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Abstract— The Consultative Committee for Space Data
Systems has recently updated its recommendation for uplink
communication systems, to cope with new requirements for
telecommand and modern profiles and applications. Two short
Low-Density Parity-Check (LDPC) codes have been added to
the Coding and Synchronization sublayer options, to improve
the link performance. In this paper we focus on the real-time
implementation of the transmitter for the Ground Station
segment. We analyze the critical modules, in particular LDPC
encoding, for which two efficient solutions based on a Shift
Register Adder Accumulator and on Winograd convolution are
considered. We then discuss the selection of a proper hardware
or software platform, and we show that a Central Processing
Unit-based solution is able to achieve the high data-rates
required by the new uplink applications.

Keywords— encoders, low-density parity-check codes, real-
time implementation, space links, telecommand.

1. INTRODUCTION

Uplink digital communication systems from ground
station to space were originally designed in the 1970s to fulfil
the TeleCommand (TC) control requirements: high reliability,
transmission of short messages and receiver simplicity. At that
time, the on-board hardware did not allow the implementation
of complex decoding algorithms and the flight controllers
were simple, requiring few short commands to operate. Since
then the Consultative Committee for Space Data Systems
(CCSDS) has added a few capabilities to meet new mission
requirements. Such capabilities include the extension of the
size of command messages, the addition of an optional Cyclic
Redundancy Check (CRC), and an Automatic Repeat Request
(ARQ) protocol to improve the reliability for larger message
sets.

Although TC continues being an important uplink
application,  future  spacecrafts will use uplink
communications for a much wider variety of uses. In
particular, on-board applications tend to require larger data
volumes than in the past and do not need a so high
transmission reliability as the TC, for which keeping the
undetected bit error rate extremely low (on the order of 10~°)
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is fundamental.

In order to adapt the current uplink communication
protocols to the new user applications, the CCSDS has added
two new Low-Density Parity-Check (LDPC) codes with
parameters (128, 64) and (512, 256) to its TC
Recommendation [1], that already included a simpler Bose—
Chaudhuri-Hocquenghem (BCH) (63, 56) code.

The new codes achieve large coding gains and will allow
the next generation of Near Earth and Deep Space missions to
work with very low signal-to-noise ratio (SNR) operational
ranges, and to increase uplink telecommand data rates. This
will impose additional constraints to both the Ground Station
transmitter and the on-board receiver. An in-depth study on
the receiver feasibility and implementation for the new
telecommand systems is presented in [2] and [3]. In this paper
we focus on the transmitter design and implementation.

The European Space Agency (ESA) has funded a project
titled “NEXTRACK - Next Generation ESTRACK (ESA
Tracking Stations) Uplink Services” aiming at gaining
practical experience in the implementation of the transmitter
critical parts. The main scopes of the study are:

e To analyze and design the critical modules for the
uplink Coding and Synchronization sublayer,
including LDPC encoding, Command Link
Transmission Unit (CLTU) generation and
randomization, as well as to develop an off-line
simulation tool.

e To select a proper platform by comparing hardware
and software solutions already available at Telemetry
Tracking and Command Processor (TTCP), the
ESTRACK’s Ground Station Modem, and prototype
the critical modules for real-time implementation.

e To test the prototype and validate the results by
comparison with an off-line simulation tool.

In this paper we discuss these issues and we present some
of the results and conclusions the study has achieved till now.
The organization of the paper is as follows. In Section II we
introduce the Channel Coding and Synchronization sublayer
of the uplink system and we discuss its most important blocks.



In Section III we present two efficient solutions for the
implementation of the LDPC encoder, which is the most
critical block. In Section IV we discuss software and hardware
platforms for real-time implementation. In Section V we show
that a fully software implementation on a CPU-platform is
able to achieve high bitrates. Finally, conclusions are drawn
in Section V.

II. CHANNEL CODING AND SYNCHRONIZATION SUBLAYER

The relationship of the Channel Coding and
Synchronization Sublayer of the Uplink Communication
System to the Open Systems Interconnection (OSI) reference
model is shown in Fig. 1.
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Fig. 1. Channel Coding and Synchronization Sublayer: position on the OSI
reference model

As summarized in Fig. 2, if we focus on the Ground
Element transmitter, the main blocks of the Channel Coding
and Synchronization Sublayer are:

e Randomizer, for bit transition generation.
e  Encoder, for error-control BCH or LDPC coding.
e CLTU generation, for delimiting codeblocks.
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Fig. 2. Channel Coding and Synchronization Sublayer: constituent blocks

A. Randomizer

The randomizer is used to increase the randomness of the
binary messages to be transmitted. On-board symbol
synchronism circuits need a given transition density, and long
runs may prevent a correct working. The randomizer works by
summing a pseudo-random maximal length sequence
generated by a Linear Feedback Shift Register (LFSR). This
guarantees enough transition density and avoids long runs.

