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Abstract: In the upcoming years, more challenging CO2 emission targets along with the introduction of
more severe Real Driving Emissions limits are expected to foster the development and the exploitation
of innovative technologies to further improve the efficiency of automotive Spark Ignition (SI) engines.
Among these technologies, Water Injection (WI), thanks to its knock mitigation capabilities, can
represent a valuable solution, although it may significantly increase the complexity of engine design
and calibration. Since, to tackle such a complexity, reliable virtual development tools seem to be
mandatory, this paper aims to describe a quasi-dimensional approach to model a Port Water Injection
(PWI) system integrated in a Turbocharged Direct Injection Spark Ignition (T-DISI) engine. Through a
port-puddling model calibrated with 3D-CFD data, the proposed methodology was proven to be
able to properly replicate transient phenomena of water wall film formation, catching cycle by cycle
the amount of water that enters into the cylinder and is therefore available for knock mitigation.
Moreover, when compared with experimental measurements under steady state operating conditions,
this method showed good capabilities to predict the impact of the water content on the combustion
process and on the knock occurrence likelihood.

Keywords: turbocharged gasoline engine; port water injection; predictive combustion model; knock
mitigation; engine performance; virtual test rig

1. Introduction

Environmental sustainability represents one of the main drivers for the future development of
the automotive industry. As a matter of fact, in the European Union (EU), to guarantee a significant
reduction in the contribution of passenger cars to greenhouse gas emissions, more challenging targets
will be introduced. For instance, the target of 95 grams of CO2 per kilometer issued for 2020 [1] is
expected to be reduced by 15% and 37.5% by 2025 and 2030, respectively [2]. Moreover, the introduction
of Real Driving Emissions (RDE) for vehicle tests will force automotive manufacturers to keep criteria
pollutant emissions low throughout the whole engine operating map [3].

In this scenario, downsized and turbocharged gasoline engines are currently increasing their
market share thanks to their noteworthy potential for fuel consumption reduction [4]. As a matter of
fact, engine displacement reduction allows the shifting of load points towards higher efficiency regions
of the operating map, while performance is preserved or even enhanced thanks to turbocharging [5–7].
Nevertheless, the search for continuously increasing boost levels [8] has led to a dramatic increment
of the knock likelihood, requiring quite often spark timing retards, mixture enrichment and/or
compression ratio reductions, which can jeopardize the expected CO2 emissions benefits [9]. Therefore,
the development of effective knock mitigation techniques is crucial to extend efficiency improvements
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enabled by downsizing at high loads. Several innovative techniques have already been investigated
to meet this target, such as Miller cycles [10–12], Variable Compression Ratios (VCR) [13–15], cooled
Exhaust Gas Recirculation (EGR) [16–18] or the employment of alternative fuels with higher octane
numbers [19–21].

Besides the abovementioned technologies, Water Injection (WI) is also nowadays rising as one of
the most promising solutions for knock mitigation. WI, taking advantage of the high latent heat of
vaporization of the water introduced into the cylinders, allows effective cooling of the charge, thus
reducing knock tendency. Moreover, thanks to the increase in the heat capacity of the cylinder charge,
an additional cooling effect can be exploited during compression and combustion.

Water Injection technology has been thoroughly examined in the last decade, as has emerged from
the literature, where various experimental activities and numerical studies are available. For instance,
several papers have assessed the pros and cons of direct and indirect water injection strategies [22–24].
Indirect water injection, thanks to its simplicity and cost-effectiveness, seems to be the best candidate
for series production. Several studies have focused on the optimization of the Port Water Injection
system (PWI): the careful optimization of both operating and design parameters such as water spray
Sauter Mean Diameter (SMD), spray targeting, injection timing and pressure has been demonstrated to
play a key-role in reducing water consumption [22,25–29]. In a previous work of the authors [30], issues
related to both liquid film formation and oil dilution were discussed. Paltrinieri et al. [31] analyzed
through both a numerical simulation and experimental activities the effects on engine performance
of several calibrations of a Port Water Injection system integrated in a single cylinder high specific
power engine. The potential of a PWI system was also demonstrated in [32], where a two cylinder
turbocharged spark ignition engine could be operated at a stoichiometric Air-to-Fuel (A/F) ratio
in a wide range of operating conditions at high loads with a significant reduction in the Indicated
Fuel Consumption (ISFC). Moreover, Khatri et al. [33] showed the capability of water injection to
counterbalance the engine performance reduction related to the use of low octane gasolines, while
Wilson [34] estimated a considerable Brake Specific Fuel Consumption (BSFC) reduction coupling PWI
and increased Compression Ratio (CR). Moreover, both Cazzoli et al. [35] and Bozza et al. [36] studied
the impact of water vapors on Laminar Flame Speed and auto-ignition delay time, while Gern et al. [37]
investigated the effect of water injection on Particulate Matter (PM) emissions.

