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1 INTRODUCTION

Structural phase transitions in crystals: phonons as Higgs and
Goldstone excitations
Marco Vallone

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, corso Duca degli Abruzzi 24,
10129 Torino, Italy.
Email Address: marco.vallone@polito.it

Keywords: phonons, spontaneous symmetry breaking, acoustic metric

It has recently been indicated that optical and acoustic phonons could be identified with Higgs and Goldstone excitations of the
crystal lattice arising from the spontaneous breaking of a global, continuous symmetry. Here, we support this view considering struc-
tural phase transitions induced by temperature, from the face-centered-cubic (fcc) phase of cobalt, and from the body-centered-cubic
(bcc) phase of zirconium and titanium, to their hexagonal-close-packet (hcp) phase. The Higgs field potential is identified with the
Ginzburg-Landau free energy difference calculated and available in literature for the concerned structural phase transitions. In all
the considered cases, the ensuing spontaneous symmetry breaking makes the optical phonon (identified with the Higgs mode) to arise
only in the less symmetric hcp phase. This demonstrates Higgs excitations to be associated not only with quantum phase transitions,
but also with structural phase transitions in natural crystals.

1 Introduction

The concept of spontaneous symmetry breaking (SSB) is well known in the Standard Model of particle
physics, where the mass-generating mechanism described by P. W. Higgs1 in 1964 removed the obstacles
encountered when attempting to construct a unified gauge invariant theory of electromagnetic and weak
interactions.2

In condensed matter physics a similar concept was formulated in somehow different, but conceptually
akin way, by V. L. Ginzburg and L. D. Landau3 in 1950, an approach that inspired P. W. Anderson4 to
describe the plasmon phenomenon in a way acknowledged by P. W. Higgs himself as a cornerstone for
his own work. The latter started by writing a gauge invariant Lagrangian density that included a po-
tential exhibiting a spontaneous breakdown of U(1) (rotational) symmetry, the same path followed by
Ginzburg and Landau when trying to describe superconductivity without investigating its microscopic
origin. They argued that, when a system makes a phase transition from the normal to the superconduct-
ing phase, a complex order parameter ϕ emerges, and the system undergoes a SSB: its free energy den-
sity F (ϕ) can be expressed in the ordered phase as

F (ϕ) = −µ
2
0

2
(ϕϕ∗) +

λ

4
(ϕϕ∗)2 +O(|ϕ|6) (1)

with µ2
0 and λ real and positively defined parameters. The microscopic origin of the U(1) symmetry

breaking emerged only some years later, thanks to the works by J. Bardeen, L. N. Cooper and J. R.
Schrieffer (BCS theory):5,6 phonons mediate an attractive interactions among electrons, and the simplest

scalar state that can be constructed from the electron pair with zero total spin is |ψ⟩ = c†k↑c
†
−k↓|0⟩, where

c†k↑ creates from the vacuum an electron state with wavevector k, and the arrow represents the electron
spin state. The interaction term in the Hamiltonian,

HBCS ∝ c†k↑c
†
−k↓ck↑c−k↓, (2)

is locally gauge invariant with U(1) as gauge group with parameter θ, which transforms |ψ⟩ into
eiθ(x)|ψ⟩. However, in its mean-field approximation, the interaction term becomes ĤBCS ∝ ∆kc

†
k↑c

†
−k↓ +

∆∗
kck↑c−k↓, and the continuous U(1) symmetry is broken, since only the particular values θ = 0 and

θ = π make ĤBCS gauge invariant. Here ∆k is the energy gap of the Cooper’s pair,5,6 the supercon-
ducting phase is the ordered phase, and notably Gor’kov and Melik-Barkhudarov demonstrated7 that a
rigorous microscopic evaluation of ĤBCS provides the Ginzburg-Landau free energy expression in Equa-
tion (1), with ∆k as order parameter.
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2 SSB AND STRUCTURAL PHASE TRANSITIONS

