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Sparse learning with concave regularization:
relaxation of the irrepresentable condition

V. Cerone, S. M. Fosson∗, D. Regruto, A. Salam

Abstract— Learning sparse models from data is an important
task in all those frameworks where relevant information should
be identified within a large dataset. This can be achieved by
formulating and solving suitable sparsity promoting optimiza-
tion problems. As to linear regression models, Lasso is the most
popular convex approach, based on an `1-norm regularization.
In contrast, in this paper, we analyse a concave regularized
approach, and we prove that it relaxes the irrepresentable
condition, which is sufficient and essentially necessary for Lasso
to select the right significant parameters. In practice, this has
the benefit of reducing the number of necessary measurements
with respect to Lasso. Since the proposed problem is non-
convex, we also discuss different algorithms to solve it, and we
illustrate the obtained enhancement via numerical experiments.

I. INTRODUCTION

Sparse learning is the science of building parsimonious
models from data. The main motivation for sparse learning
is the concrete need of extracting relevant information from
large collections of data, which nowadays are commonly
available in many scientific fields. This task prevents draw-
backs such as overfitting, redundancies, numerical complex-
ity, and scarce understanding of the physical behavior of
systems; we refer the reader to [1], [2], [3] for a compre-
hensive illustration of these issues. Recent applications of
sparse learning can be found in identification of linear and
non-linear systems, see [4], [5] and [6], [3], respectively;
in model predictive control, see [7]; in neural networks
and deep learning, see [8], [9]. In signal processing, the
exploitation of sparsity has a long history, provided that
many signals (e.g., images) admit sparse representations in
opportune bases. In this context, the compressed sensing
(CS) theory has been developed in the last fifteen years,
which states that a sparse vector x ∈ Rn can be recovered
from compressed, possibly noisy, linear measurements, see
[10], [11]. Beyond signal processing, the CS paradigm has
been applied, e.g., to linear/non-linear system identification,
see [12], [13], [4], [3].

Often, sparse learning is formulated as an optimization
problem where sparsity is promoted by a suitable regular-
ization term. In principle, the `0-norm, i.e., the number of
non-zero components of a vector, is the correct pseudonorm
to represent the sparsity level; nevertheless, the `0-norm
is non-convex and leads to NP-hard optimization. As an
alternative, the `1-norm has been studied and proven to be
the best convex approximation of the `0-norm. In the linear
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regression setting, the Lasso problem, introduced in [14],
is very popular, and consists in the minimization of an `1
regularized, least squares cost functional.

The reliability of the Lasso estimator has been largely
studied in the literature, in particular for what concerns its
variable-selection consistency (VSC), i.e., the ability of iden-
tifying the support, which is the set of non-zero/significant
components of the unknown vector. Finding the support is
the most important task in sparse learning and CS, since its
knowledge is sufficient to recover the complete vector. As
illustrated in [15], [16], [17], Lasso enjoys the VSC if the
so-called irrepresentable condition holds. More precisely, as
we illustrate in the next section, this condition is sufficient
and essentially necessary, see [18].

In this paper, we analyse an alternative approach to Lasso
for sparse learning, based on a concave, semi-algebraic
regularization. Recently, the use of non-convex regularizers
has been gaining attention in the literature, see, e.g., [19],
[20], [21], [22]. The rationale is that the shape of a non-
convex regularizer is closer to the `0-norm than the `1-norm.
Numerical experiments show that the non-convex approach is
usually more effective than Lasso. Nevertheless, theoretical
results are still missing, in particular in the compressed
framework.

The goal of this paper is to prove that the considered
non-convex estimator is more effective than Lasso, in the
sense that it enjoys the VSC under a relaxed irrepresentable
condition, even in a CS setting. This result is obtained by
exploiting a restricted eigenvalue property and a bounded-
ness assumption. Under these hypotheses, a minimum of
the proposed functional has the correct support; sufficient
conditions to evaluate whether this minimum is local or
global are provided. In practice, the relaxation of the ir-
representable condition implies a reduction of the number
of necessary measurements to select the right parameters.
Since the problem is semi-algebraic, the Lasserre’s approach
can be used to compute the minimum [23]. On the other
hand, iterative algorithms can be used for local minimization
and are effective in many cases. This is analysed through
numerical simulations.