Based on the above literature overview, 3D-CFD models proved to be very useful in better
understanding and in predicting with high accuracy the influence of water on the in-cylinder
phenomena. Nevertheless, in order to foresee possible synergies between WI and other promising
technologies (e.g., high CR configuration and Miller cycle) by means of a virtual test rig, a reliable
1D model of the whole engine appears to be the most suitable numerical tool. In the scientific
literature, different studies on WI technology have been carried out by adopting a 1D approach,
which affords the achievement of a reliable prediction of the whole system behavior with reduced
computational effort. For example, Cavina et al. [38] investigated through 1D-CFD simulations the
effects of Port Water Injection and Direct Water Injection (DWI) on exhaust gas temperature and knock
intensity, subsequently validating their numerical results with an experimental campaign. Furthermore,
Bozza et al. developed a 1D model to generate BSFC maps of a downsized turbocharged 2-cylinder
engine under wet and dry operating conditions; the computed maps were then embedded in a vehicle
model with the aim of estimating the potential CO2 reduction achievable through WI over a worldwide
harmonized light-duty test procedure (WLTP) cycle [36,39] and to define the proper sizing of the water
tank [40].

The 1D approach for WI modelling requires reliable sub-models that allow for a physically
based reproduction in turbulence, combustion, wall film formation, heat transfer, Cycle to Cycle
Variability (CCV) and knock phenomena. Only in this way can a preliminary engine calibration
with an enhanced knock resistance be numerically identified, together with realistically expected
performance improvements.
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Based on the above considerations, this paper aims to describe a quasi-dimensional approach
to model a PWI system integrated in a state-of-the-art Turbocharged Direct Injection Spark Ignition
engine [41]. After a brief introduction to the experimental set-up, the authors describe the main
features of the numerical model, which was preliminary calibrated and validated in dry operating
conditions. Afterwards, the methodology for PWI modelling is presented and discussed in detail, in
three sub-sections. The first describes the integration of the port-puddling model, which allows the
proper replication of transient phenomena of water wall film formation in the intake ports. The second
focuses on the water evaporation model, calibrated with the aim to correctly account for the fraction of
in-cylinder water that evaporates by absorbing heat from walls. The third examines the combustion
model, which requires a further refinement in order to accurately predict the effects of water vapors on
the burn rate. A final section, in addition to reporting the PWI model validation, assesses the capability
of the proposed approach to create a virtual test bench for the optimization of the engine operating
parameters at different values of water flow rate.

2. Case Study

The research activities described in this paper were carried out on a state-of-the-art 3-cylinder 1.0L
Turbocharged Direct Injection Spark Ignition engine, the main characteristics of which are reported
in Table 1 (see also [41] for more details). The engine features a very high Compression Ratio for
efficiency maximization and is equipped with an electro-hydraulic Variable Valve Actuation (VVA)
MultiAir system [42] on the intake side for gas exchange optimization. A Miller cycle strategy with
Late Intake Valve Closing (LIVC) is also exploited both at low and high engine speed to decrease the
knock likelihood and to reduce the exhaust gas temperature, respectively.

Table 1. Engine specifications.

Specification Value

N. of cylinders [-] 3
Displacement [cm3] 999

Bore [mm] 70
Stroke [mm] 86.5

Compression Ratio [-] 13
VVA System MultiAir

Injection System GDI
Full rated power [kW] 88 at 5500 rpm

Full rated torque [N-m] 190 at 2000 rpm

For the experimental campaign, the engine was installed on the test bench in its standard
configuration. It was equipped with three piezoelectric pressure transducers integrated in the
spark-plugs to detect in-cylinder pressure signal within each cylinder. A linear lambda sensor was
mounted downstream of the turbine to measure the relative Air-to-Fuel ratio. Furthermore, several
piezo-resistive pressure transducers and K-type thermocouples were used to monitor pressure and
temperature along both intake and exhaust lines. Knocking cycles were experimentally detected on the
basis of the value of their knock intensity, measured by means of the Maximum Amplitude of Pressure
Oscillations (MAPO) knock index [43]: cycles for which MAPO was exceeding a proper threshold
value were classified as knocking cycles. Knock Limited Spark Advance (KLSA) was experimentally
identified as the spark timing for which approximately 2–3% of engine cycles were knocking.

A Port Water Injection system was then integrated into this base layout (see Figure 1).
The water used for the experiments was de-ionized distilled water stored in a tank at 25 ◦C.

A recirculating pump delivered water at a pressure of 6 bar to the rail, which in turn was connected to
three injectors, which were located in the intake runners, one for each cylinder.

During all the tests, the engine was operated at the stoichiometric Air-to-Fuel ratio and was fueled
with gasoline with a Research Octane Number (RON) of 95 and a Lower Heating Value (LHV) of
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42.5 MJ/kg. Furthermore, water injection timing was kept constant with an End of Injection (EOI) equal
to 360 a Crank Angle degree (i.e., equal to gas exchange Top Dead Center). For all measurements,
experimental data were recorded and evaluated over 300 consecutive engine cycles, in order to gather a
significant statistical sample for knock-limited spark advance operating conditions, where few percent
of engine cycles are typically knocking.

Figure 1. Schematic layout of Port Water Injection system.

Experimental Measurements

A summary of the experimental campaign is depicted in Figure 2. At first, a set of tests were carried
out in dry conditions (i.e., with a Water-to-Fuel ratio (W/F) equal to 0) at Wide Open Throttle (WOT) to
define the engine reference performance (red circles). Afterwards, two-part load conditions, namely
2500 rpm–18 bar Brake Mean Effective Pressure (BMEP) and 4000 rpm–17 bar BMEP (green rhombuses),
were chosen to analyze the effects of water injection on the combustion process. In particular, different
values of Water-to-Fuel ratio, from 0% to 90% at steps of 10%, were tested: for each level of W/F,
the spark timing was advanced until knock onset, and the boost level was adjusted in order to keep the
engine load constant. Finally, the increase in engine performance enabled by PWI knock suppression
capabilities were assessed at WOT exploiting a Water-to-Fuel ratio between 50% and 60% (blue squares).