Equation (1) also describes other quantum phase transitions, e.g. in materials that make a transition
from a paramagnetic (disordered) to a ferromagnetic (ordered) phase, when the system temperature
T drops below the Curie temperature. In this case, the field ϕ – the order parameter – is the magneti-
zation, and in the ordered phase the system chooses a particular spatial direction θ0, along which the
atomic spins result self-oriented: the system is no more U(1)-invariant. For these materials, the Higgs
and Goldstone modes respectively correspond to the modulation of the amplitude and phase of the mag-
netization, the order parameter that emerges when the continuous rotational symmetry is broken.
The existence of such oscillatory modes seems pervasive. The Higgs mechanism has been acknowledged
in topological insulators, Weyl semimetals, and in cuprates;8–13 at the quantum phase transition between
the superfluid and insulating phases;14,15 at the transition from a sea of spin-singlet pairs to a long-range
antiferromagnet;16 in superconductors,17,18 etc. Recently, the presence of structural Goldstone and Higgs
modes was suggested by first-principles calculations19 on a perovskite oxide, SrMnO3, and it was demon-
strated in a supersolid quantum gas.20

In a recent work,21 we suggested that the optical and acoustic phonons can be identified with Higgs and
Goldstone excitations of the crystal lattice arising from the spontaneous breaking of some global, con-
tinuous symmetry. Although this description has been already considered as plausible in literature,22,23

the occurrence of Goldstone and Higgs modes in a clearly identifiable structural phase transition occur-
ring in widely available, natural – not artificial – crystalline solids was not described so far. Their exis-
tence would complement their occurrence in quantum phase transitions. To this end, and in order to be
concrete, we considered the transition from the face-centered-cubic (fcc) of cobalt (Co) to the hexagonal-
close-packed (hcp) phase, and the transition from the body-centered cubic (bcc) of zirconium (Zr) and
titanium (Ti) to the hcp phase. The transitions take place for Co when T is decreased below the critical
temperature Tc ≈ 700K,24,25 and for Zr and Ti when T is decreased respectively below Tc ≈ 1850K and
Tc ≈ 1155K.26–31 The described structural transition involves a structural change of the primitive unit
cell, both for artificial or natural crystals. The emerging of Goldstone and Higgs modes in natural crys-
tals is not conceptually different from the same occurrence in artificial ones. Nevertheless, it is a further
confirmation that the amplitude mode is a ubiquitous collective excitation in condensed-matter systems
with broken continuous symmetry.32

In section 2 the theory is developed and this new perspective is presented and discussed. In the end, in
section 3 the main ideas are summarized.

2 SSB and structural phase transitions

Very generally, the expansion of the total energy of crystal’s atoms with mass µn around their equilib-
rium positions, displaced by a⃗n at temperature T , can be written as

E =
1

2

∑
nî

µn

(
∂ta

î
n

)2

+
∑
nm

∑
îĵ

Qnm;̂iĵa
î
na

ĵ
m

+
∑
nmqr

∑
îĵk̂l̂

Rnmqr;̂iĵk̂l̂a
î
na

ĵ
ma

k̂
qa

l̂
r + ..., (3)

where the sum runs over the N atoms index n ∈ {1î, 1ĵ, 1k̂, ...N î, N ĵ, N k̂}, and aîn are the spatial com-
ponents of a⃗n. The first term is the kinetic energy of the atoms, the second term is the potential har-
monic term, followed by the fourth order anharmonic term. The potential energy term, i.e. the second,
and higher order terms, can be identified by the crystal free energy of the Ginzburg-Landau theory, and
the Qnm;̂iĵ matrix describes the energy cost to shift the atoms away from their equilibrium position in
the harmonic approximation. In a theoretical field approach, the displacements are defined by a complex

vector field ϕ⃗, and the free energy can be conveniently written in the spatial ϕ-components (with sum-
mation over repeated index, according to the Einstein’s convention) as

