
 
 
 

  
(6.82) 

 

And for the second one  

𝑲𝟐,𝒊
𝒓 = 

=

[
 
 
 
 
 
 
 
 
⋱

𝑐1𝑘2,𝑖 [
𝑐𝑜𝑠(𝛼) 0 0
0 𝑠𝑖𝑛(𝛼) 0
0 0 0

]

⋱

𝑐𝑚𝑛𝑘2,𝑖 [
𝑐𝑜𝑠(𝛼) 0 0

0 𝑠𝑖𝑛(𝛼) 0
0 0 0

]

⋱ ]
 
 
 
 
 
 
 
 

  
(6.83) 

 

A visualization of the motion of the contact mesh stiffness and its variation in a mesh cycle 

using this method is visible in Figure 133. Clearly this approach can be easily extended for  
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Figure 133: Position and magnitude variation of the contact mesh stiffness on the teeth flanks. The length of the 

red line indicates the module of the contact mesh stiffness applied. 

 

gears with contact ratio greater than 2 with minimal modifications in the process. A similar 

approach is used to simulate the readout of a proximity sensor on the edge of the rim where 

the nodes corresponding to the DOFs 𝒖𝑺 of the selected sensor nodes. Since a proximity 

sensor is fixed at a predetermined angular position the response must be read at the same 

location for every time step and angular position during rotation. To do so the displacements 

{𝑢𝑠, 𝑣𝑠, 𝑤𝑠}
𝑇 of each of the 𝑠 selected sensor nodes is used to compute the displacements at 

a fixed point by  
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𝑢𝑖 = ∑𝑐𝑠𝑢𝑠

𝑠

𝑛=1

, 𝑣𝑖 = ∑𝑐𝑠𝑣𝑠

𝑠

𝑛=1

, 𝑤𝑖 = ∑𝑐𝑠𝑤𝑠

𝑠

𝑛=1

, (6.84) 

 

where 𝑐𝑠 are weights computed in a similar way of 𝑐𝑛 only in this case the angular distance 

between the wanted read angle Ψ and the instantaneous position of the 𝑠𝑡ℎ sensor node is 

considered to assign the weight to each of the obtained displacements from the sensor 

nodes. Similarly, using the weights 𝑐𝑛 and the displacements of the nodes where the contact 

mesh stiffness is applied the dynamic mesh deflection can be obtained along the direction of 

application of the load for each loaded tooth. This dynamic mesh deflection is obtained at 

each time step for each considered tooth and is positive if the grounded spring simulating 

the contact mesh stiffness is compressed, while negative if it’s working in traction. If such 

situation occurs, for the next time step the instantaneous value of the contact mesh stiffness 

𝑘𝑝,𝑖 is set to 0 thus simulating a partial or total contact loss in the mating teeth, depending 

on how many teeth have a negative dynamic mesh deflection. In the next paragraphs the 

proposed model will be applied to a gear first with a rigid web and later to one with a 

compliant one. Further effects will be introduced along the way and the effect of several 

parameters will be investigated. However, as will be shown, due to the combination of 

geometry, parameters and loads no contact loss has been detected in any of the proposed 

tests. To summarize the proposed model aims to simulate the dynamic response of a single 

gear through a series of reductions and expansions of the degrees of freedom depending on 

the geometrical position at the considered timestep. The model is loaded by an external 

constant torque 𝑇 applied on the central master node while the time-varying grounded 

springs 𝑘𝑝,1 and 𝑘𝑝,2 which act as sinks for the input energy, while the outputs are the 

displacements, velocities and accelerations of the set of sensor nodes 𝒖𝑺, as well as the 

displacement of the central master node for the 𝐷𝑇𝐸. The schematization of this model is 

visible in Figure 134 where the same color scheme of Figure 130 is applied to differentiate 

the different sets of master nodes. 
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Figure 134: Schematization of the proposed dynamic model 

 

VI.4 Rigid web results 

 

As a first step the dynamic behavior of a gear with flexible teeth and rim, but with a rigid web 

will be analyzed. The main parameters are listed in Table 8 and the resulting 3D FE model is 

visible in Figure 135 where also the 81 master DOFs are indicated which together with 201 

additional modes 𝚽𝒍 contribute to the total matrices dimension of 285 total DOFs. In this 

paragraph and in the following one, unless otherwise specified, the constants that define the 

damping matrix 𝛼𝑐 and 𝛽𝑐 have been set to: 

𝛼𝑐 = 1 

𝛽𝑐 = 1𝑒 − 7  
(6.85) 
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which are on the low end of the values usually employed in literature for this kind of damping 

model. Using the full matrices and the eigenvalues and eigenvectors are obtained, classified 

by their mode shape, and compared to the ones from Nastran and the results up to 9𝑘𝐻𝑧 

are  

Table 8: Gear and material data 

Gear Parameters Dimensions 

Module 𝑚 3 𝑚𝑚 

Profile shift 𝑥 0 𝑚𝑚 

Number of teeth 𝑍 24 

Pressure angle 𝛼 20° 

Face width 𝑏 20 𝑚𝑚 

Material - PEEK Value 

𝐸 5.7 𝐺𝑃𝑎 

𝜌 1320 𝑘𝑔/𝑚3 

𝜈 0.38 

Torque 𝑇 30 𝑁𝑚 

 

listed in Table 9 from which an extremely close agreement between the proposed 

implementation and the commercial software can be appreciated. The 1D mode shape has 

a higher frequency than the 2D one since an additional stiffness, simulating a supporting 

shaft, has been added to the DOFs pertaining the central node for stability reasons. A 

selection of the mode shapes is visible in Figure 136. Although no other gear is currently 

considered, in order to estimate the contact mesh stiffness 𝑘𝑝,𝑖 for tooth pairs 1 and 2, the 

gear is taken to be meshing with an identical one and the resulting contact mesh stiffness 
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Figure 135: Rigid web gear FE discretization and master DOFs 