The CCSDS TC randomizer is made by the 8-cell LFSR with
polynomial description p(D) = 1 + D + D*+ D*+ D*+ D%+ D}
depicted in Fig. 3, which generates a sequence with period
N=2%_-1=255 bits.

This randomizer is optional for BCH coding and
mandatory for LDPC coding. When adopted, at the beginning
of the Transfer Frame (TF) all the 8 cells are pre-set to 1.
Given T the TF length, the first 7 bits generated by the LFSR
are ex-ORed to the TF bits to obtain the 7-bit randomized
frame to be transmitted, which is then input to the encoder.
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Fig. 3. 8-cell LFSR randomizer
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If the TF length is not an integer multiple of the encoder
input length, fill bits are appended to obtain an integer
multiple, consisting in the repetition of the 01 pattern.
According to [1], these fill bits may be added either before or
after randomization (since they have already enough bit
transition density, then randomization is not strictly required).

Since the LFSR is always preset to the all-one state at the
beginning of the TF, the LFSR pseudo-random sequence is
always the same, obtained by repeating the main period of
N =255 bits.

The real-time implementation of the randomizer can be done
by using the logic diagram depicted in Fig. 3 or directly by
storing the 255-bit main LFSR period in a memory and
summing it when requested, and it is not critical for real-time
implementation.

B. BCH encoder

CCSDS TC Recommendation specifies a binary (63, 56) BCH
code, where n = 63 is the codeword length and £ = 56 is the
information length. The generator polynomial of this BCH
codeis g(X) =X"+ X0+ X2+ 1=(X°+ X+ 1)(X+ 1). The code
may be regarded as an expurgated (63, 57) Hamming code,
obtained by allowing even-weight codewords only; its
minimum distance is dmin = 4, then the code is able to correct
single errors and detect up to three errors.

The BCH encoder can be realized by the shift register digital

circuits depicted in Fig. 4. This circuit performs systematic
encoding of a block u = (lo, /i, ..., Iss) of 56 bits. At the
beginning, the shift register is initialized to all-zero and the
two switches are set to the position 1. The encoder is fed
serially with the 56 bits u; these bits are propagated to the
output and, at the same time, they are processed by the
feedback shift register-based digital circuit. When all the 56
bits u have been input, the two switches are set to position 2:
in the seven subsequent clock cycles the complement of the
seven BCH parity-check bits p = (Po, P4, ..., Ps) are output by
the encoder, and concatenated with u. After these seven clock
cycles, the switches are set to position 3, yielding the
generation of one bit F = 0 (called the filler bit). The binary
word ¢ generated from u has length 64 bits and is given by
c=, 1, ..., Iss, P’o, P’1, ..., P’s, Fo) where P’; = XOR(P;, 1)
is the complement of bit P;.
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Fig. 4. Encoding circuit for the (63, 56) BCH code
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If a block of TFs to be transmitted in one CLTU is not an
integer multiple of 56, an appropriate number of fill bits is
added to the block. (The fill pattern is a sequence of alternating
0 and 1 bits, starting with a zero.) The BCH encoder real-time
implementation is not consider critical.

C. LDPC encoder

The LDPC codes introduced in CCSDS TC
recommendation [1] have parameters (128, 64) and (512,
256). These codes are defined through their parity check
matrix H, which can be obtained starting from the structures
specified in Fig. 5. According to the figure, the parity-check
matrices are constructed from OxQ submatrices where O = k/4
=n/8: we have Q=16 for the (128, 64) LDPC code and O = 64
for the (512, 256) LDPC code.
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Fig. 5. Parity check matrices of the LDPC codes

With reference to the circulant matrices shown in Fig. 5,
Ip and 0p are the O*Q identity and zero matrices, respectively,
while @ is the first right circular shift of Ip. Explicitly, this
means that @ has a non-zero entry at row i and column ; if and
only if j = i + 1 mod Q. Consequently, ®? is the second right
circular shift of I, that is, @ has a non-zero entry at row i and
column j if and only if j =i + 2 mod Q, and so on. Obviously,
®° = Ip. The ® operator indicates modulo-2 element-wise
matrix addition.

These LDPC codes were designed starting from protographs
[4] and achieve very good performance. On-board they can be
decoded by usual iterative LDPC decoding algorithm. As an
alternative, a non-iterative Most Reliable Basis (MRB)
algorithm can be applied, at least for the shorter code, which
achieves a higher coding gain [5]-[7].

