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Abstract: Living systems waste heat in their environment. This is the measurable effect of the
irreversibility of the biophysical and biochemical processes fundamental to their life. Non-equilibrium
thermodynamics allows us to analyse the ion fluxes through the cell membrane, and to relate
them to the membrane electric potential, in order to link this to the biochemical and biophysical
behaviour of the living cells. This is particularly interesting in relation to cancer, because it could
represent a new viewpoint, in order to develop new possible anticancer therapies, based on the
thermoelectric behaviour of cancer itself. Here, we use a new approach, recently introduced in
thermodynamics, in order to develop the analysis of the ion fluxes, and to point out consequences
related to the membrane electric potential, from a thermodynamic viewpoint. We show how any
increase in the cell temperature could generate a decrease in the membrane electric potential,
with a direct relation between cancer and inflammation. Moreover, a thermal threshold, for the
cell membrane electric potential gradient, has been obtained, and related to the mitotic activity.
Finally,we obtained the external surface growth of the cancer results related (i) to the Ca2+-fluxes,
(ii) to the temperature difference between the the system and its environment, and (iii) to the chemical
potential of the ion species.

Keywords: biophysics; cancer; non-equilibrium thermodynamics; heat and ions fluxes; transport
theory; thermodynamics of biosystems

1. Introduction

At present, cancer is still an problem in biophysics, medicine and pharmacology. Indeed, statistical
evaluations show a continuous growth in those dead due to cancer [1,2].

In recent years, the analysis of the ion transport phenomenon in cancer has also been substantially
developed [3–11] in relation to the consequences for the cells’ membrane potential. These experimental
and theoretical results have pointed to the regulatory role of ion channels and transporters,
in relation to the cell cycle phases, with relevance for neoplastic progression, resistance to apoptosis,
and metastasis [12].

Indeed, since 1944, in hyperplastic mouse epidermis, the reduction in Ca2+ levels has been shown
to be an important aspect of precancerous conditions [13,14]: this feature has represented a first direct
correlation between Ca2+ and cancer. Today, the study of Ca2+ dynamics represents a fundamental
aspect of the research on carcinogenesis and tumour evolution.

The development in the comprehension of intracellular Ca2+ signalling pathways has allowed
biologists and the physicians to identify some important molecular players, with a consequent study
of the activity of different cancer-related proteins, with altered functions [14]. Indeed, calcium is
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a fundamental second messenger, involved in a variety of cellular processes, such as proliferation
and apoptosis.

Considering the experimental evidence [14–31], tumour progression has also been related to the
accumulation of some alterations in the Ca2+ signal, which inhibits its cytotoxic activity [32].

Calcium signal modulation can change cells’ sensitivity to signals [15,32]. High levels of
mitochondrial Ca2+ concentration for a long time, have been shown to induce the mitochondrial
permeability transition pore, a pathological and physiological phenomenon, discovered over 40 years
ago, and still not completely understood [15,33]. The mitochondrial permeability transition pore
causes the formation of a non-specific channel within the inner mitochondrial membrane, useful for
Ca2+ release and metabolite exchange, between the mitochondrial matrix and cytosol. However,
a prolonged mitochondrial permeability transition pore causes changes in the inner mitochondrial
membrane potential, cessation of ATP synthesis, bioenergetic crisis, and apoptotic or necrotic cell
death [14,16,33].

All this experimental evidence moves the research interest towards the analysis of the Ca2+-fluxes.
At present, most of the mechanisms related to intracellular Ca2+ responses have been understood
by developing in vitro experiments, but comprehension of the physiological role of these processes,
in relation to tumour environment, remains an problem [32].

In this paper, we wish to develop a new viewpoint in the analysis of ion fluxes, recently published
in [34], based on thermodynamics, with particular regards to the non-equilibrium thermodynamics.
Our aim is to suggest an approach which takes into account the ion fluxes, in relation to the membrane
electric potential gradient, in order to analytically describe the link between ion fluxes and membrane
potential, in relation to cancer behaviour. We will focus our analysis on Ca2+ fluxes, due to the
fundamental role of this ion in the regulation of a great number of cell functions.