Figure 2. Experimental test matrix.

3. Numerical Set-Up

At first, a detailed 1D-CFD model of the reference engine was built by means of GT-POWERTM,
a one-dimensional fluid-dynamic code developed by Gamma Technologies Inc. for engine performance
simulation. In particular, a simple injector model was adopted to control the injected fuel mass in
order to guarantee a stoichiometric combustion. Concerning water injection, it was performed via
multiple profile injectors connected to the intake runners, while the injected water mass was imposed
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equal to the experimental one. A model-based controller was then introduced to actuate the waste-gate
opening diameter in order to match the experimental boost pressure.

After a thorough calibration of the gas-exchange processes, a predictive combustion model,
the so-called SITurb [44–46], was implemented in the code for the prediction of the burn rate at various
operating conditions. Knock detection was instead accomplished through a Kinetics-Fit model, which
had been tuned on the basis of a CCV-replicating model.

The following paragraphs contain a detailed description of SITurb, CCV and Knock model
calibration processes, which were carried out considering only the experimental tests without the Port
Water Injection system.

3.1. Calibration of the Combustion Model

Following a well-assessed hierarchical 1D/3D approach, as a first step a turbulence sub-model was
calibrated on the basis of 3D-CFD results obtained at various valve strategies and engine speeds [44].
The second step of the tuning procedure concerned the optimization of the SITurb combustion model
constants. The main characteristics of the SITurb model are briefly summarized in the following
sub-section. More details can be found in [45,46].

3.1.1. SITurb Model

The entrained mass (Me) rate of the unburned air-fuel mixture in the flame front is dependent on
the flame area (Af), the unburned gas density (ρu) and the sum of the Turbulent and Laminar Flame
Speeds, as expressed by Equation (1):

dMe
dt = ρu·Af·(ST + SL) (1)

ST, namely the Turbulent Flame Speed, is calculated through Equation (2), where Rf, u′ and Lt are,
respectively, flame radius, turbulent intensity and turbulent length scale.

ST = CS·u′·

1− 1

1+
Ck ·R

2
f

L2
t

 (2)

In Equation (2), two calibration parameters are present: the Flame Kernel Growth Multiplier (Ck),
which scales the flame front evolution, and the Turbulent Flame Speed Multiplier (CS), which globally
scales the Turbulent Flame Speed.

A further calibration parameter, the Dilution Effect Multiplier (CD), is instead adopted to tune the
effect of diluents such as exhaust residuals, EGR or water on the Laminar Flame Speed (SL), which is
calculated by Equation (3):

SL =
(
Bm + Bφ·(φ−φm)2

)
·

(
Tu
T0

)α
·

(
p
p0

)β
·

(
1− 0.75 · CD·

(
1−(1− 0.75 · CD · [Di])

7
))

(3)

where φ is the in-cylinder equivalence ratio, Tu is the temperature of the unburned gas, p is the
in-cylinder pressure and Di is the mass fraction of the diluents in the unburned zone. Bm, Bφ, φm, T0,
p0, α and β are model constants.

Finally, Equation (4) is used to determine the burn rate of the entrained unburned mass (Mu):

dMb
dt = Mu

τ = Me−Mb
τ

(4)

where τ is assumed to be the time needed by the Laminar Flame Speed to cover the Taylor Microscale
(λ) of turbulence, expressed by Equation (5). Cλ, the Taylor Length Scale Multiplier, is a further
calibration parameter inversely proportional to the burnup rate.
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τ =λ·Cλ
SL

(5)

3.1.2. SITurb Model Calibration Results

Six engine operating points at Full-Load, the ones shown with red circles in Figure 2, were
chosen for the tuning of the four SITurb calibration parameters (see Section 3.1.1). By imposing the
experimental spark timing, a Design of Experiment (DoE) methodology, integrated with a Genetic
Algorithm optimum search, was used to identify the best set of SITurb constants aimed at minimizing
the error between experimental and predicted burn rates for the selected operating conditions [44].
Once the optimal SITurb calibration parameters have been defined (see Table 2), the results of the
complete engine model were compared with experimental data in order to assess its accuracy and
reliability. The values of BMEP, BSFC and Volumetric Efficiency (referred to the air conditions in the
intake manifold), depicted in Figure 3a–c, respectively, highlight a very good agreement with an error
below 2%. Moreover, the simulated pressure cycle and burn rate profile reported in Figure 3d also
show a satisfactory correlation with experimental measurements.

Table 2. Optimized values of the calibration parameters of the SITurb combustion model.