Starting from the parity check matrix, a generator matrix
G can be obtained, by using the equation G-H" = 04, where
superscript T denotes transposition, » = n — k is the number of
parity check symbols, and O, is the all-zero matrix with the
specified size. Since the code is systematic, the matrix G can
be written as G = [Isp W], where L is 40*4 0 identity matrix
and W is a block-circulant matrix. More in detail, the structure

of G is shown in Fig. 6, where every W;;is a (dense) circulant
OxQ square matrix.

Ip 0p 05 05 Wi Wi, W5 Wy
G= 0 TIp 0 0p Wy W, W3 Wy,
0p 0p Ip 0p Wy Wi W5 Wi,

Fig. 6. Generator matrix structure

The scatter chart for the generator matrix of the (128, 64)
LDPC code is depicted in Fig. 7, where blue dots represent
bits equal to 1 while all remaining bits are 0. We can note that
the G right side is dense (about /2 bits equal to 1).

Given the information vector u, we can obtain the
corresponding codeword as ¢ = uG. Anyway, due to the
density of G, encoding is not optimized. LDPC encoding is
then a critical block for real-time implementation. For this
reason, in the next section we will consider two efficient
alternative encoding solutions.
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Fig. 7. Scatter chart for the generator matrix of the (128, 64) LDPC code

D. CLTU generation

After channel encoding has been realized, the CLTU
generation block performs codeword concatenation and
prepends to the block of concatenated codewords a CLTU
start sequence. The start sequence depends on the adopted
channel coding mode. When BCH coding has been selected,
the 16-bits start sequence 1110101110010000 is used. On the
other hand, when LDPC coding has been selected, the 64-bits
start sequence (here expressed in hexadecimal form) 0347
76C7 2728 95B0xEx is used.

After the start sequence has been prepended, the CLTU
generation module appends a tail sequence when the chosen
configuration requires it. In case BCH encoding has been
selected, the mandatory 64-bit tail sequence (expressed in
hexadecimal form) C5C5 C5C5 C5C5 C579uex is appended
to the block of concatenated codewords. On the other hand,
when the system configuration consisting of the (128, 64)
LDPC coding with CLTU tail sequence has been selected, the
optional 128-bit tail sequence (again here expressed in
hexadecimal form) 5555 5556 AAAA AAAA 5555 5555
5555 5555ugx may be appended. This tail sequence is
mandatory if we want to apply decoders based on MRB for
LDPC complete decoding [2], [3]. Unlike, the tail sequence is
not used at all for the (512, 256) LDPC coding (that, in fact,
cannot use MRB, because of the high complexity it implies
for, relatively, long codes).

The CLTU generation block is quite simple and is not



considered critical for real-time implementation.

III. EFFICIENT LDPC ENCODING

Both the (128, 64) and the (512, 256) TC LDPC codes belong
to the class of quasi-cyclic (QC) LDPC codes, a feature that
can be exploited to make their encoding (both in hardware and
software implementation) particularly efficient. In this section
we present two methods that can reduce the complexity.

A. SRAA-based encoding

As explained in the previous section, given the systematic
generator matrix G = [Lsp W] of the TC LDPC codes, the W
matrix is dense, then the complexity of the straightforward
encoding ¢ = uG may be problematic on some platforms. A
method to circumvent this problem consists of exploiting the
QC property possessed by both TC LDPC codes. To do so, let
us focus on the structure of the matrix G reported in Fig. 6. As
mentioned above, each W;; is a square Ox(Q (generally dense)
circulant matrix, meaning that any of its rows may be obtained
as the right circular shift of the previous row by one position.

To efficiently perform the product uG (both in software
and in hardware), we can write the information block u as
u = (uy, w2, uz, wy), where all u;, i =1, ..., 4, have length Q bits.
Hence, we have ¢ = (uy, uz, u3, u4, p1, p2, p3, p4), where

pi=wWy; + Wy, + usWi; + ugsWy,.

Next we exploit the fact that all W;; matrices are OxQ
circulant blocks. For such a purpose, we denote by g; the
[-th row of Wy, for /=1, ..., Q. With reference to the generic
term involved in the above expressions of p;, letting
u = (U(;—l)Q+1, U(i=1)0+25 +++» u;Q), we have

Wi = u-nongi + ue-noagi? + ...+ uiogi .

The calculation of each p; requires to perform the above
computation four times, one per each i = 1, ..., 4. In hardware,
the calculation of p; may be performed efficiently using a
digital circuit called Shift Register Adder Accumulator
(SRAA) [8], shown in Fig. 8.
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¥ _Y Yy v Yy v Yy Yyv

XOR XOR XOR aeie XOR XOR

v v v v v
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Fig. 8. SRAA encoder

This circuit features two shift registers for Q bits each, as
well as Q logic AND and Q logic XOR gates. The calculation
of p; is performed in four different phases, one per each i =1,
..., 4. At the beginning of phase i, the vector g; ! is preloaded
in the first register, which is in charge of generating all rows
of W;; in the subsequent O — 1 clock cycles. In each clock
cycle of phase i, all elements of the shift register are multiplied
(logical AND) by the bit ug-1)p+, £ =1, ..., O, and the result is
accumulated (logical XOR) in the corresponding position of

the second Q-bits register. At the end of the four phases, the
latter register contains p;. Overall, the efficient encoder is
composed of four SRRA circuits.