2. Materials and Methods

The living cell membrane is characterized by a different permeability in relation to the distinct
ions (Na+, K+, Cl−, Ca2+, etc.) which cause an electric potential difference, ∆φ, between the cytoplasm
and the extracellular environment, measured in reference to the environment [35,36].

Since 1956, it has been clear that cancer cells are electrically different from normal ones [37].
Cone Jr. pointed out that hyperpolarization:

• Characterises the start of the cell M phase [38];
• Can reversibly block the synthesis of DNA and the mitosis [39];
• Was found to be a characteristic of the normal cells: the lowered membrane potential was

identified as a cause of an increase in proliferation of the cancer cells [40].

Consequently, in 1971, Cone Jr. conjectured a relation between the cell cycle progression
and the membrane electric potential changes [40]: this hypothesis has always been experimentally
confirmed [41–45].

Moreover, the fundamental role of the membrane electric potential has recently been
highlighted in relation to the control of the critical cell functions (proliferation, migration,
and differentiation) [46–48]. In this context, the role of the ion fluxes has also been highlighted; indeed,
an increase in the Na+ intracellular concentration in tumour causes a depolarisation, during malignant
transformation of normal cells [49,50]. On the other hand, the K+ intracellular concentration remains
approximately constant [51].

The membrane electric potential can be theoretically described by the Goldman–Hodgkin–Katz
equation [52–54]

∆φ =
RT
F

ln

(
PNa+ [Na+]outside + PK+ [K+]outside + PCl− [Cl−]outside

PNa+ [Na+]inside + PK+ [K+]inside + PCl− [Cl−]inside

)
(1)
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where [A] is the concentration of the ion A, R = 8.314 J mol−1K−1 is the universal constant of ideal
gasses, T is the absolute temperature, F = 96, 485 C mol−1 is the Faraday constant, and P is the relative
permeability [55–57], such that PNa+ = 0.04, PK+ = 1 and PCl− = 0.45 [55–57].

In order to develop a non-equilibrium thermodynamic analysis of the cell membrane, we must
consider the interrelationship between the fluxes through the cell membrane (heat and ion fluxes)
and the potentials at the borders of the membrane itself (temperature and electric potential). To do so,
we follow the Onsager approach, by introducing the phenomenological equations [34,58–61]{

Je = −L11
∇φ
T − L12

∇T
T2

JQ = −L21
∇φ
T − L22

∇T
T2

(2)

where Je is the current density [A m−2], JQ is the heat flux [W m−2], T is the living cell temperature,
and Lij are the phenomenological coefficients, such that L12 = L21 in the absence of magnetic fields,
and L11 ≥ 0 and L22 ≥ 0, and L11L22 − L2

12 > 0 [34,58–63]. The phenomenological coefficients in the
Equations (2) are constant over the range where the linear laws hold, and they must be determined
experimentally [60,64]: L11 is named the heat conductivity, L22 is commonly called the electrical
conductivity, while L12 and L21 are named the cross coefficients. Moreover, the cross coefficients are
independent of both L11 and L22 [62,63].

When ion fluxes occur Je 6= 0, it follows that [58,59]

dci
dt

= −∇ · Ji (3)

where ci is the concentration of the i-th ion (Na+, K+, Ca2+, Cl−, etc.), t is the time, and Ji is the current
density of the i-th ion. In this condition, considering the Equation (2), it follows that [34,58,59]

dφ

dT
= − L21

L11

1
T

(4)

which highlights that a Peltier-like effect occurs [58], and a related heat flux is also generated [58,59]

du
dt

= −∇ · Ju (5)

where u is the specific internal energy. Living cells exchange heat power towards their environment by
convection, therefore, following the First Law of Thermodynamics, we can write [65]

du
dt

dV = ρ c
dT
dt

dV = δQ̇ = −α (T − T0) dA ⇒ ∇ · Ju = α
dA
dV

(T − T0) = β (T − T0) (6)