Calibration Parameter Value

Ck 4.112
CS 0.625
Cλ 0.789
CD 0.872

Figure 3. (a) Brake Mean Effective Pressure (b) Brake Specific Fuel Consumption (c) Volumetric Efficiency
(Manifold) (d) Pressure Cycle (left) and Burn rate (right) at 3000 rpm obtained at Full-Load operating
conditions without Port Water Injection; simulated (red solid line) and experimental (black dashed line).
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3.2. Calibration of CCV Model

Since knock is heavily dependent on Cycle-to-Cycle variability (CCV), its occurrence cannot be
predicted by analyzing the average cycle only. However, to physically reproduce the CCV, it would
be necessary to accurately model the stochastic behavior of in-cylinder charge motion, the local
inhomogeneities of the Air-to-Fuel ratio inside the cylinder, etc. as discussed in detail in [47]. As a
result, the adoption of a 0D phenomenological combustion model does not allow a rigorous modelling
of CCV, which instead must be “injected” into the model using a statistically-based approach [48].
In this research work, the GT CCV model [49] developed by Gamma Technologies was adopted. Such
an approach, after the simulation of some preliminary cycles to achieve the convergence of the flow
solution, perturbs two variables of the SITurb combustion model, namely the Turbulent Flame Speed
Multiplier CS and the Taylor Length Scale Multiplier Cλ, for 300 cycles in a row. CS and Cλ assume
random values from Gaussian distributions whose standard deviations represent the calibration
parameters of the CCV model. Similarly to the approach adopted for SITurb calibration, a DoE
methodology integrated with a Genetic Algorithm optimum search was used to calculate the standard
deviations of CS and Cλ that minimized the error between the experimental and simulated Coefficient of
Variation (COV) of the Indicated Mean Effective Pressure (IMEP) (see Table 3). Afterwards, the average
IMEP and its COV resulting from the CCV-run were compared against experimental outcomes. As it
can be seen in Figure 4, the CCV model provides a good estimation of these quantities for almost the
entire engine speed range, with the only exception of the 2000 rpm operating condition, for which
the simulation underestimates the COV. The root cause of this deviation could be attributed to an
overestimation of the scavenging air, due to the particular intake valve lift profile adopted at 2000 rpm;
as a consequence, the residuals are underestimated and so is the COV.

Table 3. Optimized values of the calibration parameters for the Cycle to Cycle Variability CCV model.

Calibration Parameter Value

Standard deviation for CS 0.048
Standard deviation for Cλ 0.167

Figure 4. Coefficient of Variation of the Indicated Mean Effective Pressure (top) and average Indicated
Mean Effective Pressure over 300 CCV-cycles (bottom) at Full-Load without Port Water Injection PWI;
simulated (red solid line) and experimental (black dashed line).
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3.3. Calibration of Knock Model

Most of the models developed for knock prediction are based on the approach proposed by
Livengood and Wu [50] which states that the auto-ignition of the end gas occurs when:∫ tknock

t=0
1
τdt = 1 (6)

where τ is the induction time of the Air-Fuel mixture and tknock is the time corresponding to the
auto-ignition instant (computed from the start of compression).

Several empirical relationships for induction time calculation have been developed in the scientific
literature [51–53]. Most of them, however, do not take into account induction time dependence from
mixture composition in terms of diluents, such as water, and are not capable of reproducing the
Negative Temperature Coefficient (NTC) behavior [54,55]. For these reasons, the so-called Kinectics-Fit
model, proposed by Gamma Technologies [49], was preferred for this work; it calculates the induction
time on the basis of Equation (7):

τi= M1·ai·
(

ON
100

)bi
·[Fuel]ci ·[O2]

di ·[Di]
ei exp

( fi
M2Tu

)
(7)

where ON is the fuel Octane Number, [Fuel] and [O2] are the concentrations in [mol/m3] of fuel and
oxygen, respectively; Tu is the temperature of the unburned gas; [Di] is the sum of N2, CO2, and H2O
concentrations in [mol/m3]. The knock Induction Time Multiplier (M1) and the Activation Energy
Multiplier (M2) are the knock calibration parameters while quantities from ai to fi are model constants.

After the set-up of the artificial CCV model described in the previous section, which led to
the simulation of Cycle to Cycle Variability as shown in Figure 5a, the knock model was calibrated
through a Genetic Algorithm optimum search. M1 and M2 were tuned (see Table 4) so that the
percentage of knocking cycles detected by the model during the 300 CCV-cycles was coincident to the
experimental one. Optimization results are presented in Figure 5b. The Knock model demonstrated
the capability to reproduce the experimental knocking behavior, with the exception of the operating
point at 2000 rpm. This is the direct consequence of CCV-model, which underestimates IMEP COV at
2000 rpm (see Figure 4), thus underestimating the knock occurrence likelihood.

Figure 5. (a) Example of CCV simulation; (b) comparison between simulated (red solid line) and
experimentally measured (black dashed line) knocking cycles percentage over 300 CCV-cycles at
Full-Load without PWI.

Table 4. Optimized value of the calibration parameters for the Knock model.

Calibration Parameter Value

M1 0.860
M2 0.916
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4. Modelling of Port Water Injection

In this section, the numerical approach adopted for the modelling of Port Water Injection system
is presented and discussed in detail, in three sub-sections. The first describes the integration of the
port-puddling model, which allows the proper replication of transient phenomena of water wall film
formation in the intake ports. The second focuses on the water evaporation model, calibrated to discern
the water amount that is directly participating in the charge cooling from that which is evaporating on
the walls. Finally, the last sub-section examines the SITurb combustion model, which requires a further
refinement in order to accurately describe the effect of water vapor on the burn rate.

The calibration of the PWI model has been carried out considering the experimental outcomes
obtained at the operating points of 2500 rpm–18 bar BMEP and 4000 rpm–17 bar BMEP, shown in
Figure 2 with green rhombuses.

