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Does Domain Name Encryption Increase Users’ Privacy?

MARTINO TREVISAN, FRANCESCA SORO, MARCO MELLIA, Politecnico di Torino, Italy

IDILIO DRAGO, University of Turin, Italy

RICARDO MORLA, University of Porto, Portugal

Knowing domain names associated with traffic allows eavesdroppers to profile users without accessing packet payloads. Encrypting
domain names transiting the network is, therefore, a key step to increase network confidentiality. Latest efforts include encrypting the
TLS Server Name Indication (eSNI extension) and encrypting DNS traffic, with DNS over HTTPS (DoH) representing a prominent
proposal. In this paper, we show that an attacker able to observe users’ traffic relying on plain-text DNS can uncover the domain
names of users relying on eSNI or DoH. By relying on large-scale network traces, we show that simplistic features and off-the-shelf
machine learning models are sufficient to achieve surprisingly high precision and recall when recovering encrypted domain names.
The triviality of the attack calls for further actions to protect privacy, in particular considering transient scenarios in which only a
fraction of users will adopt these new privacy-enhancing technologies.

CCS Concepts: • Networks → Network privacy and anonymity;Web protocol security; Network measurement.

Additional Key Words and Phrases: Privacy, Encryption, Network Traffic, Eavesdropping

1 INTRODUCTION

As a reaction to the ease of passive monitoring of network traffic [6], the Internet has massively moved towards
encrypted protocols [1, 19]. The simplicity of new methods to obtain and renew server certificates, the improvements
on web protocols that now support or mandate the use of TLS, and the stricter security policies in web browsers have
pushed popular services into secure deployments [5]. These deployments are robust against in-network monitors and
eavesdroppers, thus overall increasing privacy and confidentiality.

The most notable omission in the initial efforts to enhance confidentiality has been the domain names, which are
still exchanged in plain-text in different situations. Notably, DNS requests and responses carry Fully Qualified Domain
Names (FQDNs) in clear in and TLS includes the non-encrypted Server Name Indication (SNI) field to allow clients and
servers to negotiate the certificate used in each connection. This step is required when multiple websites are hosted
behind a single server IP address, which is common in Content Delivery Networks (CDNs). The presence of plain-text
domain names in the traffic gives eavesdroppers access to rich information [3]. This aspect gives the eavesdropper the
possibility to obtain a dataset of traffic flow statistics, having as labels their associated domain names. Eavesdroppers
can therefore build lists of the websites visited by users, with clear implications for users’ privacy [29]. Recent proposals
aim at fixing the issue by encrypting DNS traffic, e.g., running DNS over HTTPS (DoH) [12] and by encrypting the
TLS SNI [22], i.e., deploying eSNI. In such a scenario, eavesdroppers would be left with only IP addresses as sensitive
information.

However, DoH and eSNI deployments are not widespread. Whereas one can expect an increasing trend in their
adoption, a significant portion of users will likely not start using these technologies any time soon. This partial
deployment raises questions on whether the privacy of users adopting the privacy-enhancing technologies are still
protected if some other users remain unprotected. Moreover, even with a complete shift towards DoH and eSNI, it would
still be possible for an attacker to build a labeled dataset by actively visiting the set of websites of interest.
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In this paper, we study to what extent the privacy gains with the deployment of DoH and eSNI can be reverted. More
concretely, we evaluate whether an attacker observing the traffic of some users exposing domain names they contact
can uncover the domain names contacted by the remaining users – i.e., breaking the protection intended by DoH and
eSNI. We assume that the attacker can refer to different sources to build a dataset of flow level statistics labeled with
their domain names: (i) eavesdropping traffic of users relying on plain-text protocols; (ii) harvesting corporate/private
traffic and DNS logs; or (iii) running active experiments. Here, we rely on large-scale traces collected in a production
network. We randomly split users into two sets, for training and testing. We label flows with their associated domain
names, focusing on TLS traffic only. We observe that only a negligible percentage of flows are currently protected by
eSNI, thus allowing us to extract reliable names for the vast majority of the TLS flows. Using traffic observed in the
training dataset we build models that can uncover the domain names in the testing dataset.