 

over one mesh cycle is visible in Figure 137. Applying this periodic variation with the constant 

torque 𝑇 under quasi-static conditions yields the displacements in the radial, tangential and 

axial directions as presented in Figure 138. The expected Campbell diagram in the stationary 

reference frame is visible in Figure 139 for the considered velocity range 100 ÷ 1260
𝑟𝑎𝑑

𝑠
 in 

which even though no rotor dynamic effect has been introduced  yet, the mode shapes still 

diverge in the forward and backward whirling travelling waves except for the axial and 

torsional modes which remain constant as expected. In order to quantify the excitation 

source usually a Fast Fourier Transform (FFT) of the STE is computed which in this case is 

visible in the upper portion of Figure 141 and the main harmonics are those corresponding 

to Excitation Orders (EO or Engine Orders) which are multiples of the number of teeth 𝑍. 

However, in this case the STE is the result of the application of the time-varying contact mesh 

stiffness under constant torque and hence in order to analyze this excitation source the FFT 

of the contact mesh stiffness as experienced by a single teeth during an entire gear rotation 

is visible in the lower portion of the same figure. Under this situation the load is comparable 

to one as seen in a rotating reference frame, in which an axis is fixed to the gear and rotates 
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with it with the same angular velocity. Therefore, considering the harmonic 𝑛 it has a 

pulsation equal to 

𝜔𝑏/𝑓 = 𝜔 ± 𝑛 ∙ Ω = Ω ∙ (𝑧 ± 𝑛) = Ω ∙ 𝐸𝑂𝑏/𝑓 (6.86) 

 

Table 9: Mode frequencies and comparison with Nastran for the rigid web gear 

Mode N° Mode type Freq. [Hz] %err w.r.t Nastran [-] 

1 2D 3028,59 3,58e-6 

2 2D 3028,63 9,47e-6 

3 1D 3255,84 2,07e-6 

4 1D 3255,90 3,04e-6 

5 Axial\0D 3685,46 3,54e-7 

6 3D 4258,26 4,21e-6 

7 3D 4258,74 3,03e-6 

8 Torsional 6168,31 5,22e-7 

9 4D 6367,57 3,77e-6 

10 4D 6367,91 4,11e-6 

11 5D 8779,44 3,09e-6 

12 5D 8780,13 3,41e-6 
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Figure 136: Mode shapes and frequencies - Rigid web 
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Figure 137: Evolution of the contact mesh stiffness 𝑘𝑝.𝑖 over one mesh cycle 

 

 

Figure 138: Displacements as experienced by the sensor under quasi-static conditions 



VI 

   

  
 190 

 

 

Figure 139: Campbell diagram 

 

in which the subscripts 𝑏 and 𝑓 differentiate between the backward and forward whirling 

waves respectively and 𝜔 = 𝑍 ∙ Ω, thus the relevant EOs are 

{
𝐸𝑂𝑏 = 𝑧 + 𝑛
𝐸𝑂𝑓 = 𝑧 − 𝑛

 (6.87) 

 

In order to apply the model detailed in the previous paragraph the subdivision of the mesh 

cycle has been set to 𝑁 = 50 and given the considered velocity range this yields a maximum 

time step equal to Δ𝑡𝑚𝑎𝑥 = 1.67𝑒 − 5 𝑠 at the beginning of the sweep, while the minimum 

value is Δ𝑡𝑚𝑖𝑛 = 2.62𝑒 − 6 𝑠 at the end of it. The variation of the instantaneous time step Δ𝑡𝑖 

and rotational velocity Ω as a function of time are visible in Figure 140 and those values for 

the continuous speed sweep will be used for all simulations of both rigid and compliant gears 

for consistency. The resulting dynamic displacements, as read by the different sensors, in the 

radial, tangential and axial direction are visible in Figure 142, while the dynamic mesh 

deflection is visible in Figure 143, and as stated earlier does not display any contact loss 



COMPLIANT GEAR DYNAMICS 

   

  
 191 

 

during the engagement. This mesh deflection accounts only for the dynamic compression 

experienced by the contact mesh stiffnesses 𝑘𝑝,𝑖 . These results are hence taken at non 

constant time intervals and therefore in order to obtain a spectrogram of the signal they are 

resampled at a constant time interval equal to 1 ∙ 10−6 𝑠. The resampled time response is 

then subdivided in segments composed of 524288 values, 90% overlap ratio, no windowing 

and the spectrogram is then obtained as visible in Figure 144 for the radial direction. The 

overlap of this spectrogram with the expected Campbell diagram and the spectrograms of 

the dynamic displacements in the tangential and axial direction are visible in Appendix A. The 

first phenomenon that will be introduced next is the gyroscopic effect. According to [147] the 

velocity vector components of a point vibrating and rotating around an axis with a rotational 

speed Ω can be defined by: 

 

 

Figure 140: Variation of the instantaneous time step ∆𝑡𝑖 and rotational velocity 𝛺 as a function of time 
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Figure 141: FFT of the excitation sources 

 

Figure 142: Dynamic displacements as experienced by the sensor nodes 
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Figure 143: Dynamic mesh deflection 

 