4.1. Calibration of Port-Puddling Model

A particular model capable of reproducing the formation of a water wall film was adopted for
the intake ports downstream of water injectors. Afterwards, with the aim of describing the roles that
water performs during each cycle, Equation (8) was introduced:

m(n)
inj + m(n−1)

back = m(n)
film + m(n)

trap + m(n)
back (8)

As represented in Figure 6, the entire water mass injected at cycle ‘n’ (m(n)
inj ) temporarily becomes

part of the wall film. Subsequently, the code models the building-up of the liquid film (see Figure 6a),
along with its transportation under the action of shear forces generated by intake air flow and its
evaporation. The latter is governed by the heat transfer between the film and the gas flow and between
the film and the port walls. However, because of the intimate contact of the thin fuel film with the pipe
wall, the film temperature is close to the port wall temperature.

Figure 6. Schematic representation of (a) port-puddling model (b) injected water behavior.

The liquid film modelling is achieved by the two following parameters: the Circumferential
Extent of Wall Wetting (CEWW) and the Puddle Velocity Multiplier (PVM). The first one, as shown in
Figure 6a, defines the fraction of the intake port circumference that is covered by the water puddle:
higher values imply a greater amount of water that can be retained by the wall film. On the other hand,
PVM represents a multiplier to increase or decrease the effect of shear stresses on the transportation of
the water puddle: higher values of PVM cause lower amount of water to be trapped in the wall film.

It follows that just a fraction of the injected mass (m(n)
inj ) remains trapped in the wall film (m(n)

film),
while the remaining part escapes from the film and enters into the cylinder. Once reached the
combustion chamber, the liquid water starts evaporating by extracting heat either from the surrounding
air or from the cylinder walls. Afterwards, some vapor can flow back into the intake ports (m(n)

back)
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due to the LIVC. m(n)
back, as vapor, does not become part of the liquid film and it gets entrained in the

cylinder during the following cycle. Finally, m(n)
trap represents the amount of water which is present in

the cylinder during the combustion process.
With the aim of characterizing the evaporation process of the injected water, an index was defined

through 3D-CFD simulations [30]. This index, as described by Equation (9), represents instant by
instant the ratio between the mass of water vapor into the cylinder (mH2O,evap) and the maximum
amount of water theoretically available at each engine cycle, that is the sum of the injected water
during cycle ‘n’ (m(n)

inj ) and of the backflow water from the previous cycle ‘n−1’ (m(n−1)
back ).

Evaporation Index (EI) =
mH2O,evap

m(n)
inj + m(n−1)

back
(9)

Figure 7 reports an example of Evaporation Index computation: after Intake Valve Opening (IVO),
entrained water mass produces a subsequent growth of EI; then, from Bottom Dead Centre (BDC) on,
a reduction in EI is observed as a consequence of the high water backflow generated by the Miller cycle
(Late Intake Valve Closing). The Evaporation Index, due to the build-up of the wall film, varies from
cycle to cycle and achieves its highest value, one, when the wall film is saturated and all the injected
water enters into the combustion chamber.

Figure 7. Example of Evaporation Index as a function of Crank Angle (CA).

To carry out the calibration of the water wall film model, the results of a previous work of the
authors were considered [30]: in particular, the Evaporation Indexes computed for three different
values of Water-to-Fuel ratios, namely 9%, 18% and 50%, at the operating point 4000 rpm–17 bar BMEP,
were taken as reference. Such calculations showed that the higher the mass of water injected, the higher
the fraction retained by the wall film. Moreover, as depicted in Figure 8a by dashed lines, none of the
computed indexes reached the maximum value of one: indeed, they were recorded during the third
cycle in a row of Port Water Injection and therefore during the building-up of the liquid film.

To replicate the 3D-CFD Evaporation Indexes, the water wall film model required a calibration
process which was carried out through DoE methodology. In particular, for each Water-to-Fuel ratio,
the optimal pairs of CEWW and PVM aimed at minimizing the error between 1D-CFD and 3D-CFD
Evaporation Indexes were determined.

Solid lines of Figure 8a represent the results of the refined water wall film model, while Figure 8b
reports the values of its calibration parameters as a function of the total mass of injected water
per cylinder.

Considering the operating point 4000 rpm–17 bar BMEP and a Water-to-Fuel ratio of 50%,
the different roles of the injected water were analyzed as a function of the consecutive engine cycles
with PWI (see Equation (8)), as depicted in Figure 9a. Figure 9b shows instead the impact of the water
wall film formation on PWI effectiveness in reducing knock tendency. It can be noticed that during the
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first cycle of port water injection, almost all injected water remains trapped in the wall film (Figure 9a),
and therefore knock likelihood is not reduced (Figure 9b). On the other hand, after six cycles, film
building-up is almost complete and practically all the injected water gets trapped in the cylinder,
thus effectively diminishing knock tendency. Therefore, it can be stated that the PWI system, at the
operating point 4000 rpm–17 bar BMEP and with a Water-to-Fuel ratio of 50%, becomes fully effective
after six cycles of water injection. In steady state conditions, represented in Figure 9a,b by cycles ‘k’
and ‘k+1’, the fraction of injected water mass that gets trapped in the wall film is null (i.e., the amount
of water that enters the film is equal to that which comes out). Moreover, the backflow water of cycle
‘n−1’ is equal to the one of cycle ‘n’. It follows that, in steady state conditions, the amount of water that
takes part in the combustion process (m(n)

trap) is equal to the injected water (m(n)
inj ).