We show that an off-the-shelf machine learning approach is sufficient to execute the attack. The source code is openly
available and we can share the dataset upon request. 1 We extract traffic features for the most popular domain names
observed in the training set, such as flow duration, byte counters as well as packet sizes and packet inter-arrival times.
The machine learning models yield surprisingly good results, delivering F1-scores over 0.8 for 80% of the evaluated
domain names. We analyze the performance of the classifier under different conditions. We conclude that simple
statistics of the first few IP packets of the connections (i.e., packet lengths and inter-arrival times) already provide
sufficient information to seed the attack. The triviality of the attack calls for further actions to protect domain names.

2 RELATEDWORK

Extensive prior work addresses the problem of inferring users’ activity through packet eavesdropping. Already in 2002
authors of [11] showed that it is possible to understand which website a user is visiting by simply matching the volume
of downloaded data against a set of known web pages. More recently, other works targeted the same problem from
diverse perspectives, such as dynamic content [24], multi-tab browsing [10] or different underlying encrypted protocols
like ToR [2], HTTPS [9] and 802.11 [7]. Other works focus on websites belonging to diverse categories, like politics [15]
and health [17], and make use of different machine learning techniques, such as deep neural networks [4, 23]. All
these works rely on datasets collected in a controlled environment, where diversity is intrinsically limited. We follow a
methodology similar to those works. However, we illustrate the feasibility of such attacks in a new scenario, i.e., against
hostnames protected by eSNI and DoH. Moreover, we use a passive dataset collected in a real environment, where
thousands of domains are contacted by thousands of users.

Different website fingerprinting techniques are tested on a TOR network in [26, 30]. Other works proposed approaches
for traffic classification using side-channels containing valuable information, such as plain-text DNS transactions [3, 18,
21]. Recent efforts toward privacy propose encrypted DNS as a solution to limit the applicability of these approaches [12,
14]. However, authors of [16] already highlighted some critical aspects of many DoH deployments. Moreover, authors
of [13] recently pointed out how the packet eavesdropping techniques used for website fingerprinting can be applied to
encrypted DNS too, using metadata like packet sizes and timing. Authors of [25] achieve similar results by analyzing
DNS-over-HTTPS (DoH) using features related to the size, timing, and ordering of DNS packets. In this paper, we target
the scenario where DNS traffic is encrypted, but differently from these works we fingerprint directly TCP connections
where domain information is hidden by DoH and eSNI.

1https://smartdata.polito.it/does-domain-name-encryption-increase-users-privacy/
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3 METHODOLOGY

3.1 Threat model

The considered threat model is depicted in Figure 1. We assume eavesdroppers monitor traffic of a set of users. Some of
these users utilize only fully encrypted protocols to hide the domain names of servers they contact. In such scenario,
attackers cannot obtain any insights from network packets directly, beyond the source and destination IP addresses.
Attackers want to know whether these users access to particular services or websites – i.e., attackers have a list of
domain names of interest and want to detect the users contacting these domain names.

The network hosts also users that do not rely on DoH or eSNI. These users exchange non-encrypted packets with
servers leaking their domain names. This allows the attacker to easily build a ground truth. Attackers, therefore, learn
patterns that characterize the domain names of interest from these users. We do not assume anything else about the
traffic. Attackers can easily associate flows with the respective server domain names, e.g., by correlating with the
previously observed DNS requests and responses [3], or directly using the SNI information. Note that users already leak
domain names in the network if they use either plain-text DNS or SNI.

In some cases, server IP addresses are a rich source of information to uncover domain names. As shown in [27],
most IP addresses host a single domain name. However, these domain names are responsible for a minority of the
traffic. For instance, in our dataset (described in the next section) only 24% of the traffic comes from server IP addresses
hosting only a single domain name. Most traffic comes instead from large services (e.g., YouTube [8]), CDNs, or hosting
providers (e.g., Cloudflare or Cloudfront), which usually aggregate multiple domain names behind few IP addresses. We
here focus on the latter scenario and assume that server IP addresses provide only coarse information about the hosting
company and no further hint to uncover the specific domain names.