𝑣𝑥,𝑖 =  �̇�𝑖𝑐𝑜𝑠𝛺𝑡 + �̇�𝑖𝑠𝑖𝑛𝛺𝑡 + (휃̇𝑖𝜑𝑖 − 𝛺)(−𝑥𝑖𝑠𝑖𝑛𝛺𝑡 + 𝑦𝑖𝑐𝑜𝑠𝛺𝑡) + (휃̇𝑖𝑐𝑜𝑠𝛺𝑡

− �̇�𝑖𝑠𝑖𝑛𝛺𝑡)(𝑤𝑖 + 𝑥𝑖휃𝑖 − 𝑦𝑖𝜑𝑖) 

𝑣𝑦,𝑖 =  −�̇�𝑖𝑠𝑖𝑛𝛺𝑡 + �̇�𝑖𝑐𝑜𝑠𝛺𝑡 + (𝛺 − 휃̇𝑖𝜑𝑖)(𝑥𝑖𝑠𝑖𝑛𝛺𝑡 + 𝑦𝑖𝑐𝑜𝑠𝛺𝑡) − (휃̇𝑖𝑐𝑜𝑠𝛺𝑡

− �̇�𝑖𝑠𝑖𝑛𝛺𝑡)(𝑤𝑖 + 𝑥𝑖휃𝑖 − 𝑦𝑖𝜑𝑖) 

𝑣𝑧,𝑖 = �̇�𝑖 + 𝑥𝑖휃̇𝑖 − 𝑦𝑖�̇�𝑖 

(6.88) 

 

where  

휃𝑖 =
𝜕𝑢𝑖
𝜕𝑧

 𝜑𝑖 =
𝜕𝑣𝑖
𝜕𝑧

 (6.89) 

 

Hence, its kinetic energy due to gyroscopic effects can be written as 
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Figure 144: Spectrogram of the radial dynamic displacements 
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𝑇𝑔 =  − 𝛺∫ ((휃̇𝑖𝜑𝑖 + 휃𝑖�̇�𝑖)𝑥𝑖
2 + 𝑥𝑖𝑦𝑖(휃̇𝑖휃𝑖 + �̇�𝑖𝜑𝑖) + 𝑤𝑖(휃̇𝑖𝑦𝑖 + �̇�𝑖𝑥𝑖)) 𝑑𝑉

𝑉

 (6.90) 

 

However, the only components of the above expression which contribute to the inertia forces 

are 

𝑇𝑔 =  − 𝛺∫ 𝑤𝑖(휃̇𝑖𝑦𝑖 + �̇�𝑖𝑥𝑖)𝑑𝑉

𝑉

 (6.91) 

 

Which can be discretized on the DOFs of the element 𝒒𝒆 as 

𝑇𝑔 =  𝛺𝒒𝒆
𝒕𝑮𝒆𝒒𝒆 (6.92) 

 

Finally, integrating the above expression and employing the shape functions previously 

defined, the portion of the elemental gyroscopic matrix 𝑮𝒆 connecting the DOFs of nodes 𝑖 

and 𝑗 can be written as 

𝑮𝒆(𝑖, 𝑗) = 𝜌 

[
 
 
 
 
 
 
 
 
 
 

0 0 ∫ (
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗𝑥𝑖,𝑗)𝑑𝑣𝑘
𝑣𝑘

0 0 − ∫ (
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗𝑦𝑖,𝑗) 𝑑𝑣𝑘
𝑣𝑘

− ∫ (
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗𝑥𝑖,𝑗) 𝑑𝑣𝑘
𝑣𝑘

∫ (
𝜕𝑁𝑖
𝜕𝑧

𝑁𝑗𝑦𝑖,𝑗)𝑑𝑣𝑘
𝑣𝑘

0

]
 
 
 
 
 
 
 
 
 
 

 (6.93) 

 

in which the anti-symmetric nature of the gyroscopic matrix can be appreciated. Naturally, 

the assembled gyroscopic matrix of the structure G is then treated in the same way as the 

mass and stiffness ones and must then be included the iterative Newmark scheme for this 

effect to be taken into account. Matrix 𝑺𝒊 is then formed as 

𝑺𝒊 = 𝑴𝒛,𝒊
𝒓 + Δ𝑡𝑖(𝑪𝒛,𝒊

𝒓 + 𝛺𝑖𝑮𝒛,𝒊
𝒓 ) + Δ𝑡𝑖

2𝛼𝑁𝑀(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 ) (6.94) 

 

and the residual vector 𝜹𝒓𝒊 is obtained from the following updated matrices 
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𝑫𝒊 = −(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 ) 

 

𝑽𝒊 = −𝑪𝒛,𝒊
𝒓 − 𝛺𝑖𝑮𝒛,𝒊

𝒓 − Δ𝑡𝑖(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 ) 

 

𝑨𝒊 = −(𝑪𝒛,𝒊
𝒓 + 𝛺𝑖𝑮𝒛,𝒊

𝒓 )(1 − 𝛿𝑁𝑀)Δ𝑡𝑖 − (𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 ) (
1

2
− 𝛼𝑁𝑀)Δ𝑡𝑖

2 

(6.95) 

 

while the rest of the process remains unchanged. The expected Campbell diagram with this 

introduction is visible in Figure 145, while the comparison with and without this effect can be 

seen in Figure 146. The impact of this introduction is not too great since the radius of the 

considered gear is small, but still it’s non negligible especially for the mode shapes with the 

lowest number of nodal diameters. Similarly, to what has been done before the spectrogram 

of the dynamic response of this case can be appreciated in Figure 147 for the radial direction 

While the results for the tangential and axial direction are visible in Appendix A, as well as the 

superposition of the radial spectrogram with the modal Campbell diagram. For testing 

purposes, the damping coefficients have been doubled and set to 

𝛼′𝑐 = 2 

𝛽′𝑐 = 2𝑒 − 7  
(6.96) 