The paper is organized as follows. In Section II, we
present the problem and we illustrate the considered cost
functional. Section III is devoted to the theoretical analysis
of the VSC of the considered approach, which is the core of
the contribution. In Section IV, we discuss the minimization
algorithms and show numerical results. Finally, we draw
some conclusions in Section V.



II. PROBLEM STATEMENT AND BACKGROUND

In this paper, we consider the following sparse optimiza-
tion problem: we aim to estimate a k-sparse vector x̃ ∈ Rn
from noisy linear measurements:

y = Ax̃+ η (1)

where A ∈ Rm,n, and η ∈ Rm is a measurements noise. In
particular, we focus on the CS case m < n, which is more
challenging. We call S ⊂ {1, . . . , n} the support of x̃, and S̄
its complementary. For any v ∈ Rn, we denote by vS ∈ Rk
the vector that contains the components of v restricted to S.
Similarly, AS contains the columns of A indexed in S.

In the following, we consider this assumption.
Assumption 1: The non-zero parameters are bounded, i.e.,

x̃i ∈ [−d, d] for each i ∈ S, where d > 0 is known.
This assumption is realistic, since in real-world applications a
prior estimate on the maximum magnitude is usually avail-
able. Due to noise and compression, the general approach
to this problem is a regularized least squares. In particular,
Lasso [14] reads as follows:

Lasso : min
x∈[−d,d]n

1

2
‖y −Ax‖22 + λ‖x‖1 (2)

where λ > 0 is a design parameter which can be assessed
based on prior information on k, see [11]. In the literature,
the VSC of Lasso is analysed by using the irrepresentable
condition.

Definition 1: Irrepresentable condition (IRR), see [2,
Section 11.4.1]. We say that A satisfies (ω, S)-IRR if there
exists ω > 0 such that

max
j∈S̄

∥∥ATj AS(ATSAS)−1
∥∥

1
≤ 1

ω
. (3)

For Lasso, strong (ω, S)-IRR (i.e., ω > 1) and weak (ω, S)-
IRR (i.e., ω = 1) respectively are sufficient and necessary for
the VSC in the asymptotic case m → ∞, see [24], [16]. In
the non-asymptotic case, the VSC of Lasso is proven with
large probability, under IRR and sufficiently large λ, see,
e.g., [2, Theorem 11.3].

In this paper, we analyse a concave alternative to `1
regularization. In the last years, different concave penalties
have been proposed in sparse optimization, in particular,
log(x), see [19]; `p, with p ∈ (0, 1), see [25], and minimax
concave penalties (MCP, [26]). In some cases, the use of
such regularizers is associated with the exploitation of `1-
reweighting techniques for minimization, see [19]. The key
idea behind the use of concave penalties is that they are
closer to the `0-norm with respect to the `1-norm, therefore
they are expected to promote sparsity more accurately. We
refer the reader to [20], [27] for their use in CS.

In this paper, we propose an MCP-based shrinkage and se-
lection method, denoted as MCPS2, which reads as follows.

MCPS2 : min
x∈[−d,d]n

F(x) :=
1

2
‖y −Ax‖22 + λr(x)

where r(x) := d ‖x‖1 −
1

2
‖x‖22 , λ > 0.

(4)

MCPS2 is partially studied in [28], limited to CS of finite-

valued signals, while in [22] an MCP cost functional is tested
for the recovery of non-negative signals from low-precision
data. Differently from those works, in this paper we extend
the analysis to any real signal and we prove novel theoretical
results.

For our analysis, we exploit the restricted eigenvalue
condition. Let us define the cone

C(α, S) := {x ∈ Rn : ‖xS̄‖1 ≤ α ‖xS‖1}. (5)

Definition 2: Restricted eigenvalue condition (RE), see
[2, Section 11.2.2]). We say that A satisfies (α, φ, S)-RE if
there exist α > 0 and φ > 0 such that

‖Av‖22
‖v‖22

≥ φ for any v ∈ C(α, S) \ {0}. (6)

We remark that RE is generally weaker than IRR and than
the restricted isometry property (RIP, see, e.g., [2, Definition
10.2]), the latter being largely used in CS; we refer the
reader to [29] for a thorough study of the relationships
between the different conditions considered in CS and sparse
optimization. Moreover, while RIP is proven to hold for
random, independent matrices, RE is proven to hold for a
wider class of random, correlated matrices, see [30]. Thus,
RE matches with a larger number of applications, such as
autoregressive models.