3.2 Dataset

We evaluate the attack using a dataset collected in July 2019 in our campus network. We rely on a passive probe to
capture traffic in the edge router that aggregates all traffic exchanged by the University with external servers. We use
Tstat [28] to obtain statistics from the traffic. Tstat is a passive traffic monitor that exports flow records, i.e., a single
entry for each TCP/UDP stream in the network. Each flow record is composed of a rich set of statistics. Beside classical
flow-level fields, such as IP addresses, port numbers, packet and byte-wise counters, Tstat extracts the domain names
seen in the TLS SNIs, which we use to label the TCP flows. We export also basic information from the first 10 packets of
each flow direction (from client to server and vice versa), including packet sizes and inter-packet arrival times.

Our dataset spans over 28 days and includes all flows originating from campus users and reaching external servers. In
total, we obtain 340 million TLS flows from 3 995 client IP addresses. They contacted 380 thousand server IP addresses,
and we observed 933 thousand domain names in the SNI field. The majority of TLS flows uses TLS version 1.2 (77.6%),
while we observe TLS 1.3 in the 16.3% of cases. Using the Application-Layer Protocol Negotiation (ALPN) field of TLS,
we note that HTTP versions 1.1 and 2.0 appear with a similar share (46.5% and 53.5% of the flows, respectively). eSNIs
are mostly absent in our data.

We have taken different measures to protect users’ privacy during the data collection. First, we avoid recording
personally identifiable information (PII). We carefully limit the collected information to flow-level statistics and domain
names, discarding any other fields not useful for the study, like plain-text HTTP records. Second, IP addresses are
anonymized by the probes, thus limiting the identification of the owner of the station. Finally, data collection is approved
and constantly supervised by the responsible IT teams.
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Fig. 1. Threat model: Some users leak information (red dashed) that eavesdroppers use to infer domain names of the users relying on
DoH and eSNI (green solid).

3.3 Selection of domain names

We restrict our analysis to popular domain names. Our rationale is twofold. First, we filter out the long-tail of domain
names with a negligible number of flows and traffic. Second, we focus on large company infrastructures that host
popular services (e.g., Facebook, Google) or offer their servers to third parties (CDNs and cloud providers).

We focus on the traffic of the 37 ASes listed in Table 1. To this end, we map each server IP address to the corresponding
AS using a BGP View taken from the Route Views Project.2 These ASes are the most popular in our dataset, and their
overall traffic represents the 90% of all flows. These ASes include popular content providers (e.g., Google, Microsoft and
Dropbox), CDNs (e.g., Cloudflare, Akamai and Edgecast) and cloud providers (e.g., Amazon and OVH).

Table 1 shows statistics of the traffic to these ASes for July 1st, 2019. We perform experiments with both second-level
domain names (SLDs) and FQDNs. We consider popular names all FQDNs or SLDs that contribute with at least 1 000
flows in our training set. In Section 4.5, we evaluate the impact of this filtering threshold. Note that the 64% of the SLDs
we included are present in the Top-10k domains identified by the Cisco Umbrella Popularity list3.

In total, we select 708 FQDNs, which are responsible for 82% of the flows for the selected ASes. Some ASes include
hundreds of FQDNs, while in three cases only one FQDN passes our threshold. Considering second-level domains,
we obtain 409 unique names, representing 91% of the flows. Note that 11 ASes host only one second-level domain,
thus representing the totality of their traffic. These ASes host infrastructure dedicated to particular services, for which

2http://www.routeviews.org/. We manually aggregate multiple ASes of the same company.
3http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
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Table 1. Statistics of full and second-level names in our dataset. Statistics refer to 1st July 2019. The popular domains appear in at
least 1 000 flows. Percentages in brackets represent the share of traffic for popular names.