F (ϕ) =
1

2!
Qîĵϕ

îϕĵ +
1

4!
Rîĵk̂l̂ϕ

îϕĵϕk̂ϕl̂ +O(|ϕ|6), (4)
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2 SSB AND STRUCTURAL PHASE TRANSITIONS

where

Qîĵ =
∂2F (ϕ)

∂ϕî∂ϕĵ
, Rîĵk̂l̂ =

∂4F (ϕ)

∂ϕî∂ϕĵ∂ϕk̂∂ϕl̂
(5)

evaluated at equilibrium. Very generally and considering a three-dimensional crystal, we can rewrite the
Equation (4) in a more compact way as

F (ϕ̂) =
1

2
Aϕ̂†ϕ̂+

1

4
B
(
ϕ̂†ϕ̂

)2

+O(|ϕ̂|6), (6)

where A and B are real coefficients, and ϕ is a field operator, the order parameter, which in coordinates
is an atomic displacements matrix, whose rank and symmetry properties depends on the considered
unitary cell.33 It can be remarked that odd powers of ϕ̂ in the free energy expansion are customary ex-
cluded. This because, if ϕ is a complex wavefunction, the free energy cannot contain a phase in order to
be an observable. This choice does not prevent important interactions to arise (like three-phonons cou-
pling, phonons decay, etc.), and this important point will be clarified at the end of the present discus-
sion: in particular, they are generated by nonlinear terms in Equation (13). For this reason, it is safe for
the purpose of the present analysis to exclude those terms starting from Equation (3).
It is worth noticing that, within the frame of Ginzburg and Landau theory, Ref. [30] calculates from first
principles the free energy difference F (ϕ) between the parent (bcc, symmetric) and the product phase
(hcp, with broken symmetry) as

F̃ (ϕ) =
A0(T − T0)

2
ϕ2 +Bϕ4 + Cϕ6, (7)

where ϕ is a scalar order parameter (of course, the same arguments would also apply to structural tran-
sition between fcc and the hcp phases). F̃ (ϕ) was derived from a one-dimensional (or scalar) model, and
it has the same functional form of the Equation (6), except for the fact that the expansion in powers of ϕ
also retains the 6th order term. Here T0 is a characteristic temperature, A0 and C are real and positively
defined parameters, whereas B is negative. In addition, it can be noticed that for T < T0, also the coeffi-
cient of ϕ2 is negative.
The Ginzburg and Landau theory, and even the Higgs mechanism, have no intrinsic limitations on the
number of expansion terms of F (ϕ) in powers of ϕ, since both theories are phenomenological, and they
offer a way to describe global symmetry breaking, therefore a second order transition, at least in their
original formulations. Nevertheless, the same theory can be also applied to structural phase, first order
transitions,34 for which an expansion to the 6th order is customary, when an accurate fitting of the free
energy and a description of the behavior around T0 are required. Hovever, this is not the focus of the
present discussion: the main requirement for the present, phenomenological approach is to have the SSB
correctly described, i.e. the properties of the structural phase for T ≪ T0 and for T ≫ T0. Nevertheless,
it is important to consider and compare the two alternative forms,

F1(ϕ) = α1(T − T0)ϕ
2 + β1ϕ

4 + γ1ϕ
6 (8)

F2(ϕ) = α2(T − T0)ϕ
2 + β2ϕ

4. (9)