We also remark that RE is used to evaluate the `2 error
of Lasso (but not its VSC): Theorem 11.1 in [2] states that
if (3, φ, S)-RE holds and ‖η‖∞ ≤ mλ, then ‖z − x̃‖2 ≤
3ω
ω−1

√
kλ, where z is the Lasso solution. As explained in

[2, Section 11.2.2], RE originates from the observation that
‖Ax− y‖22 is not strongly convex in CS, since ATA has not
full rank, and the corresponding quadratic form is positive
semi-definite. For this motivation, one looks for a strong
convexity restricted to a significant subset, which for Lasso
is the cone C(3, S).

III. THEORETICAL ANALYSIS

In this section, we analyse the VSC of MCPS2 defined
in (4) in a CS setting (m < n). We prove that a vector x?

with the same support of x̃ is a local minimum of F in (4),
under a relaxed (ω, S)-IRR (i.e., ω may be smaller than 1)
and if (α, φ, S)-RE holds, provided that noise is sufficiently
small. Therefore, a descent algorithm that starts sufficiently
close to x? can recover the right support. Furthermore, under
additive conditions, x? is proven to be the global minimum.

A. Local minimum

In the following results, we assume that ATSAS is positive
definite (ATSAS � 0); this is realistic in CS, since usually
k ≤ m and the columns of AS are linearly independent, see,
e.g., [11], [2] for details.

Theorem 1: Let y = Ax̃ + η, where x̃ ∈ [−d, d]n has
support S, with |S| = k. We assume ATSAS � 0, with
minimum eigenvalue a > λ. Let Ω := ATSAS − λI � 0,
µ := 1

d mini∈S |x̃i| ∈ (0, 1], and γ := λd(1−µ)+‖ATSη‖∞.



We define x? ∈ [−d, d]n as follows:

x?S := x̃S + Ω−1
[
λx̃S − λdsign(x̃S) +ATSη

]
x?S̄ := 0.

(7)

If the following condition holds:

C0. γ
√
k < µd(a− λ)

then sign(x̃S) = sign(x?S).

Furthemore, given an arbitrarily small ε > 0, if the
following additive conditions hold:

C1. A satisfies (ω, S)-IRR with ω > 1− µ,

C2. A satisfies (α, φ, S)-RE with φ > λ,

C3. λd − ω−1
(

1 + λ
√
k

a−λ

)
γ − ‖AT

S̄
η‖∞ − λε 1+α

α > 0,
then, x? is a local minimum of F(x), x ∈ [−d, d]n.

Proof: A sufficient condition to obtain sign(x̃S) =
sign(x?S) is ‖x̃S − x?S‖∞ < µd = mini∈S |x̃i|. Moreover,

‖x̃S − x?S‖∞ ≤ ‖Ω−1‖∞‖λx̃S − λdsign(x̃S) +ATSη‖∞

≤
√
k‖Ω−1‖2γ ≤

√
k

a− λ
γ.

Then, condition C0 can be obtained by upper bounding the
last expression by µd.

To prove that x? is a local minimum, we show that F(x?+
h) > F(x?) for a small h ∈ Rn \ {0}, x? +h ∈ [−d, d]n. In
particular, we assume that ‖h‖∞ ≤ ε for an arbitrarily small
ε > 0. We have:

F(x? + h)−F(x?) =
1

2
‖Ah‖22 + hTAT (Ax? − y)+

+ λr(x? + h)− λr(x?).
(8)

Now, we assess the different terms in (8). First of all, we have
r(x?+h)−r(x?) = d ‖x? + h‖1−d ‖x?‖1−

‖h‖22
2 −h

Tx? =

d ‖x?S + hS‖1 +d ‖hS̄‖1−d ‖x?S‖1−
‖h‖22

2 −h
T
Sx

?
S . For each

i ∈ S, we can assume that |hi| < |x?i |, so that sign(x?i+hi) =
sign(x?i ). Then, ‖x?S + hS‖1 − ‖x

?
S‖1 = hTS sign(x?S) and

r(x? + h)−r(x?) =d ‖hS̄‖1 + hTS [dsign(x?S)− x?S ]− ‖h‖
2
2

2 .
Furthermore, since Ah = AShS +AS̄hS̄ ,

F(x? + h)−F(x?) =

=
1

2
‖Ah‖22 + hTS̄A

T
S̄ (Ax? − y) + λd ‖hS̄‖1 +

+ hTS
[
λdsign(x?S)− λx?S +ATS (Ax? − y)

]
− λ

2
‖h‖22 .