AS FQDN SLD AS FQDN SLD
Adform 5 (94%) 1 (100%) Google 136 (91%) 42 (97%)
Adobe 4 (42%) 5 (75%) Hetzner 4 (43%) 5 (45%)
Akamai 99 (68%) 77 (84%) Highwinds 4 (71%) 5 (75%)
Alibaba 2 (34%) 3 (75%) Integral 4 (100%) 1 (100%)
Amazon 130 (55%) 117 (74%) Italiaonline 4 (68%) 4 (94%)
Apple 30 (86%) 4 (100%) Linkedin 2 (74%) 1 (100%)
Appnexus 6 (100%) 1 (100%) Microsoft 109 (89%) 33 (96%)
Aruba 1 (13%) 4 (35%) Outbrain 4 (93%) 3 (100%)
Cloudflare 9 (25%) 12 (30%) Ovh 6 (33%) 10 (43%)
Criteo 18 (98%) 2 (100%) Pubmatic 3 (91%) 1 (100%)
Digitalocean 1 (31%) 2 (31%) Quantcast 3 (85%) 1 (100%)
Doubleverify 3 (100%) 1 (100%) Rubicon 5 (96%) 1 (100%)
Dropbox 9 (90%) 3 (100%) SmartAd 4 (100%) 1 (100%)
Edgecast 11 (64%) 13 (75%) Telegram 2 (91%) 1 (100%)
Facebook 32 (98%) 10 (99%) Twitter 6 (100%) 2 (100%)
Fastly 25 (49%) 20 (68%) Webtrekk 5 (71%) 5 (100%)
Fastweb 1 (8%) 4 (31%) Yahoo 6 (70%) 1 (100%)
Garr 15 (82%) 12 (93%) TOTAL 708 (82%) 409 (91%)

classification becomes a trivial task. The selected domains include popular sites, such as news and weather forecast
websites, and domain names supporting third-party services, such as advertising and tracking domains. The remainder
of the traffic is composed by thousands of infrequent domains generating little traffic, and for which it is hard to build
reliable models. Naturally, we do not exclude that their popularity may change when collecting data for a longer period.
All flows of these unpopular domains are kept in the dataset, in a special category “others”. As such, while we are not
interested in identifying domain names of these flows, they still contribute with noise, making it harder to execute the
attack.

3.4 Testing methodology

We build a classifier to label flows with their respective server domain name. Therefore, the object of our classification is
a flow. We perform a correct classification when we give a flow the right name among those in our selection, including
the “other” class.

We focus only on HTTPS flows for which we recover the domain name by inspecting the SNI (i.e., our ground truth).4

We design two sets of experiments. In the first set, we use the full domain names as class labels. As such, our model has
to learn how to classify flows into 709 classes (708 names and “others”). Note that classes are strongly unbalanced, i.e.,
the number of samples depends on the popularity of the domains. In the second experiment, we use the second-level
names as class labels. Our model has to classify flows into 410 classes. Since second-level names aggregate more flows,
the class “others” is less popular in this scenario, representing 9% of the totality.

Learning a single model to classify such a large number of classes is a complex problem. To simplify the learning, we
train one classifier for each AS in Table 1. We confirm that each domain name in our list appears solely in one AS. Each
classifier is thus responsible for the identification of a disjoint set of domain names. We use the server IP address to
identify the AS and then the classifier to use.

4Similarly we could focus on TCP flows with domain names coming from the DNS.
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Fig. 2. F1-Score distributions for fully qualified domain names (FQDN) and second-level domain names (SLD). Note that the y-scale
starts from 0.5.

Attackers build machine learning models for the domain names of interest using the traffic of the users not relying
on DoH or eSNI. We simulate this scenario by randomly choosing 50% of the client IP addresses for training, reserving
the remaining 50% of the IP addresses for testing. As such the training and testing sets include around 2 000 clients each.
This procedure allows us to test classifiers on clients whose data has not been previously observed for training, thus
limiting over-fitting due to specific client characteristics – e.g., browsers, operating systems and user habits. For most
experiments, we use data from the first day of our dataset (50% of the IP addresses for training, 50% for testing). To
check whether the classifiers’ performance persists over time, we perform experiments in which we apply the methods
built with data from the first day to the data captured in the remaining days (testing set).

We use an off-the-shelf random forest classifier with 100 estimators and balanced class weights to limit class imbalance
during training [20]. While other models may improve performance, our goal is not to find the best possible classifier,
but, instead, evaluate how practical the attack is. As we will show, a random forest classifier is surprisingly good for
this scenario. Regarding features, we deliberately avoid running feature selection when building the classifiers and
consider more than 200 numerical features. Yet, we provide results listing the most discriminative features in our data.