 

In order to compare the amplitude of the responses with the original and doubled damping 

the excitation orders 𝑍 and 2𝑍 are extracted from the spectrograms of the dynamic 

responses and compared in Figure 148 and Figure 149. The amplitudes of the response on 

the EO 𝑍 are rather small compared to the ones from the EO 2𝑍 especially in the radial and 

tangential direction, while the axial response is similar. This is mainly because the rigid web 

considered in this case stiffens the system too much. Regarding the change in the amplitudes 

when the damping is doubled on the order 𝑍 this change is visible but becomes evident 

especially on the EO 2𝑍 where the amplitude is almost halved in the radial and tangential 

directions. Next an increase of 1.5 times of the torque applied to the system is considered. 

Under this new load the contact mesh stiffness changes and this variation is visible in Figure 

150 for one mesh cycle, while the variation of the quasi static displacements can be 

appreciated in Figure 151. To compare the harmonic content of both the newly obtained STE 

and contact mesh stiffness variation their FFT has been again analyzed in the stationary  
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Figure 145: Campbell diagram with gyroscopic effect 

 

 

Figure 146: Comparison of the Campbell diagram with and without gyroscopic effect 
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Figure 147: Spectrogram of the dynamic displacements in the radial direction with gyroscopic effect 
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Figure 148: Effect of damping on the order 𝑍𝛺 

 

Figure 149: Effect of damping on the order 2𝑍𝛺 
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Figure 150: Variation of the contact mesh stiffness over one mesh cycle under nominal (black 30 𝑁𝑚) torque 

and 1.5 times (blue 45 𝑁𝑚) the nominal torque 

 

Figure 151: Quasi-static displacements under 1.5 times the nominal torque 
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Figure 152: FFT of the excitation sources under nominal torque and 1.5 times the nominal torque 

reference frame for the STE and in the rotating one for the 𝑘𝑝,𝑖 . Since the variation of the 

contact mesh stiffness is determined by a nonlinear approach also its change with the 

increased load is, which reflects on both the STE and the different FFT. The amplitude of the 

responses is compared for the EO 𝑍 and 2𝑍 in Figure 153 and Figure 154 respectively. In 

those figures the obtained response for the nominal torque with nominal contact mesh 

stiffness is compared with the ones with increased torque and tis related 𝑘𝑝,𝑖 , but also the 

response where the contact mesh stiffness is kept unchanged while the load is increased  is 

presented. Evidently the increase in the torque plays a role in augmenting the vibration levels 

resulting from the model, but the main effect is visible when also the contact mesh stiffness 

assumes its real value and the amplitudes are evidently much higher for all direction 

considered. 
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Figure 153: Effect of torque and variation of the contact mesh stiffness under nominal and 1.5 times the nominal 

torque on the order 𝑍𝛺 

 

Figure 154: Effect of torque and variation of the contact mesh stiffness under nominal and 1.5 times the nominal 

torque on the order 2𝑍𝛺 
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VI.5 Compliant web results 

 

In this paragraph the dynamic behavior of a gear with the same main parameters as in the 

previous one (listed in Table 8) will be analyzed but with the introduction of a very thin flexible 

web with a thickness of 1.66 𝑚𝑚. The geometry and its FE discretization are visible in Figure 

155 were also the master DOFs are marked. In this case, to keep the resultant of the 

application of the contact mesh stiffnesses centered, two rows of nodes have been selected 

for the interested teeth, and therefore its value will be split in half and applied to the correct 

nodes. For this reason, the total number of master DOFs rises to 309 since the number of 

additional modes of matrix 𝚽𝒍 has been kept equal to 201 as in the previous case. The 

frequencies and type of the mode shapes in the 9 𝑘𝐻𝑧 range are listed in Table 10 in which 

again the comparison with Nastran is extremely close, with negligible frequency differences 

and in Figure 156 are visible some of those mode shapes. Also the load and damping 

coefficients have been kept constant from the previous example and the variation of the 

contact mesh stiffness 𝑘𝑝,𝑖 for a mesh cycle is shown in Figure 157, while the displacements 

experienced by the sensor nodes in quasi static condition obtained under constant torque 

and with the variation of said stiffness can be seen in Figure 158 and they are quite different 

from the ones obtained with the rigid web due to the introduction of this additional 

compliance. The modal Campbell diagram in the velocity range from 100 to 1260
𝑟𝑎𝑑

𝑠
 is visible 

in Figure 159 in which the gyroscopic effect is included, but again due to the small dimensions 

of the considered gear doesn’t show a meaningful impact. The FFT of the variation of the STE 

in the stationary frame as well as the one of the contact mesh stiffness variation in the 

rotating one are displayed in Figure 160. Under these conditions, with a subdivision of the 

mesh cycle has been set to 𝑁 = 50 and given the considered velocity range this yields a 

maximum time step equal to Δ𝑡𝑚𝑎𝑥 = 1.67𝑒 − 5 𝑠 at the beginning of the sweep, while the 

minimum value is Δ𝑡𝑚𝑖𝑛 = 2.62𝑒 − 6 𝑠 at the end of it. The resulting dynamic displacements, 

as read by the different sensors, in the radial, tangential and axial direction are visible in 

Figure 161 which show marked oscillations at different rotational speeds which were not 

present in the rigid web case. This reflects also on the dynamic variation of the mesh 

deflection, visible in Figure 162, but also in this case no contact loss is registered since the 

values are positive for the entire time history and a detail of this dynamic displacement at 
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Figure 155: Compliant web gear FE discretization and master DOFs 