From (7), the quantity within the square parenthesis is null.
In fact, since sign(x?S) = sign(x̃S) and Ax? − y = ASx

?
S −

AS x̃S − η, we obtain λdsign(x?S)− λx?S +ATS (Ax? − y) =
λdsign(x̃S) + Ωx?S − ATSAS x̃S − ATSη. Then, by summing
and subtracting λx̃S , we obtain (7). Thus, we conclude that

F(x? + h)−F(x?) =

=
1

2
‖Ah‖22 −

λ

2
‖h‖22 + hTS̄A

T
S̄ (Ax? − y) + λd ‖hS̄‖1 .

(9)

Now, we compute a lower bound for hT
S̄
AT
S̄

(Ax? − y), by

exploiting the Hölder inequality.

|hTS̄A
T
S̄ (Ax? − y)| ≤ ‖hS̄‖1

∥∥ATS̄ (Ax? − y)
∥∥
∞

≤ ‖hS̄‖1
∥∥ATS̄AS(x?S − x̃S)

∥∥
∞ + ‖hS̄‖1

∥∥ATS̄η∥∥∞ .
(10)

Since AT
S̄
AS(x?S − x̃S) = AT

S̄
AS(ATSAS)−1(ATSAS)(x?S −

x̃S), we elaborate on τ := ATSAS(x?S − x̃S) to exploit
(ω, S)-IRR. In particular, we have ‖τ‖∞ = ‖ATSAS(x?S −
x̃S)‖∞ =

∥∥ATSASΩ−1
[
λx̃S − λdsign(x̃S) +ATSη

]∥∥
∞ ≤∥∥ATSASΩ−1

∥∥
∞ γ ≤

√
k
(

1 + 1
a−λ

)
γ. Hence, by (ω, S)-

IRR, we get∥∥ATS̄AS(ATSAS)−1τ
∥∥
∞ = max

j∈S̄

∥∥ATj AS(ATSAS)−1τ
∥∥

1

≤ max
j∈S̄

∥∥ATj AS(ATSAS)−1
∥∥

1
‖τ‖∞

≤ 1

ω
‖τ‖∞ ≤

1

ω

√
k

(
1 +

1

a− λ

)
γ.

In conclusion, the following lower bound holds for (9):

F(x? + h)−F(x?) ≥ 1

2
‖Ah‖22 −

λ

2
‖h‖22 + q1 ‖hS̄‖1

where q1 = λd− 1
ω

√
k
(

1 + 1
a−λ

)
γ −

∥∥AT
S̄
η
∥∥
∞ .

Given that (α, φ, S)-RE holds, with φ > λ, we distinguish
two cases. If h ∈ C(α, S) \ {0}, then 1

2 ‖Ah‖
2
2 −

λ
2 ‖h‖

2
2 ≥

0. Thus, F(x? + h) > F(x?) for any h ∈ C(α, S) \ {0}
whenever q1 > 0.

Otherwise, if h /∈ C(α, S) \ {0}, then ‖hS‖1 ≤ ‖hS̄‖1
α ,

which implies

‖h‖22 ≤ ε‖h‖1 = ε‖hS‖1 + ε‖hS̄‖1 ≤ ε‖hS̄‖1
α+ 1

α
.

Therefore, F(x? + h)−F(x?) ≥ ‖hS̄‖1 ≥ q1 − λε 1+α
α .

As ‖hS‖1 ≤ ‖hS̄‖1α , if h 6= 0, then hS̄ 6= 0. Thus, if h 6= 0,
then F(x? + h) > F(x?) whenever C3 holds.

This result yields some considerations.
Remark 1: The condition ω− 1 +µ > 0 does not require

(1, S)-IRR, which instead is necessary for the VSC of the
Lasso. In fact, we just require (ω, S)-IRR with ω > 1 −
µ, where 1 − µ < 1. In other terms, MCPS2 requires a
relaxed IRR which is tuned based on the minimum non-zero
magnitude in x̃. Interestingly, in the limit case where µ = 1,
no IRR is required, see Section III-C for details.