Finally, we use the F1-Score of each class to evaluate the classification performance.5 Given a class, an F1-Score of 1
represents perfect performance. Considering each AS, we compute the distribution of F1-Scores over all classes. We
then analyze the distribution of the F1-Scores across ASes to gauge the effectiveness of the attack.

4 ATTACK EFFECTIVENESS

We first illustrate the overall performance obtained using the random forest classifier. Next, we assess the impact on
classification results when changing the experimental setup.

4.1 Classification performance

Figure 2 depicts the performance of the classifiers. The blue boxes, report separately by AS, the distribution of F1-Scores
obtained when classifying FQDNs. Black strokes represent the median.

Performance varies according to the AS. The 1st quartile is above 75% for all ASes, with some ASes presenting median
F1-Score close to 95%. Curiously, the performance is not directly proportional to the number of classes – more classes
could represent a harder scenario. For example, Akamai, Amazon, Google and Microsoft are the ASes with the largest

5The F1-Score is the harmonic mean between Precision and Recall of a class.



number of classes but have a median F1-Score larger than 0.85. In a nutshell, 50% of full domain names can be almost
perfectly recovered.

Overall, around 80% of the full domain names used as class labels have F1-Score above 80%. Recalling that the
F1-Score for a class is the harmonic mean between its precision and recall, F1-Scores close to one require both metrics
to have high values. That means that classifiers not only correctly identify the domain names (high precision), but also
retrieve most of the flows related to the given names (high recall).

We conclude that an attacker can easily recover the domain name by using just traffic features. These results have
been obtained with an off-the-shelf, not-optimized machine learning algorithm. In other words, the attack is very easy
to be executed. Next, we investigate some factors influencing the classification results.

4.2 Second-level vs. full domain classification

We now evaluate the classification results when using a coarser aggregation of class labels, i.e., using second-level
domain names. This setup represents a scenario where attackers are interested in identifying only specific websites (e.g.,
example.com) regardless sub-domains contacted by users (e.g., images.example.com or css.example.com). Recall
that by using second-level domain names we reduce substantially the frequency of the class “others”. In fact, the overall
percentage of labeled flows raises from 57% to 73%.

Red boxes in Figure 2 show results. Overall performance is similar to what we obtained with full domain names.
The ratio of classes having F1-Scores higher than 0.8 raises from 80% (full names) to 86% (second-level names). The
performance improvement can be associated with (i) the larger number of samples in the training set; (ii) the smaller
number of classes. In particular, for 11 ASes we find that all the traffic is served by a unique second-level name, and, as
such, the classification becomes trivial and all flows are correctly identified. In sum, attackers willing to uncover only
second-level names can (i) increase the coverage from 82% to 91% of the flows; (ii) reach better performance without
increasing the complexity of the classifiers.

4.3 Which traffic features are needed?

Designing eventual protections against these attacks require protocol designers to understand which side-channels
contribute to the domain name inference. To this end, we analyze the importance of the flow features that we use in the
classifiers.

Recall that Tstat exports hundreds of per-flow features, that we can coarsely aggregate into 3 groups: (i) Basic Flow
Features: Those exported by simple flow meters such as Cisco’s NetFlow – i.e., the overall number of packets and bytes
of each flow; (ii) Advanced Flow Features: Those computed from the analysis of the IP and TCP headers such as per-flow
packet loss, RTT, Time-To-Live, etc.; (iii) First Flow Packets: The size and inter-packet arrival time for the first 10 packets
of each flow direction; Tstat also reports the size of the first 10 push-delimited messages – i.e., sequences of segments
delimited by a packet with the PSH flag set.

Figure 3 shows the top-15 most important features. As we use Random Forest models, we compute the feature
importance by averaging the Gini impurity importance calculated over each tree.6 The higher the Gini, the more
information that feature brings. We build an independent classifier for each AS, and, as such, we report with a boxplot
the distribution of the importance of a feature across the models and rank them by the median values.

6https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
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Fig. 3. Distribution of feature importance over different ASes for the top-15 features.