Regarding F1(ϕ), in the broken phase hcp it must be α1(T − T0) < 0, β1 < 0, and γ1 > 0. Conversely,
F2(ϕ) may describe the same broken phase only if α2(T − T0) < 0 and β2 > 0.
As a test, we can consider the 6th order expression F1(ϕ) with parameters as in Ref. [30] for Ti, setting
T = 300K (according to Ref. [30] it is T0 = 484.4K). The plot of F1(ϕ) is reported in Figure 1(a), to-
gether with the plot of F2(ϕ) with the coefficients α2 and β2 obtained from F1(ϕ) with a nonlinear fitting
algorithm. The purpose is to understand the differences between the behaviors of F1 and F2, far above
and far below T0. As expected according to the Ginzburg-Landau model (of the Higgs mechanism), for
the quartic F2(ϕ) we obtained α2(T − T0) < 0, and β2 > 0, and at least for a SSB description, the free
energy described by F2(ϕ) in the broken phase can be considered representative of the F1(ϕ) expression:
they both describe a system for which ϕ = 0 is not a stable state. In this perspective, a F (ϕ) formula-
tion as given by the Equation (1) correctly describes the situation according to the F2 functional form,
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2 SSB AND STRUCTURAL PHASE TRANSITIONS
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Figure 1: (a) Plots of the free energy according to F1(ϕ) (for parameters as in Ref. [30] for Ti) and F2(ϕ) (with parame-
ters evaluated from F1(ϕ) with a nonlinear fitting algorithm) for T = 300K. (b) The position ϕmin of the positive mini-
mum of the free energy (the negative minimum is symmetric) as function of T . When it exists, i.e. for T > T0, the mini-
mum in ϕ = 0 is also reported, for clarity, for foth F1 and F2. In the panel (c), the plots of F1(ϕ) and F2(ϕ) is shown for
T = 900K, i.e. well above T0, where in the inset the detail of the minimum in ϕ = 0 (which has become a stable minimum)
is better visible.

provided we identify the coefficients according to

−µ2
0 = α2(T − T0) ,

λ

4
= β2, (10)

with T < T0, α2 > 0, β2 > 0, hence λ > 0.
A more substantial difference appears around the transition: for T > T0, the order parameter disappears
only for the quartic F2(ϕ) (see Figure 1(b)), and this is a distinctive feature of second order phase transi-
tions. Since we are considering instead a first order transition, for T ≈ T0 the hcp and bcc (or fcc) may
coexist,30 since for T > T0 a stable minimum in ϕ = 0 arises (for T > T0, the second derivatives of both
F1(ϕ) and F2(ϕ) are positive in ϕ = 0).
However, regarding the present work, it is particularly important to examine what happens far from T0.
For T < T0, both F1(ϕ) and F2(ϕ) allow for a stable stationary state only for ϕ ̸= 0: the system is in
the hcp phase, and the state with ϕ = 0 is unstable. In other terms, if we employ F1 or F2 as a poten-
tial in a quantum field theory of atomic vibrations, ϕ = 0 is a false, unstable vacuum state, since an in-
finitesimal perturbation would bring the system to oscillate around one of the lateral minima ϕ ̸= 0, the
only true and stable vacuum states. Conversely, for T ≫ T0, the quartic F2(ϕ) has a unique minimum in
ϕ = 0, which corresponds to a stable vacuum. Regarding F1(ϕ), although it still has three minima, ϕ = 0
has become a stable minimum, i.e. the expectation value of ϕ in the true vacuum quantum state is zero.
In summary, excluding the transition region T ≈ T0, when T ≫ T0 the true quantum vacuum state is
in ϕ = 0, whereas the relative minima in ϕ ̸= 0 (see Figure 1(c)) do not correspond to any true vacuum
state.
It must be remarked that the description of the lattice structure around the transition is a complex
problem, and its exhaustive treatment goes beyond the purpose of the present study, which deals with
the investigation of the order parameter oscillations, well below and well above T0. The purpose of the
Ginzburg and Landau theory is just to provide a functional form suitable to describe phase transitions,
distinguishing between a status in which the free energy has a stable minimum in ϕ = 0 (symmetric
phase), and a status in which the stable minimum lies in ϕ ̸= 0.
Following Ref. [21] and exploiting the similarities between the sonic (or acoustic) metric and the Lorentzian

metric of the ordinary space-time,35–40 the dynamics of ϕ̂ can be described by the Lagrangian density