 

Table 10: Mode frequencies and comparison with Nastran for the compliant web gear 

Mode N° Mode type Freq. [Hz] %err w.r.t Nastran [-] 

1 1D 360,25 8,74e-6 

2 1D 360,38 1,27e-6 

3 Axial 670,30 1.01e-7 

4 Torsional 1650,48 3,04e-7 

5 2D 2140,61 5,97e-6 

6 2D 2140,99 3,07e-6 

7 Trasl. 3853,64 4,58e-6 
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8 Trasl. 3854,89 5,97e-6 

9 3D 5390,86 1,03e-6 

10 3D 5391,54 1,23e-6 

11 2D ip 5860,06 2,24e-6 

12 2D ip 5860,84 2,35e-6 

13 0D+1C 6564,92 1,22e-6 

14 1D+1C 7376,63 1,21e-6 

15 1D+1C 7377,59 8,41e-7 

16 3D ip 8014,45 2,24e-6 

17 3D ip 8015,49 9,21e-7 

18 4D 8935,77 2,77e-6 

19 4D 8936,96 1,94e-6 

 

the highest resonance occurring at 17.234 𝑠 is shown in Figure 163 which displays a 

dominant sinusoidal nature. From the dynamic displacements the spectrogram of the 

response is again obtained after resampling at a constant time interval equal to 1𝑒 − 6 𝑠. The 

resampled time response is then subdivided in segments composed of 524288 values, 90% 

overlap ratio, no windowing and the resulting spectrogram from the axial displacements is 

visible in Figure 167, while the superposition of this spectrogram and the modal Campbell 

diagram can be consulted in Appendix B as well as the spectrograms in the radial and 

tangential direction. In order to fully take into consideration the flexibility of the web another 

effect must be taken into consideration which is the differential stiffness or stress stiffening 

effect. The name of this effect comes from the fact that the stresses caused by a deformation 

under load are used as inputs to generate an additional load dependent stiffness matrix 

obtained under linear hypotheses and the used in the dynamic integration scheme. The 

approach here implemented is based again on Nastran implementation [148] and its 
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derivation starts by including in the definition of the potential energy also the effects of the 

initial stresses provoked by external loads 𝑤𝑝, which yields 

𝑤𝑝 =
1

2
∫[𝑤𝑥

2(𝜎𝑦 + 𝜎𝑧) + 𝑤𝑦
2(𝜎𝑥 + 𝜎𝑧) + 𝑤𝑧

2(𝜎𝑥 + 𝜎𝑦) − 2𝑤𝑥𝑤𝑦𝜏𝑥𝑦 − 2𝑤𝑦𝑤𝑧𝜏𝑦𝑧
𝑉

− 2𝑤𝑧𝑤𝑥𝜏𝑥𝑧] 𝑑𝑉 

(6.97) 

 

Figure 156: Example mode shapes of the compliant gear 
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Figure 157: Contact mesh stiffness variation over one mesh cycle 

 

 

Figure 158: Displacements as experienced by the sensor under quasi-static conditions 
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Figure 159: Campbell diagram with gyroscopic effect 

 

 

Figure 160: FFT of the excitation sources 
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Figure 161: Dynamic displacements as experienced by the sensor nodes 

 

 

Figure 162: Dynamic mesh deflection 
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Figure 163: Detail of the dynamic mesh deflection 

 

Where 𝑉 is the volume of the element, the normal and shear stresses 

𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝜏𝑦𝑧are recovered from a stress recovery procedure by using equation 

(6.36) to first get the strains and then getting the stress components using the matrix defining 

the elastic properties of the material (6.7), while the rotations 𝑤𝑥 , 𝑤𝑦, 𝑤𝑧 are obtained by 

𝑤𝑥 =
1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 

𝑤𝑦 =
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) 

𝑤𝑥 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 

(6.98) 

 

where 𝑢, 𝑣, 𝑤 are the nodal displacements. In matrix form this can be written as 
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Figure 164: Spectrogram of the dynamic response in the axial direction 
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{

𝑤𝑥
𝑤𝑦
𝑤𝑧
} = [𝑪𝟏 𝑪𝟐  ⋯𝑪𝟖]

{
 
 
 
 

 
 
 
 
𝑢1
𝑣1
𝑤1
𝑢2
𝑣2
𝑤2
⋮
𝑢8
𝑣8
𝑤8}
 
 
 
 

 
 
 
 

= �̅�𝒖𝒆 (6.99) 

 

where �̅� is formed by the sub matrices 𝑪𝒊 containing the shape function derivatives  

𝑪𝒊 =

[
 
 
 
 
 
 0 −

𝜕𝑁𝑖
𝜕𝑧

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑧

0 −
𝜕𝑁𝑖
𝜕𝑥

−
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0
]
 
 
 
 
 
 

 (6.100) 

 

for 𝑖 = 1,2, . . , 8. The elemental stress stiffness matrix 𝑲𝒔𝒔,𝒆 is obtained after Gauss point 

integration scheme from 

𝑲𝒔𝒔,𝒆 = ∫ �̅�𝑻𝑲𝒘𝒘�̅�𝑑𝑉𝑒
𝑉𝑒

 (6.101) 

 

Where the matrix containing the stresses 𝑲𝒘𝒘 is written as 

𝑲𝒘𝒘 = [

𝜎𝑦 + 𝜎𝑧 −𝜏𝑥𝑦 −𝜏𝑥𝑧
−𝜏𝑥𝑦 𝜎𝑥 + 𝜎𝑧 −𝜏𝑦𝑧
−𝜏𝑥𝑧 −𝜏𝑦𝑧 𝜎𝑥 + 𝜎𝑦

] (6.102) 