The most important feature is the size of the second client push-delimited message, likely containing part of the
TLS handshake. The importance of size information is confirmed by the presence of other two message-based features
among the top-15. In other six cases we find features based on sizes, as well as timings of the first packets. This result
allows us to conjecture that such kind of features is sufficient to obtain good classification performance. To confirm it,
we run an experiment in which we use only these features in isolation, and we observe a small penalty in the overall
performance.

Flow-wise counters are almost absent, represented only by overall number of push-delimited messages. This result
suggests that mounting an attack with simple flow-level features is not trivial. We also find deployment-dependant
features, such the number of TCP-level retransmissions, appearing under different forms in three different features. That
is, models seem to incorporate some the peculiarities of the targeted network. Transferring such models to different
deployments may impair performance. Unfortunately, we do not have datasets collected in different networks, and we
leave the study of the spatial stability of learning as future work.
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Possible protection against this kind of attacks would require traffic signatures to be masked. On the one hand,
blurring packet sizes and packet inter-arrival times, e.g., by padding packets and adding random packet delays, could
help to limit fingerprints. This has to be done at the TCP level, on all flows, and not only by modifying the DNS and
TLS protocols.

4.4 How long models persist?

In the prior experiments we use data from the first day of our dataset for both training and testing, randomly splitting
the client IP addresses into the sets. Here we want to quantify to what extent the freshness of training data is important
to the classification performance. We train the classifiers on 50% of clients seen in the first day (full domains). Then we
use the remaining days for testing, using only clients that were not part of the training.

Figure 4 shows the overall distribution of F1-Scores when increasing the interval between training and testing. The
performance slightly degrades for some domains as time goes on. This effect is clearer when the time difference between
the datasets is longer than 1 week. Note how the 25th percentile drops from 0.83 (left-most boxplot) to 0.73 (right-most
boxplot). However, for most domains the classifier is still able to correctly classify flows even after 28 days. Median
values for F1-Scores decreases only slightly, from 0.95 (same day training and testing) to 0.92 (4-week gap between
training and testing).

To help understanding the drop in performance, numbers on top show how many FQDNs present in the training still
exceed 1 000 flows in the testing set. We can see that some domain names that are popular in the first capture day are
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no longer popular at the end of the capture. Other names initially in the “others” category increase in popularity (not
shown in the figure). In sum, the set of popular names changes as time passes. Attackers therefore must update their
models accordingly.

4.5 How many flows in the training set?

So far we have assessed performance after training the classifiers with at least 1 000 flows. We now quantify the impact
of the number of observations on performance. To this end, we relax the threshold, reducing the required number of
observations from 1 000 to 50. We use the first day of data for both training and testing.

Figure 5 shows distributions of F1-Scores for the names grouped by the numbers of observations in the training
set. The left-most boxplot reports the distribution for names seen [50, 100] times during training. Numbers on the top
report the total domain names in each bin.

As expected, training with more samples improves performance. While only 23% of the names seen [50, 100] times
during training have F1-Score larger than 0.75 (left-most boxplot), 75% of names seen more than 5 000 times have
F1-Score larger than 0.8 (right-most boxplot). In sum, learning a model for the most popular domains is easy. However,
even a small number of observations suffices to learn good models.

5 CONCLUSION

In this paper we explored to what extent an eavesdropper can uncover the server domain name of network flows
generated by users making use of DoH or eSNI. We showed that such an approach is feasible when enough observations
are provided. We used a large dataset coming from an operational network. After training a random forest classifier, an



eavesdropper can classify 80% of domain names with F1-Score higher than 0.8. The size and timing of the first packets
of the flows are among the most useful features.

Our results show the limits of the effectiveness of privacy-preserving enhancements currently under standardization,
such as DoH and eSNI. They call for further actions to avoid the name of servers to be retrieved. Unfortunately, these
actions require deep changes in transport protocols, such as the inclusion of padding and random inter-packet pacing,
or the widely deployment of advanced solutions such as VPNs and/or TOR.

Future work includes extending the set of classification approaches to understand whether performance can be
further improved, and exploring other threat models – e.g. obtaining training data from an active testbed.
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