Figure 8. (a) Evaporation index measured during the 3rd cycle in a row of PWI at 4000 rpm—17 bar for
Water-to-Fuel ratios of 9% (red line), 18% (blue line) 50% (green line); 1D simulation (solid line), 3D
simulation (dashed line); (b) Optimized values of the calibration parameters for the port-puddling
model as a function of the total injected water per cylinder.

Figure 9. (a) The amount of water available before Intake Valve Opening (IVO), water trapped in
the wall film, water backflow and water which is present into the cylinder during the combustion
process as a function of the consecutive engine cycles with Port Water Injection (PWI); (b) The amount
of injected water, trapped water in the wall film and the knock induction time integral as a function of
the consecutive engine cycles with PWI; k ≥ 13 cycles.
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4.2. Calibration of Evaporation Model

The engine model governs the water vaporization within the cylinder through a simple
phenomenological evaporation model. However, a detailed investigation to quantify the charge
cooling effect produced by the phase change of water needs to be carried out. As a matter of fact, when
entering the cylinder, the water droplets can impact on either the piston or the liner, thus extracting the
heat requested for evaporation from the walls instead of the surrounding gases. The share between
these contributions can be tuned through a parameter known as Fraction of Vaporized Heat Taken
from Walls (FHW). The latter accounts for the fraction of water whose vaporization occurs on the
cylinder walls rather than within the cylinder gases. As shown in Figure 10a,b, where the in-cylinder
temperature at Intake Valve Closing (IVC) and the Volumetric Efficiency are respectively reported,
an excessively low value of FHW implies a larger amount of heat adsorbed from surrounding air, thus
inducing a significant in-cylinder gases cooling with a consequent overestimation of the Volumetric
Efficiency. The increase in FHW improves the calculation of engine airflow: however, a constant value
for this parameter does not ensure a satisfactory correlation between numerical and experimental
Volumetric Efficiency. Therefore, considering the operating point 4000 rpm–17 bar BMEP, the FHW was
optimized as a function of the total amount of liquid water that enters the cylinder, with the objective
being to match the experimental air flow rate (Equation (10)).

FHWopt = 0.95− 0.0028·
∫ .

mH2O,liq (10)

where
.

mH2O,liq represents the instantaneous mass flow rate of liquid water that passes through the
intake valves of a single cylinder.

Figure 10. (a) In-cylinder temperature measured at Intake Valve Closing (IVC) and (b) Volumetric
Efficiency as a function of the Water-to-Fuel ratio for different values of the Fraction of Vaporized Heat
Taken from Walls (FHW) model calibration parameter; operating point 2500 rpm–18 bar.

From Equation (10) it was noticed that, considering a 10% Water-to-Fuel ratio, only around 6% of
in-cylinder liquid water vaporizes within the cylinder gases. Furthermore, such a percentage rises
along with the increase in the injected water and achieves a value around 15% with a Water-to-Fuel
ratio equal to 90%. In accordance with previous findings [29,31,33], these results evidence a poor
efficiency of PWI system in reducing the charge air temperature.

The robustness of Equation (10), which was defined for the operating point 4000 rpm—17 bar
BMEP, was assessed at the operating point 2500 rpm–18 bar BMEP. As depicted by the blue solid
line of Figure 10, the FHW optimization limits the reduction in in-cylinder temperature produced by
the increase in the injected water, allowing the correct reproduction of the experimental Volumetric
Efficiency for any Water-to-Fuel ratio.
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4.3. Calibration of Dilution Effect Multiplier

Despite replicating the experimental values of boost pressure, spark timing, lambda and intake
airflow, the engine model was not capable of satisfactorily predicting the evolution of the combustion
process when water was injected. In particular, the higher the water content, the higher the deviation
from experimental results: this trend is evident when observing Figure 11a, where both the center
of gravity of the combustion and the in-cylinder pressure peak (pmax) are reported. This error was
attributed to an incorrect estimation of the Laminar Flame Speed, the only parameter involved in
burn rate calculation which depends on the in-cylinder mass fraction of water (see Equations (1) and
(3)). As claimed by several authors [31,35,36], the water dilution of the air–fuel mixture drops the
SL, thus delaying the combustion duration. This effect, governed in the SITurb model by the CD (see
Equation (3)), seems to be underestimated, thus resulting in a more advanced MFB50 (Crank Angle
corresponding to 50% of fuel burned) and a consequently higher in-cylinder pressure peak.

Based on the above considerations and similarly to the approach used for FHW, CD was calibrated
as a function of the total amount of in-cylinder water vapor present at spark timing, in order to
minimize the error on the prediction of the combustion center of gravity. FHW optimization, carried
out at operating point 4000 rpm–17 bar BMEP, led to definition of Equation (11):

CD,opt= 0.872 + 0.0062·
{
mtrap[mg]

}
(11)

As expected, Equation (11) shows that the greater the water content, the higher the optimal CD

and therefore the impact on SL slows, as described in the scientific literature. It is worth remembering
that, at steady state conditions, the amount of water that takes part in the combustion process (mtrap) is
equal to the amount of injected water, as already described in Section 4.1.