where ρ ≈ 103 kg m−3 is the cell density, c ≈ 4186 J kg−1 K−1 is the specific heat of the cell,
α ≈ 0.023Re0.8Pr0.35λ/〈R〉 is the coefficient of convection, with λ ≈ 0.6 W m−1K−1 conductivity,
Re ≈ 0.2 the Reynolds number and Pr ≈ 0.7 the Prandtl number [66], A area of the cell membrane, V is
the cell volume, and β = α dA/dV is constant. Therefore, considering Equation (2), we can obtain [34]

dφ

d`
= − α(

L22
L11
L12
− L12

) T (T − T0) = −
α

k
T (T − T0) (7)

which links the membrane electric potential to the temperature of the cell, with ` being the length of
the cell membrane. Moreover, considering the Schrödinger approach to living systems [67], we can
point out that life always requires T − T0 > 0, and, consequently, dφ/dr < 0. This last inequality
explains hyperpolarization in cells [41–44].

The model obtained allows us to describe life as [34,67]
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• A continuous metabolic generation, characterised by ion and metabolite fluxes, for which a
Peltier-like effect occurs, and dφ/dT = −L21/L11T

• A continuous heat exchange, towards the environment, for which a Seebeck-like effect occurs,
and dφ/d` = −α T (T − T0)/k

Consequently, a specific entropy rate is generated [68]

T
ds
dt

= ∇ ·
(

Ju −
N

∑
i=1

µi Ji

)
−

N

∑
i=1

Ji · ∇µi (8)

where s is the specific entropy, T is the temperature, JS = Ju − ∑N
i=1 µi Ji is the contribution of the

inflows and outflows, and Tσ = −∑N
i=1 Ji · ∇µi is the dissipation function [58], and µ is the chemical

potential, defined as

µi =

(
∂G
∂ni

)
T,p,nk 6=i

(9)

where G is the Gibbs energy, n is the number of moles, and p is the pressure. The entropy outflow σ is
fundamental to generate order from disorder, as Schrödinger himself pointed out [67].

In relation to Ca2+ fluxes, we rewrite Equation (8) as follows

T
ds
dt

= −∇ ·
(

Ju − µCa JCa

)
(10)

which, considering T constant, and following Prigogine (ds/dt = 0) [69], becomes

∇ ·
(

Ju − µCa JCa

)
= 0 (11)

Now, considering that ∇ · Ju = β(T − T0), we can write

β(T − T0) +∇ · (µCaJCa) = 0⇒ ∇ · (µCaJCa) = β (T − T0) =
δQ̇
dV

(12)

3. Results

In this paper, we have developed a non-equilibrium thermodynamic analysis of the cell membrane
electric potential, in order to obtain an analytical model for the comprehension of the role of the ion
fluxes in relation to cancer behaviour, with particular interest in Ca2+ fluxes.

Some general statements can be introduced; indeed, Equation (7) points out that:

• Any increase in cell temperature generates a decrease in the membrane electric potential; in the
case of cancer, it is caused by inflammation;

• The possible existence of this, due to the thermal threshold (T > T0) for the cell membrane electric
potential gradient, is related to the mitotic activity [40].

In relation to Ca2+, these results link the external surface growth of the cancer to Ca2+ fluxes,
to the temperature difference between the internal of the system and its environment, and to the
chemical potential of the ion species. Indeed, Ca2+ outflow is a flux against the gradient, so, it is
negative, and the heat exchange decreases. In this case, the cell must use the energy stored in other
ways (proteins formation, etc.). If the Ca2+ inflows into the cell, the sign changes, and the cell can
outflow heat, decreasing its energy value. Consequently, Ca2+ inflow should allow the cell to prevent
cancer development, because the cell can decrease the chemicals that are useful for proliferation,
in accordance with the experimental evidence [13,15,70–72].
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4. Discussion and Conclusions

Hyperpolarization determines the activation of the Ca2+-K+ channel, which increases the Ca2+

intracellular concentration [45]. Consequently, the Ca2+-K+ channel results in a fundamental controller
of the membrane electric potential.

Proteins play a fundamental role in ion transport. Proteins in the cytosolic can be modified in
their functions by phosphorylation or dephosphorylation. In this context, the H+-ATPase plays a
fundamental role, because, it generates inflows of positive charges into the cell [73–76]. Consequently,
protein phosphorylation results in an important cellular regulatory mechanism, because many
enzymes and receptors [77,78] are activated or deactivated by phosphorylation, by involving kinase
and phosphatase.