 

In the current case the stresses considered are caused by the elastic displacements due to 

the inertial effect of the rotational velocity applied to the gear. This load is dependent with 𝛺2 

but the displacements are obtained linearly and therefore this procedure is performed only 

once at the reference rotational velocity of 1
𝑟𝑎𝑑

𝑠
 thus forming the assembled system stress 

stiffening matrix 𝑲𝒔𝒔 which is then treated in the same manner as the other matrices to 
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obtain the 𝑁 reduced matrices 𝑲𝒔𝒔,𝒊
𝒓 . This effect is hence introduced by modifying the 

assembly of matrix 𝑺𝒊 which is then formed as 

𝑺𝒊 = 𝑴𝒛,𝒊
𝒓 + Δ𝑡𝑖(𝑪𝒛,𝒊

𝒓 + 𝛺𝑖𝑮𝒛,𝒊
𝒓 ) + Δ𝑡𝑖

2𝛼𝑁𝑀(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 + 𝛺𝑖
2𝑲𝒔𝒔,𝒊

𝒓 ) (6.103) 

 

and the residual vector 𝜹𝒓𝒊 is obtained from the following updated matrices 

𝑫𝒊 = −(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 + 𝛺𝑖
2𝑲𝒔𝒔,𝒊

𝒓 ) 

 

𝑽𝒊 = −𝑪𝒛,𝒊
𝒓 − 𝛺𝑖𝑮𝒛,𝒊

𝒓 − Δ𝑡𝑖(𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 + 𝛺𝑖
2𝑲𝒔𝒔,𝒊

𝒓 ) 

 

𝑨𝒊 = −(𝑪𝒛,𝒊
𝒓 + 𝛺𝑖𝑮𝒛,𝒊

𝒓 )(1 − 𝛿𝑁𝑀)Δ𝑡𝑖 − (𝑲𝒛,𝒊
𝒓 +𝑲𝒄,𝒊

𝒓 + 𝛺𝑖
2𝑲𝒔𝒔,𝒊

𝒓 ) (
1

2
− 𝛼𝑁𝑀)Δ𝑡𝑖

2 

(6.104) 

 

while the rest of the scheme remains unchanged. The Campbell diagram over the rotational 

speed range obtained with this effect included is visible in Figure 165 and its effect on the 

modal frequencies is highlighted by the comparison in Figure 166 where the values with and 

without the stress stiffening are compared. Due to the particularly thin geometry of the web 

in the current case the stress field is non negligible leading to noticeable deviations as the 

rotational speed increases which are mostly constant for all mode shapes with radial or axial 

components. The spectrogram of the time domain response in the axial direction is shown in 

Figure 167 and the overlap of this spectrogram with the modal Campbell diagram can be 

found in Appendix B as well as the spectrograms of the dynamic responses in the radial and 

tangential direction.  The extraction of the response orders 𝑍 and 2𝑍 can be seen in Figure 

168 and Figure 169 respectively in which the frequency shift can be appreciated, while the 

amplitudes remain unchanged for the most part. The effect of the load on the response is 

then analyzed by comparing the results at the nominal level of torque (𝑇 = 30 𝑁𝑚) with 

those obtained at 𝑇′ = 0.75𝑇 and 𝑇’’ = 1.25𝑇. As shown in the previous paragraph the 

parameter influencing more the amplitudes of the responses is actually the variation of the 

contact mesh stiffness at different loads. Those variations at the considered load levels are 

shown in Figure 170 while the comparison of the resulting STE are visible in Figure 171. The 

comparison of the FFT of the variation of the contact mesh stiffness exciting the system and 

that of the STE can be appreciated in Figure 172 and show differences in both the values and  
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Figure 165: Campbell diagram with gyroscopic effect and stress stiffening 

 

 

Figure 166: Comparison of the Campbell diagram with and without the stress stiffening effect 
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Figure 167: Spectrogram of the dynamic displacements in the axial direction 
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Figure 168: Comparison of the response on the order 𝑍𝛺 with and without stress stiffening 

 

Figure 169: Comparison of the response on the order 2𝑍𝛺 with and without stress stiffening 
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Figure 170: Contact mesh stiffness variation under different torques 

 

Figure 171: Variation of the STE under different torques 



VI 

   

  
 218 

 

 

 

Figure 172: FFT of the excitation sources under different torques 

 

 

 

Figure 173: Comparison of the response on the order 𝑍𝛺 under different torques 
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the distribution of the Fourier coefficients. After obtaining the dynamic displacements for the 

different cases the related spectrograms are computed and the order 𝑍 is extracted for 

thedifferent directions of displacement of the gear as experienced by the sensor nodes. This 

result is shown in Figure 173 and as expected the vibration levels are higher as the load and 

the excitation source increases although not in a uniform manner. The comparison of the 

response order 2𝑍 is dropped since the higher and more meaningful levels of vibration are 

found in the order 𝑍 where the excitation is higher as highlighted by the comparison of the 

responses in Figure 168 and Figure 169 from the previous analysis. Next the effect of the 

introduction of TPM in the gear microgeometry is analyzed. Since the macroscopic quantities 

defining the gear and its FE discretization remain unchanged the same matrices defining the 

dynamic behavior will be used throughout this comparison, since recomputing the reduced 

matrices for each case would only bring insignificant changes in the dynamic response due 

to the small quantities of material removed when the microgeometry is changed. The type  

 