The robustness of Equation (11) was then assessed at the operating point 2500 rpm–18 bar BMEP:
observing the green line of Figure 11a, the CD optimization led to MFB50 and maximum in-cylinder
pressure values well correlated with the experimental results for the entire Water-to-Fuel ratio sweep,
with errors lower than 2%. Moreover, also the simulated pressure cycle and the burn rate profile
reported in Figure 11b for a 90% W/F show a satisfactory correlation with experimental measurements.

Figure 11. (a) Crank Angle corresponding to 50% of fuel burned (top), and maximum in-cylinder
pressure (bottom) as a function of the Water-to-Fuel ratio; (b) Pressure Cycle (left), and Burn Rate
(right) for a Water-to-Fuel ratio of 90%; operating point 2500 rpm–18 bar; simulated (solid lines) and
experimental (black dashed line).
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5. Results

In this section, the engine model validation against the experimental tests carried out at WOT
with PWI is presented and discussed. Moreover, the capability of the proposed methodology to create
a virtual test bench for the optimization of the engine operating parameters at different water flow rate
values is assessed.

5.1. PWI Model Validation

At first, FHWopt and CD,opt equations together with the port-puddling model were implemented
in the engine model calibrated in dry conditions (see Section 3). The knock model and CCV model were
not modified. The latter, which is not predictive, was kept unchanged since all the experimental tests
carried out with water injection evidenced only a quite moderate increase in IMEP COV (see Figure 12).

Afterwards, by imposing the experimental boost pressure and by controlling the injected fuel
mass in order to guarantee stoichiometric combustion, the experimental amount of water mass was
injected in the intake runners. Subsequently, by simulating a significant number of engine cycles with
the CCV model enabled, the spark timing was adjusted in order to achieve the same percentage of
knocking cycles observed at Full-Load without PWI (see the red solid line of Figure 5). Since engine
performance at 5000 rpm and 5500 rpm were not knock limited (see Figure 5), such analysis focused on
the engine speed range 2000–4000 rpm.

Figure 12. Experimental Coefficient of Variation of the Indicated Mean Effective Pressure at Full-Load
in dry (red bars) and wet (blue bars) conditions.

The predicted Knock Limited Spark Advance, BMEP, as well as pressure cycles and the burn rates,
which for the sake of conciseness have been presented only at 4000 rpm, showed very good agreement
when compared to the experimental results (see Figure 13a–c, respectively). The error around 4%
obtained in estimating the engine load at 2000 rpm–Full-Load with PWI was attributed to a knock
tendency underestimation. Such an error, already evident in Figure 5, allowed the exploitation of a
more advanced spark timing with a consequently higher BMEP.

5.2. Engine Virtual Calibration

The predictive capabilities of the proposed methodology were finally used to perform a virtual
calibration of the engine. In a first stage, the relative BMEP improvement achievable with different
levels of water mass flow rate in knock limited conditions was investigated. Subsequently, the same
analysis was carried out by introducing an additional constraint related to the in-cylinder pressure peak,
which was kept below 100 bar. Besides knock and maximum in-cylinder pressure, major limits to the
engine performance enhancement could be represented by either excessive COV of IMEP or lubricant
oil dilution, which can suddenly increase at high W/F ratios [30,31]. Unfortunately, these phenomena
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cannot be caught by the model since a blow-by model is not present and the CCV is “injected” into the
model on the basis of the experimental data.

Figure 13. Experimental (dotted lines) and simulated (solid lines) without PWI (red lines) and with PWI
(blue lines) at Full Load (FL) operating conditions: (a) Spark Timings vs. engine speed; (b) BMEP vs.
engine speed; (c) in-cylinder pressure (left axis) and burn rate (right axis) vs. crank angle at 4000 rpm.

The results of both the abovementioned analyses, which were carried out by keeping constant
the experimental boost pressure target and maintaining a stoichiometric combustion, are presented
in Figure 14. The latter shows the BMEP improvements as a function of the water flow rate for each
engine speed: each line belonging to a certain engine speed contains a specific symbol (e.g., round for
2000 rpm, square for 2500, etc.) which is repeated every time the injected water mass per cycle per
cylinder (minj) increases by 10 mg. Moreover, the black hexagons of Figure 14 give the relative increase
in BMEP achieved with the water flow rate exploited experimentally in WOT operating conditions.

Figure 14. Relative improvement of Brake Mean Effective Pressure BMEP enabled by PWI at Full-Load
as a function of the injected water flow rate.

At a constant water flow rate, as shown in Figure 14, greater improvement of engine BMEP can be
achieved at lower engine speed. This happens because at equal water consumption, the lower the
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engine speed, the higher the injected water mass per cycle: the larger water content, thanks to its
knock mitigation capability, enables a higher advance of spark timing with a consequently higher
improvement of engine load. Considering instead the symbols within the two grey circles of Figure 14,
it is noticeable that, at equal injected water mass per cycle, the relative increase in engine BMEP is
almost constant independently from the engine speed. Moreover, if the engine is knock limited (solid
lines), a linear correlation is found between the water mass flow and the BMEP rise, which exceeds
17% with an minj equal to 60 mg. On the other hand, by adding the constraint on the in-cylinder
pressure peak (dashed lines), a significant reduction in delta BMEP increase is observed as soon as the
maximum in-cylinder pressure achieves the value of 100 bar. However, as expected, even when engine
performance is limited by the in-cylinder pressure peak, a further increase in the water mass flow rate
results in a higher engine BMEP. Indeed, the additional water causes a further slowing of the Laminar
Flame Speed and, in turn, of the burn rate (see Section 4.3): it follows a reduction in the maximum
in-cylinder pressure, thus enabling an advance of the spark timing. The subsequent ignition advance,
in addition to returning the pressure peak in the combustion chamber below the 100 bar threshold
value, guarantees a small improvement of engine BMEP.