Remark 2: Theorem 1 states the possibility of achieving
the desired x? defined in (7) in the sense that x? is a local
minimum of the proposed functional, therefore we can reach
it by a descent algorithm, given a suitable starting point.

Remark 3: The value of α is not assessed. Actually, since
ε is arbitrarily small, in C3 we could neglect the term ε(α+
1), thus remove α. For Lasso, (α, φ, S)-RE is useful when
α = 3, see [2, Theorem 11.1]. Moreover, the bound on the
`2 error in [2, Theorem 11.1] is controlled by 3λ

√
k

φ , which
suggests that φ � λ is necessary to have a small error.
Instead, to prove Theorem 1, we only require φ ≥ λ.

Remark 4: Condition C3 and C0 determine the interplay
between η and λ. Specifically, C0 requires for sufficiently
small η and λ, while C3 states that λ must belong to
an interval depending on η. The key idea is that if some



information about the maximum noise is given, along with
the values of the system’s parameters k, µ, a, ω, one can use
them to assess the design paramater λ; the details, that can
obtained by solving C3, are omitted for brevity. In particular,
if η = 0 and µ = 1, C3 reduces to λ ∈ (0, a), which is the
initial hypothesis of Theorem 1.

B. Global minimum

In this section, we provide sufficient conditions such that
x? defined in Theorem 1 is not only a local minimum,
but also the global minimum of F . From Theorem 1, let
us assume that x? is the unique minimum over Bε(x?) :=
{x? + h, for all h ∈ Rn with ‖h‖∞ ≤ ε} for some ε > 0.
Then, if the global minimum lies in Bε(x?), it necessarily
corresponds to x?. In the following proposition, we provide
sufficient conditions for this occurrence.

Proposition 1: Let θ = ‖(y−Ax?)TA‖∞. Let us assume
θ < λd. If A satisfies (α, φ, S)-RE with α ≥ 2λd+θ

λd−θ , φ > λ,

and 2(θ+2λd)
√
k

φ−λ ≤ ε, then, x? defined in (7) is the global
minimum of F .

Proof: Let x?? be the global minimum of F , and
ν := x?? − x?. Then, F(x? + ν) = F(x??) ≤ F(x?).
This is equivalent to 1

2‖Aν + Ax? − y‖22 + λd‖x? + ν‖1 −
λ
2 ‖x

? + ν‖22 ≤ 1
2‖Ax

? − y‖22 + λd‖x?‖1 − λ
2 ‖x

?‖22. Fur-
ther simplifications lead to 1

2‖Aν‖
2
2 + (Ax? − y)TAν ≤

λd‖x?‖1−λd‖x?+ν‖1 + λ
2 ‖ν‖

2
2 +λνTS x

?
S . Now, we remark

that

‖x?‖1 − ‖x? + ν‖1 = ‖x?S‖1 − ‖x?S + νS‖1 − ‖νS̄‖1
≤ ‖νS‖1 − ‖νS̄‖1.

Moreover, since x?S = x??S − νS , and ‖x??‖∞ ≤ d,

‖ν‖22 + 2νTS x
?
S = ‖νS‖22 + ‖νS̄‖22 + 2νTS x

??
S − 2‖νS‖22

≤ −‖νS‖22 + ‖νS̄‖22 + 2d‖νS‖1.

Then,
1

2
‖Aν‖22 ≤ (θ + λd)‖νS‖1 + θ‖νS̄‖1 + λr(vS)− λr(vS̄).

If A satisfies (α, φ, S)-RE, then φ+λ
2 ‖νS‖

2
2 + φ−λ

2 ‖νS̄‖
2
2 ≤

(θ + 2λd)‖νS‖1 + (θ − λd)‖νS̄‖1. If φ > λ, then 0 ≤
φ+λ

2 ‖νS‖
2
2 + φ−λ

2 ‖νS̄‖
2
2, and (λd − θ)‖νS̄‖1 ≤ (θ +

2λd)‖νS‖1. Therefore, if θ < λd, then ν ∈ C
(

2λd+θ
λd−θ , S

)
.