Table 11: TPM cases 

TPM 1 – Parabolic tip relief 

Δp 0.0032 𝑚𝑚 

𝑙𝑝 0.96 𝑚𝑚 

TPM 2 – Linear tip relief 

Δ𝑡 0.0040 𝑚𝑚 

𝑙𝑡 1.92 𝑚𝑚 



VI 

   

  
 220 

 

 

Figure 174: Variation of the contact mesh stiffness under different TPM 

 

 

Figure 175: Variation of the STE under different TPM 
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and amount of modification applied are listed in Table 11. The resulting variation of the 

contact mesh stiffness exciting the system for the different TPM cases is visible in Figure 174 

and their effect on the resulting STE is instead shown in Figure 175. The FFT of those excitation 

sources is visible in Figure 176. Due to the fact that the application of TPM to the gear smooths 

the STE and reduces its peak-to-peak value the FFT of the STE shows a great reduction when 

TPM are applied and moreover the second case considered, in which the amount of material 

removed is higher, shows also a higher reduction in the Fourier coefficients. However, the FFT 

of the contact mesh stiffness shows an opposite trend since increasing the amount of the 

modification increases the period of mesh cycle in which a single pair of teeth is in contact 

thus leading to an increase in the resulting Fourier coefficients. The comparison of the order 

𝑍 extracted from the dynamic displacements for the different directions is shown in Figure 

177 in which it can be seen that the vibration amplitudes are generally higher for the case 

where no TPM was applied, confirming the common knowledge that applying TPM to the 

flanks can smooth the operation of the transmission. However, although the FFT are quite 

different from each other, the response shows similar amplitudes, except for the results in 

 

Figure 176: FFT of the excitation sources under different TPM 
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Figure 177: Comparison of the response on the order 𝑍𝛺 under different TPM 

 

the tangential direction which show an overall reduction of the vibration levels. The main 

difference between the various cases is the resonance in the radial direction in the 3 ÷

3.5 𝑘𝐻𝑧 range which is caused by the crossing of the torsional mode shape with the 

excitation order 
1

2
𝑍Ω as visible from the spectrograms in Appendix B. This particular 

resonance is completely eliminated when TPM are applied.  
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VII. Conclusions and future work 

 

In this work, after a brief history of the field, the literature and its state of the art have been 

analyzed starting from the studies that have been done to understand the sources of 

excitation up to the different dynamic models, from the simplest to the most advanced, that 

have been proposed have been discussed. 

The first step of this work has been the definition of a 2D tool to study the engagement 

between gear pairs in quasi static conditions. After the definition of the most important 

parameters concerning the macro-geometry of the gears the operative deflections under 

load have been detailed. Those comprehend the deflections due to the flexibility of the tooth 

such as its bending and shear deflections, the deformation due to the fillet and an analytical 

model to consider the local deflection due to contact. Next the deflections of the gear body 

have been studied which include its torsional displacement and the effect of the application 

of the load to one tooth as it influences the others due to the compliance of the foundations 

which are now considered flexible instead of rigid. Those deflections are then included in an 

iterative nonlinear scheme which seeks the equilibrium position of the engaging teeth pairs 

as they deflect under the applied external load on the transmission. In order to fully take into 

consideration also the local contact conditions a non-Hertzian rough frictionless contact 

model is detailed and verified against Hertz solution for the cylinder-cylinder contact 

problem. This model is then extended to the contact between teeth and the notion of tooth 
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profile modifications such as the linear or parabolic tip relief is then introduced. Several TPM 

are then analyzed to study their effect on the contact pressures when in tip corner contact 

conditions. Next this approach is applied to determine the STE and load sharing coefficients 

and the pressure distribution on the engaged flanks during the entire duty cycle of a tooth. 

The effect of the load and different parameters combinations of the amount of material 

removed and length of TPM is shown is investigated. This model is hence novel since usually 

in literature  semi-analytical models are used only linearly, while in this case both the actual 

point of application of the load and the load applied to each tooth itself is found through a 

nonlinear iteration scheme, which is furthermore coupled to a contact model which is non-

Hertzian in nature and that therefore can capture correctly edge contacts and pressure 

distributions where the curvature of the tooth profile is not an ideal involute. To achieve this 

level of detail a very refined FE model would be needed using the already available tools and 

also most commercial software employ Hertzian contact models which cannot capture at all 

the pressure peaks during tip-corner contact for example. 

The proposed approach is however only applicable to spur gears and for TPM which are 

constant throughout the facewidth since the both the iterative contact detection and the 

contact model work in only in 2D. To surpass those limitations a modified approach is then 

introduced. The analytical displacements of the tooth are hence substituted with the results 

of a discretization considering it as a clamped-free of Timoshenko beam elements and the 

iterative contact detection is also upgraded with a mesh to mesh intersection algorithm 

capable of handling general 3D profiles. Also, the contact model is renewed with a 3D version 

with the same properties of the previous one, although the discretization changes from step-

wise to piece-wise linear. This contact model is then compared against Hertz results on 

sphere-sphere and ellipsoid-ellipsoid contact as well as against literature results for a 

crowned roller with edge contact in which the non-Hertzian properties are highlighted. 

Results are then shown for different helix angles with different loads and profile modifications 

and the peak pressure maps of the flanks during contact are discussed also with crowning 

modifications along the facewidth. 

The proposed approaches have advantages in terms of speed against commercial codes or 

general-purpose non-linear solvers since they’re specialized for gears and do not rely on 

finite element discretizations to obtain the loaded deflections but use instead analytical 

formulas or simpler beam elements. Furthermore, they feature detailed contact models 

which do not use Hertzian hypotheses and are capable of accurately determining the actual 
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contact conditions even in extreme situations without having to rely on extremely refined 

surface discretizations which make the solution process extremely slow.  