Lϕ =
1

2
∂µϕ

∗ ∂µϕ− V (ϕ) (11)

V (ϕ) = −µ
2
0

2
ϕ∗ϕ+

λ

4
(ϕ∗ϕ)2 + Vc(ϕ), (12)
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2 SSB AND STRUCTURAL PHASE TRANSITIONS

Figure 2: (a) The Higgs potential V (ϕ), leading to the excitation of the amplitude (or Higgs) and phase (or Goldstone)
modes, σ and θ, for the hcp phase. (b) Illustrative scheme of bcc, fcc, and hcp crystal structures (the red dots represents
the ions).

where the complex field ϕ in coordinates corresponds to the field operator ϕ̂. Moreover, we have iden-
tified the potential energy V (ϕ) with the crystal free energy in the hcp given by the simpler F2 func-
tional form, although nothing substantial would change if we adoped F1, as discussed above, when com-
menting Figure 1). We included in the potential an additional term Vc(ϕ), which depends on the par-
ticular crystal we are considering. For example, in cubic crystal it is41 Vc(ϕ) = λ1 [Re(ϕ)Im(ϕ)]2 =
λ1/4 (ϕ

∗ϕ)2 sin2(n arctan(ϕ)), where n = 2 and λ1 is a constant. The effect of Vc(ϕ) consists in providing
four couples of minima and maxima in the brim of the potential, in correspondence of ion positions. In
hexagonal crystals it is n = 3, and there are six couples of local minima and maxima, but this is just a
detail. What is important to consider is the effect that these minima may have on the final result. V (ϕ)
has the “Mexican hat” shape (Figure 2(a)) typical of the Higgs SSB theory, a little modified by the Vc(ϕ)
term. The Lagrangian Lϕ is still U(1) invariant in a neighborhood of ϕ = 0, but its symmetric vacuum

state ϕ = 0 is unstable. In case λ1 = 0, all the values of ϕ in the circle of radius ϕ0 =
√
µ2
0/λ are minima

of V (ϕ) and the brim is flat. Here, the order parameter takes nonzero values, and the states ϕ = ϕ0e
iθ

are the only stable vacuum states, all with the same energy. Among them, the system chooses the or-
dered state with a particular phase θ0. For arbitrary value of λ1, it corresponds to a local minimum of
V (ϕ), which becomes the true vacuum state of the system. What is important to note, is that the vac-
uum state (ϕ0, θ0) is not U(1) invariant, having broken the rotational symmetry described by the Lie
group U(1).
The Higgs SSB formalism described above, and the identification of U(1) as the symmetry group for the
Lagrangian, show that there is also a more fundamental reason for the choice of the quartic expression
F2(ϕ) as an appropriate potential. It is possible to demonstrate a theorem,42,43 according to which, if
G is a compact Lie group (in the present case, U(1)) which acts smoothly on the real manifold M with
ϕ ∈ M , the orbit G(ϕ) is critical, that is, every smooth real G-invariant function on M is stationary on
G(ϕ) if and only if G(ϕ) is isolated in its stratum (a stratum consists of all points of the same symme-
try class). Very shortly and informally, we remind that an orbit G(ϕ) is the ensemble of all points of M
which can be reached from ϕ by a (eventually broken) symmetry transformation, that is, G(ϕ) = {gϕ|g ∈
G}. Two points on the same orbit have isotropy groups Hϕ that are isomorphic (the isotropy group Hϕ
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2 SSB AND STRUCTURAL PHASE TRANSITIONS