Moreover,

φ− λ
2
‖ν‖22 ≤ (θ + 2λd)‖νS‖1 ≤ (θ + 2λd)

√
k‖ν‖2

⇒ ‖ν‖2 ≤
2(θ + 2λd)

√
k

φ− λ
.

(11)

If ‖ν‖2 ≤ ε, then x?? ∈ Bε(x?). Since x?? is the global
minimum, while x? is the global minimum limited to Bε(x?),
then ‖ν‖2 ≤ ε implies x?? = x?. According to (11), a
sufficient condition to have ‖ν‖2 ≤ ε is 2(θ+2λd)

√
k

φ−λ ≤ ε.

The bound in (11) might be refined with further computa-
tions, which will be proposed in a future extended work.
However, even though not perfectly tight, it well illustrates

the robustness to noise: if η decreases, and as a consequence
λ and θ can be proportionally decreased, then also ‖ν‖2
decreases, which increases the probability that x? is the
global minimum.

C. Noise-free, limit case

To conclude, we illustrate the particular case with no noise,
i.e., η = 0, and non-zeros concentrated on the boundaries of
[−d, d]n, i.e., µ = 1. From Theorem 1 and Proposition 1,
we derive the following result.

Corollary 1: Let us assume η = 0 and µ = 1. If A
satisfies (ω, S)-IRR, and A satisfies (α, φ, S)-RE with φ >
λ, and α = 2, then x? = x̃ is a local minimum of F . More
precisely, x? = x̃ is the unique minimum in Bε(x?), with
ε = 2

3dω. Moreover, if λ < ωφ

6
√
k+ω

, then x̃ is the global
minimum of F .
The proof, omitted for brevity, can be straightforwardly
obtained by replacing η = 0 and µ = 1 in Theorem 1
and Proposition 1. Corollary 1 shows that in the favorable
case without noise and with extreme non-zero values, the
proposed approach is always effective, since it is sufficient
to set a sufficiently small λ to obtain that the true x̃ is the
global minimum of F , without bias. For more details on CS
with discrete-valued signals, see [28].

D. Discussion

The proposed analysis is theoretical, as some parameters,
such as ω and φ, are not a priori known, and therefore the
choice of the design parameter λ is not precisely determined.
The main contribution of this analysis is to state that MCPS2,
differently from Lasso, does not require the classical IRR.
Similarly to classical CS, in future work, conditions on A
will be studied that are provable in practice, at least for
matrices’ ensembles, such as the restricted isometry property.
From a practical viewpoint, we expect that the relaxation of
IRR leads to a reduction of the number m of measurements
needed for a perfect recovery of the support; this is illustrated
in numerical simulations in the next section.

Finally, we remark that finding the global minimum of
F may be not straightforward, since F is non-convex. In
the next section, we test different algorithms to achieve
the global minimum, and show their effectiveness through
numerical simulations.

IV. ALGORITHMS AND NUMERICAL SIMULATIONS

In this section, we test different algorithms to achieve the
minimum of F as defined in (4); this task is challenging due
to non-convexity. We propose two approaches: the semidef-
inite programming relaxation (SDR), supported by recent
results on polynomial optimization [23], and the alternating
direction method of multipliers (ADMM, [31]).

A. Semi-algebraic optimization

Since F in (4) is semi-algebraic, the theory developed in
[32] can be applied to compute the global minimum. In a
nutshell, given a polynomial or semi-algebraic optimization
problem, a hierarchy of SDR’s can be constructed, whose so-
lutions converge to the global optimal solution. The hierarchy



generically has finite convergence, see, e.g., [33]. Therefore,
the global minimum can be achieved by solving an SDR of
sufficiently large order. A shortcoming of the SDR approach
is the numerical complexity, which is of order O(nζ), n
being the number of variables and ζ the relaxation order.
For this motivation, in this paper, we consider only the SDR
of order ζ = 1, which corresponds to the Shor’s relaxation.