In order to validate with experimental data the proposed approaches, a test bench has been 

designed capable to determine the STE under quasi static conditions. Its structural parts and 

the system to load the gears with a constant torque are described and further details are 

given on the measurement system which features a device to uncouple the shafts bending 

deflections under load from the torsional ones which are then read by a pair of high precision 

rotary encoders while the torque is recorded by a torque meter. After describing the 

necessary safety measures implemented results are shown for a pair of test gears. The 

obtained results are only preliminary due to the poor quality of the test gears and the 

highlighted flaws in the design of the bench and will be updated in the future when the new 

parts and better test gears will be available. 

Finally, a scheme to study the dynamic response of compliant gears is detailed. As a first step 

the finite element model used to discretize the gear geometry with hexahedral elements is 

discussed which features a combination of selective reduced integration and an enhanced 

assumed strain field in order to remove shear and volumetric locking as well as removing 

spurious modes. This FE model is applied to a parametric discretization of the gear geometry 

and is then applied to a reduced order scheme which uses the Craig-Bampton reduced FE 

matrices, computed at several different rotation angles, in a model capable of quickly 

obtaining the dynamic displacements accounting for the complete flexibility and flexible 

mode shapes of the gear with the possibility of considering also eventual contact loss. This 

model is firstly applied to a gear with a rigid web and the gyroscopic effect is introduced. The 

importance of employing the correct contact mesh stiffness is the highlighted as well as the 

effect of damping. Then, a gear with a compliant thin web is analyzed and the effect of the 

stress stiffening phenomenon is described and introduced in the dynamic model. The effect 

of the load and of different tooth profile modifications applied to the flanks are finally studied. 

The main drawbacks of the proposed scheme is that the pre-process phase is rather long 

and computationally intensive and that the time discretization is variable and can’t be chosen 

directly but is the result of the combination of the rotational speed and the number of angular 

positions in which it’s decided to split the mesh cycle. However, if the macro geometry of the 

gear doesn’t change, the matrices can be reused for different load and micro geometry 

setups with minimal effort ensuring the possibility to study different parameters 
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combinations with ease. Also, most dynamic phenomena don’t happen at slow speeds and 

therefore a satisfying trade-off between the number of mesh cycle discretizations and the 

speed range can usually be found. In any case the advantages far outweigh the 

disadvantages since this scheme allows the computation of the dynamic behavior for the 

entire speed range with a single sweep in hours, which can take instead several months of 

calculations with the software that have this capability. Indeed, only some fixed rotational 

velocities, if any, are usually analyzed in the design phase for the extreme time-consuming 

nature of those analyses if a reduced scheme is not employed and the flexible behavior is 

important for the designer. Even at the lowest settings, commercial software capable of 

studying gear dynamics with compliant bodies take around 6 − 7 𝑠 to solve each timestep, 

while the proposed model only takes in general less than 0.005 𝑠 for a single timestep. All the 

simulations detailed in Chapter VI have around 3 ∙ 1𝑒6 timesteps resulting in a simulation 

time of around 4 ℎ𝑜𝑢𝑟𝑠 for each one, including the preprocessing work which consists of 

computing the actual mesh stiffness at a defined level of torque, meshing and computing the 

relevant FE matrices and performing the matrices reduction. For a commercial software, the 

same number of timesteps would be solved in 5000 ℎ𝑜𝑢𝑟𝑠, making it practically impossible 

to perform such simulation. This rough estimate doesn’t even consider that those commercial 

tools employ a fixed timestep, making the number of required timesteps to fulfill the speed 

sweeps here presented even higher, increasing even more the required computational effort.  

Still there is room for improvement. In the future of this work the first step will be the inclusion 

of the driven gear in the system and eventually the extension to the entire drivetrain. Once 

that will be done more serious nonlinear analyses will be available by implementing an 

instantaneous load dependency of the mesh contact stiffness and it will then be possible to 

compare the obtained results with those available literature for the cases where contact loss 

happens in particular conditions. Another aspect to be considered is the nature of the 

damping, since without experimental data available beforehand a better approach would be 

to implement a frequency-independent damping to better understand the correlation 

between the variation of the applied contact mesh stiffness and the dynamic response. The 

proposed scheme will also then be applicable to helical and bevel gears by properly choosing 

the nodes where the contact mesh stiffness will be attached and its movement in time. 
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Appendix A 
 

 

Figure 178: Overlap of the Campbell diagram with the spectrogram of the radial response 
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Figure 179: Spectrogram of the response in the tangential direction 
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Figure 180: Spectrogram of the response in the axial direction 
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Figure 181: Overlap of the Campbell diagram with the spectrogram of the response in the radial direction 
including the gyroscopic effect 
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Figure 182: Spectrogram of the response in the tangential direction including the gyroscopic effect 
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Figure 183: Spectrogram of the response in the axial direction including the gyroscopic effect 
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Appendix B 
 

 

Figure 184: Overlap of the Campbell diagram with the spectrogram of the response in the axial direction 
including the gyroscopic effect 
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Figure 185: Spectrogram of the response in the radial direction including the gyroscopic effect 
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Figure 186: Spectrogram of the response in the tangential direction including the gyroscopic effect 
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Figure 187: Overlap of the Campbell diagram with the spectrogram of the response in the axial direction 
including the gyroscopic and stress stiffening effects 
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Figure 188: Spectrogram of the response in the radial direction including the gyroscopic and stress stiffening 
effects 
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Figure 189: Spectrogram of the response in the tangential direction including the gyroscopic and stress 
stiffening effects 