is formed by the set of all group elements that leave ϕ invariant, that is, Hϕ = {gϕ = ϕ|g ∈ G}: it
is formed by those transformations which are left unbroken when the order parameter takes the value
ϕ). Consequently, any potential V on the manifold M which is invariant under the group action, i.e.
V (ϕ) = V (gϕ) for all ϕ ∈ M and g ∈ G, may be thought of as a function on the orbits: in this way,
the minimization of a given potential V (ϕ) is reformulated as a minimization of a function on the space
of orbits, and a transformation ϕ → gϕ along one of the orbits does not cost energy: anticipating some-
thing, this will originate the Goldstone boson. Changing orbit, an energy cost must be paid, and this
will give rise to the Higgs boson, for which a mass term is expected. An interesting fact for our discus-
sion is that “the theorem makes no particular assumption about the form of the invariant function, so it
may be a Higgs-type quartic potential as well as the full quantum effective potential whose power expan-
sion may contain terms of arbitrarily high orders in ϕ”.43

With reference to Figure 2(a), we can expand Lϕ around the vacuum (ϕ0, θ0) in terms of small oscil-
lations σ and θ (here arctan(ϕ) can be expanded around the minimum as θ/

√
ϕ∗ϕ), obtaining the La-

grangian density

Lσθ =
1

2

(
∂µθ ∂

µθ − λθ4

2

)
+

1

2

(
∂µσ ∂

µσ − 2µ2
0σ

2 − 2µ0

√
λσ3 − λσ4

2

)
(13)

− µ0

√
λσθ2 − λ

2
θ2σ2 +

λ1
4

(
σ2 + θ2

)
θ2 ,

that can be simplified neglecting nonlinear terms higher than second order:

Lσθ =
1

2
∂µθ ∂

µθ +
1

2
∂µσ ∂

µσ − µ2
0σ

2. (14)

When plugged into the Euler-Lagrange equations, Equation (14) provides two oscillatory solutions for
the fields θ and σ. The solution of θ is a phase oscillation mode along the Mexican hat brim, with fre-
quency dispersion relation ω2 = c2sk

2, and it is a Nambu-Goldstone mode (cs is the sound velocity in
the crystal). There is no mass term, hence the dispersion relation is gapless. The solution for σ describes
amplitude oscillations, and it is a Higgs mode, whose frequency dispersion relation is ω2 = 2µ2

0 + c2sk
2. It

is gapped, since in the Lagrangian there is a mass term, µ0

√
2.

The field θ is a pure gauge field, and we identify it with the acoustic phonon, arising as the Goldstone
mode associated to the breaking of the continuous translational invariance due to the lattice itself.44,45

It is a massless gauge mode, because it is possible to change the ground state of θ without spending en-
ergy, just operating a gauge transformation along the valley of the Mexican hat. A different scenario
may take place when terms proportional to λ1 cannot be neglected. In this case, nonlinearities brought
by λ1 have two effects: firstly, the additional term proportional to λ1θ

4 in the Equation (13) makes the

frequency dispersion of the Goldstone mode θ to become gapped, ω2 = ρ2
√
λ1c2s/2 + c2sk

2, where ρ is
an integration constant which depends on the cell details.21 Secondly, the other additional term propor-
tional to λ1σ

2θ2 in the same equation describes the coupling between Goldstone and Higgs modes, as de-
scribed in Ref. [21] for general nonlinearities, and the effects can be important in systems where phonons
couple heavily to strain field. Instead, regarding the Higgs mode, we propose to identify it with the opti-
cal phonon, whose frequency in the long-wavelength limit is given by the “mass” term, ω0 = µ0

√
2. The

experimental phonon dispersion of Co, shown at room temperature in Ref. [24] and at 833K in Ref. [25]
confirm that the optical phonon branches exist only at the lowest temperature. Unlike for the high en-
ergy physics, the hidden symmetry can be restored very simply: it is enough to increase the temperature
above the value of T0 characteristic of the considered crystal (in our examples, Zr, Ti, Co): a hcp→ (bcc,
fcc) structural phase transition takes place, and in the (bcc, fcc) symmetric phase the coefficient of the
quadratic term in F2(ϕ) becomes positive. In this case, the expectation value of ϕ in the physical vac-
uum state is < ϕ0 >= 0, and the system has recovered the U(1) invariance, that in the hcp phase was
broken. The only relevant broken continuous symmetry is the translational symmetry, which still makes