Cancer and normal cells have different metabolic pathways; indeed, cancer cells must increase
their metabolism in order to support their growth [79]. Consequently, we can consider that glycolysis
is the cytoplasmic catabolism of glucose (C6H12O6) and it finishes with the inflow of pyruvate
(CH3COCO2) into the Krebs cycle and the mitochondrion in the presence of oxygen, but, when oxygen
supply is scarce, the pyruvate is converted into lactate (CH3CHOHCO2), and pumped out of the cell.
As a consequence, the production of Hydrogen ions (H+) causes acidification, with the consequence
of the stabilization of the Warburg metabolic cycle. In cancer cells, there is a net conversion of serine
to glycine, catalysed by the cytosolic (SHMT1) or mitochondrial (SHMT2) serine hydroxymethyl
transferase, and correlated with the cell proliferation rate and the DNA synthesis rate [79,80]. Protein
synthesis, proportional to the inflow rate of amino acids, requires energy: in cancer, around the 70%
of glucose is converted to lactate during aerobic glycolysis [79,81]. Therefore, our results point to
the fundamental role played by ion transfer in any protein cycle. Indeed, ion channels transduce
surface events to the cytosolic protein machineries. They couple the sensitivity of cooperative allosteric
proteins to chemical and electrical signals: to do so, they use the energy released during the passive
ions flows. Here, we have developed the study of the Ca2+ flows and the related membrane potential
variations, because changes in membrane potential can regulate Ca2+ influx, which can impact T cell
activation. This process is triggered by an elevation of the cytosolic free calcium concentration, which
activates the Ca2+/PKC-dependent pathways that regulate progress from G0 into mitosis, with a
related lymphocyte proliferation, as an effective immune response to cancer. The Ca2+ inflow is
obtained by means of hyperpolarization, which is induced through K+ channel activation [5].

Here, a theoretical model to analyse the ion fluxes was developed using non-equilibrium
thermodynamics. It represents a useful tool for future analysis, in order to develop a new approach to
anticancer therapies, based on ion fluxes.

Recently, the key role for Ca2+ was shown to be in regulating cancer, in relation to oncogenes
protecting against cell death, and perturbing intracellular Ca2+ homeostasis. Indeed, oncoprotein B
cell lymphoma 2 over-expression has been shown to be able to reduce steady-state Ca2+ levels within
the endoplasmic reticulum, reducing Ca2+ transfer to the mitochondria, during apoptotic stimulation,
and inhibiting apoptosis initiation [20,21,56]. Moreover, the protein mitogenic kinase Akt has been
linked to Ca2+ homeostasis control, pointing out its modulation function on the phosphorylation state
of IP3R, by inhibiting its Ca2+-channel activity, and reducing the transfer of Ca2+ from the endoplasmic
reticulum to the mitochondria [25].

In conclusion, our results agree with the experimental evidence in the literature [32,79,82–84],
and could represent their biophysical explanation based on non-equilibrium thermodynamics.
Moreover, this approach could support the new frontier in cancer therapies [14,32,85–89].

Last, we can evaluate the Ca2+-fluxes in Equation (12) as follows:

JCa =
` · α

µCa · 〈R〉
(T − T0) =

0.004× 0.023× 0.20.8 × 0.70.35 × 0.6

−552.79× 103 · 〈R〉2
(T − T0) = −

0.97× 10−11 [mol s−1]

〈R〉2 [m−2]
(13)
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where ` ≈ 0.004 µm is the depth of the cell membrane [90] and 〈R〉 is the mean radius of the cell,
considered, in the first approximation, as a sphere, µCa = −552.79 kJ mol−1, and T − T0 ≈ 0.4 ◦C [91].
The numerical result depends on the mean size of the cell. Considering that the mean radius for human
cell is of the order of 10−6–10−5 m, it follows that the Ca2+-flux is of the order of 21–450 mmol s−1m−2,
which can be expressed as ∼0.010 mol s−1kg−1, in agreement with the experimental results obtained
in [92].
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