6. Conclusions

This paper describes a methodology, based on a quasi-dimensional approach, to model a PWI
system and to assess its knock mitigation potential, thus significantly reducing the experimental effort
for engine calibration.

In a first stage, experimental investigations were carried out at the engine test bench to characterize
the engine behavior under “dry” (i.e., without WI) and “wet” (i.e., with WI) operation. Afterwards,
the experimental outcomes obtained without PWI were used to calibrate the combustion (SITurb),
CCV and knock models. In particular, knock model constants were tuned by simulating CCV over 300
consecutive engine cycles with the aim of matching the experimental percentage of knocking cycles.
In a second stage, the results of 3D-CFD simulations of the PWI were used to calibrate a port-puddling
model: the latter, once implemented in the reference engine model, was proven to properly replicate
transient phenomena of water wall film formation, catching cycle by cycle the amount of water that
enters into the cylinder and is therefore available for knock mitigation. Subsequently, the experimental
results collected at medium loads with W/F sweeps were considered for the refinement of both
water evaporation and SITurb model. The first one was calibrated to properly discern the fraction of
the injected water that is producing the charge cooling through its evaporation from that which is
evaporating due to the heating from the walls. Then, the SITurb model was tuned in order to carefully
predict the impact of the injected water on the Laminar Flame Speed: in particular, a linear dependence
between the in-cylinder vapor content and the Dilution Effect Multiplier was found. The PWI model
was then validated against the experimental tests carried out at Wide Open Throttle with PWI, showing
the capability to accurately predict the effects of water injection in terms of both burning rate slow
down and knock tendency reduction. Finally, the proposed methodology was used to create a virtual
test bench, which allowed the evaluation of engine performance improvement as a function of the
injected water mass flow rate.

The same methodology will be adopted in a future work in order to determine the water
consumption as well as the potential benefits in terms of CO2 emission achievable over RDE cycles.
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Definitions/Abbreviations

1D One Dimensional
3D Three Dimensional
aTDCf After Top Dead Center Firing
A/F Air-to-Fuel ratio
BDC Bottom Dead Centre
BMEP Brake Mean Effective Pressure
BSFC Brake Specific Fuel Consumption
CA Crank Angle
CCV Cycle-to-Cycle Variability
CEWW Circumferential Extent of Wall Wetting
CFD Computational Fluid Dynamic
COV Coefficient Of Variation
CR Compression Ratio
DoE Design of Experiment
DWI Direct Water Injection
ED50 50% Evaporation Duration
EI Evaporation Index
EOI End Of Injection
EU European Union
EGR Exhaust Gas Recirculation
FHW Fraction of vaporized Heat taken from Walls
FL Full-Load
IMEP Indicated Mean Effective Pressure
IVC Intake Valve Closing
IVO Intake Valve Opening
KLSA Knock Limit Spark Advance
LHV Lower Heating Value
LIVC Late Intake Valve Closing
MFB50 50% Mass Fraction Burned
N Number
ON Octane Number
PM Particulate Matter
PVM Puddle Velocity Multiplier
PWI Port Water Injection
RDE Real Driving Emissions
RON Research Octane Number
rpm revolutions per minute
SMD Sauter Mean Diameter
t time
tknock Auto-Ignition instant
T-DISI Turbocharged Direct Injection Spark Ignition
VCR Variable Compression Ratio
VE Volumetric Efficiency
VVA Variable Valve Actuation
w/ with
W/F Water-to-Fuel ratio
w/o without
WI Water Injection
WOT Wide Open Throttle
WLTP Worldwide Harmonized Light-Duty Test Procedure
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Symbols

φ Equivalence Ratio
λ Taylor Microscale
ρu Unburned Gas Density
τ Induction Time
ω Engine Speed
Af Flame Area
Cλ Taylor Length Scale Multiplier
CD Dilution Effect Multiplier
Ck Flame Kernel Growth Multiplier
CS Turbulent Flame Speed Multiplier
Di Mass Fraction of Diluents
Lt Turbulent Length Scale
M1 Knock Induction Time Multiplier
M2 Activation Energy Multiplier
Mb Burned Mass
mback In-Cylinder Water Mass that flows back to the Intake Ports
Me Entrained Mass
mfilm Water Trapped in the Wall Film
mH2O,liq In-cylinder Mass of Liquid Water
mH2O,evap In-cylinder Mass of Water Vapor
minj Injected Water Mass per Cylinder
mtrap Water Mass Trapped in the Cylinder after IVC
Mu Unburned Mass
(n) Cycle Number
p In-cylinder Pressure
pmax Maximum in-cylinder Pressure
Rf Flame Radius
SL Laminar Flame Speed
ST Turbulent Flame Speed
Tu Temperature of the Unburned Gas
u′ Turbulent Intensity
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