6
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a Nambu-Goldstone mode to emerge, the acoustic phonon, but no Higgs mode exists, as experimentally
verified for Co at T = 833K in Ref. [25], where the structural phase becomes bcc, and only the acous-
tic phonon branches survives. Similar considerations and experimental results can be found in literature
con Zr and Ti (fcc→ hcp).24–28,46 Despite its much simpler formulation, the hidden symmetry restora-
tion represented by the hcp→ (bcc, fcc) phase transition when temperature increases above T0 is con-
ceptually similar to what happens in the Standard Model for the electroweak interaction above the elec-
troweak symmetry breaking energy (≈ 159GeV47).
The number of oscillating modes for θ and σ depends on the crystal unitary cell, and on the dimension
of the matrix associated with the operatorial form of the order parameter ϕ̂. In the considered examples,
the crystal broken phase is hcp, and following Ref. [33] it is possible to write the displacement matrices
Q’s evaluated at symmetry points of the Brillouin zone. They can be employed to build the dynamical
matrix as blocks of submatrices, substantially the Q’s themselves. The dynamical matrix has six eigen-
values, and so it is for the matrix associated with ϕ̂ at the same symmetry points. In the ground state
of the broken phase, there will be three eigenvalues belonging to θ and three belonging to σ. Hence,
there will be three fields θ (acoustic branches) and three fields σ (optical branches). For each branch,
two fields represents oscillations in the hcp basal plane (transversal modes), and one field represents an
oscillation orthogonal to the plane (longitudinal mode).
An important point that can be recalled is the fact that the Equation (13) also describes three-phonons
scattering terms (the terms proportional to θ3 and to σ3) and four-phonons scattering terms (the terms
proportional to θ4 and to σ4), coming fron anharmonicities. They also describe the acoustic-optical
phonon coupling and decay (the terms proportional to σθ2 and to θ2σ4), as described more extensively
in Ref. [21].
As a side note, even having conceptually identified the free energy with the Higgs potential, in general
it is not possible to associate a specific type of phonon with the Higgs and Goldstone modes.23 In fact,
since Qn,m is the force constant matrix, its value depends on the atomic masses in the unitary cell, and
the phonons are eigenvectors of Qn,m/

√
µnµm, that correspond to Goldstone and Higgs modes according

to our description only in case the crystal contains atoms of only one mass µn, as in the examples con-
sidered in the present work (crystals of Co, Zr, Ti). In summary, the phase (or Goldstone) and ampli-
tude (or Higgs) oscillations always originate from a SSB, but only in some special cases it is possible to
associate them with a clear character of acoustic and optical phonon.22,23 In the present work, we identi-
fied them in some example of natural crystals.

3 Conclusions

We described the occurrence of Goldstone and Higgs modes in clearly identifiable structural phase tran-
sitions occurring in widely available, natural – not artificial – crystalline solids.
Expanding the total energy of crystal’s atoms around their equilibrium positions, we identified the po-
tential energy term with the crystal free energy difference F (ϕ) between a parent, symmetric phase, and
a product phase with broken symmetry, within the Ginzburg-Landau theory formalism.
When the initial system’s symmetry is broken during the phase transition to the hcp phase, Goldstone
(phase) and Higgs (amplitude) modes arise. In the special case of crystals made of one atomic species
only, these modes can be identified with the acoustic and optical phonons.
This perspective offers an example of what in the Standard Model of particle physics is difficult to
achieve, i.e. the symmetry restoration. In fact, a higher crystal symmetry, hidden in the hcp broken
phase, can be easily restored by increasing the temperature above T0: a phase transition to a more sym-
metric bcc or fcc phase makes again U(1) invariant the Lagrangian density, beside making stable the
symmetric vacuum state where the expectation value of ϕ is < ϕ0 >= 0.
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