B. ADMM

ADMM is an iterative algorithm, widely used in con-
vex optimization for its fast convergence and simplicity of
implementation, see [31]. In the non-convex setting, the
convergence of ADMM to a local minimum has been proven
only for some classes of functionals. In particular, in [34],
convergence is proven for non-convex functionals that can
be split into the sum of a non-convex, smooth term and of
a convex, not necessarily smooth, term. F in (4) has this
property, i.e., we can write it as

min
x,z∈[−d,d]n

1

2
‖y −Ax‖22 −

λ

2
‖x‖22 + λd ‖z‖1 s. t. z = x

with The associated augmented Lagrangian is: L(x, z) =
1
2 ‖y −Ax‖

2
2−

λ
2 ‖x‖

2
2 +λd ‖z‖1 +uT (x− z) + ρ

2 ‖x− z‖
2
2

where u ∈ Rn is the dual variable, and ρ > 0. Then, we
apply ADMM as explained in [34, Section 2], which consists
in iteratively minimizing L with respect to x and to z, and
updating u. This procedure is summarized in Algorithm 1,
where P denotes the operator that projects onto [−d, d]n,
and Sa is the soft thresholding operator.

Algorithm 1 ADMM for MCPS2

Input: A, y = Ax̃+ η, λ > 0, ρ > 0

Output: xTstop = estimate of x̃
1: Initialize z0, w0 ∈ Rn

2: for all t = 1, . . . , Tstop do
3: xt = argmin

x∈Rn
L(x, zt−1)

=
[
ATA+ (ρ− λ)I

]−1 (
AT y + ρzt−1 − ut−1

)
4: zt = argmin

z∈[−d,d]n
L(xt, z) = P

(
Sλd
ρ

(
xt + ut−1

ρ

))
5: ut = ut−1 + ρ(xt − zt)
6: end for

C. Numerical results

We illustrate some numerical simulations with SDR and
ADMM approaches to solve MCPS2. In particular, we com-
pare them to Lasso, solved with ADMM. The considered
setting is as follows. The vector x̃ that we aim to recover
has length n = 100 and sparsity k = 5: its support is
generated uniformly at random, and its non-zero entries have
random magnitudes in [ 1

2 , 1]. The available measurements are
y = Ax̃ + η, where A ∈ Rm,n has Gaussian independent
entries N (0, 1

m ), m ∈ [10, 60]. The measurement noise
η ∈ Rm is Gaussian as well, and we consider a signal-to-
noise-ratio SNR = 25 dB. The parameter λ is set to 10−2 via

cross-validation. The considered approaches are compared in
terms of VSC, i.e., the number of experiments where the
support is exactly recovered, and false positive/negative rate,
that is the rate of zeros estimated as non-zeros, and vice-
versa. Finally, we compare the runtimes. All the algorithms
are implemented in C++; for SDR, we use the Mosek C++
Fusion API, see [35].

The results, averaged over 200 runs, are shown in Figure
1. We see that MCPS2 performs better than Lasso in terms
of VSC, as expected from the proposed theoretical results in
Section III. The enhancement is particularly evident for m ∈
[20, 35]. For example, for m = 30, Lasso is not reliable, with
the 60% of successful support recovery, while MCPS2 attains
the 90%. Furthermore, we can see that MCPS2 outperforms
Lasso in terms of false positive rate, while the false negative
rate of SDR is better than that of ADMM. Finally, The
runtime is sufficiently fast for all the considered methods,
SDR being a bit slower than ADMM.

As to MCPS2, SDR and ADMM algorithms both subop-
timal: on the one hand, SDR can be improved by increasing
the relaxation order, now set to 1 to minimize the runtime; on
the other hand, for ADMM, suitable initial conditions could
be investigated to achieve the desired minimum. Moreover,in
the proposed experiments, we observe that when k is cor-
rectly estimated, then the achieved point corresponds to x?.
This suggests that x? might be the unique minimum with
sparsity k; in case, given the knowledge of k, this could be
used to verify whether the achieved point is x?, and, if not,
ADMM should be run again with different initial conditions
to search x?. These points will be studied in future extended
work.

V. CONCLUSIONS

In this work, we analyse MCPS2, a non-convex, semi-
algebraic optimization problem for sparse learning. Specifi-
cally, we study its variable-selection consistency in a com-
pressed sensing framework, and we prove that, differently
from Lasso, MCPS2 relaxes the irrepresentable condition.
In practice, this implies that MCPS2 requires less measure-
ments than Lasso. Future work will be oriented to provide
conditions guaranteeing the variable-selection consistency of
MCPS2 that can be a priori verified. and to develop optimal
strategies to achieve the global minimum.
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