Besides being very useful for hardware implementation of
the LDPC encoder (for both the length-128 and the length-512
codes), this encoding strategy may be exploited in a software
implementation, too, yielding a much more efficient encoding
algorithm than the straightforward approach consisting of
direct uG multiplication.

B. Winograd-based encoding

In this section we present an alternative encoding technique,
based on Winograd convolution [9]. This method exploits the
fact that circulant matrices are Toeplitz matrices.

In a Toeplitz matrix, all elements on a descending diagonal
from left to right are constant. Any circulant matrix is clearly
a Toeplitz matrix, as can be seen in this example of a 4x4
circulant matrix:

—_— 0 O =
I
1
N'q c.q
- -
| |

0
1
1
0

o O = =

Now, any pxp Toeplitz matrix T with even p can be
decomposed as

T:{T" T‘}:
TZ TO
T -T 0
| S
= 0 T,-T, 0
011 0

where:

0 I
I 0|=ABC
I 1

e 0andIare p/2xp/2 null and identity matrices, respectively;
o Ty, Ty, To, Ti — To, To — Ty are p/2%p/2 Toeplitz matrices.

The above decomposition can be exploited to perform
efficiently the product vT = vABC, where v = [vy vi] is a
vector of length p (vo and v, are both of length p/2).

The product [vo vi]JABC is developed in three steps as follows:
1. Evaluation:
[vovi] A =[vo Vi votvi].
This first step requires p/2 additions.
2. Multiplication:
[vo vivo+ vi] B=[vo(Ti— To) vi(T2— To) (vo+ vi)To]
=[zo z1 72].

This second step requires three products of vectors of
length p/2 by (p/2)*x(p/2) Toeplitz matrices.

3. Interpolation
[zo0 21 z]C = [z1 + 22 20 + 72].
This final step requires two additions of p/2-bit vectors.

It is important to note that in step 2 we trace back the product
of one vector of length p by a Toeplitz matrix of dimension p
to 3 products of vectors of length p/2 by Toeplitz matrices of



dimension p/2. This process can be iterated, as far as we get
matrices of even dimension. Since the vector-matrix product
has quadratic complexity, overall we get considerable savings
in terms of elementary operations.

Let us return to our encoding problem and consider again the
generation of

pi=wWi+ wuWo, + wsWs, +usWy;  (7=1,2,3,4)

as stated in Section III.A. To calculate each p; we need to
perform 4 products of vectors of length O (= 16 or 64) by OxQ
Toeplitz matrices. As a consequence, encoding can be
performed efficiently by applying the described technique 16
times, one for each W,

We finally note that:

* The 16 vector-matrix products can in principle be
performed in parallel.

 Foreachj=1,2, 3,4, we need to perform 3 (binary)
sums of vectors of length O to assemble p;. In total,
we have 12 sums of vectors of length Q.

e Step 1 can be performed only once for each u;, thus
producing further savings in complexity.

This technique looks then very promising for real-time
implementation.

IV. SELECTION OF THE PLATFORM

One of the initial project goals was to select the platform
where the critical modules will be implemented having into
account a future portability towards an operational platform
available at TTCP. This section describes the possible
platforms and the respective selection.

A. Plaforms available at TTCP

ESA has the following three kinds of platforms available
at the TTCP: CPU, ARM based FPGA and FPGA. These
platforms are integrated in two types of units/devices: Data
Processing Unit (DPU) and Signal Processing Modules
(SPM).

A DPU includes two processors Intel Xeon CPU E5-2637
v4 @ 3.50 GHz while a SPM has inside two FPGAs from
Altera/Intel: the FPGA Stratix which is a powerful pure
FPGA, and a Cyclone SoC FPGA with dual-core ARM
CortexA9.

The Intel Xeon processor E5 v4 is a multi-core enterprise
processor built on 14nm process technology designed to have
low power and high performance, the processor was designed
for a platform consisting of a processor and the Platform
Controller Hub (PCH) supporting up to 46 bits of physical
address space and 48-bits of virtual address space. Table I
addresses the main features of the CPU platform available at
TTCP.

TABLE L CPU PLATFORM SPECIFICATION (FROM ESA)

Features Values

CPU(s): 16

On-line CPU(s) list: 0-15
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 2

Features Values

Model name: | Intel® Xeon® CPU E5-2637 v4 @ 3.50GHz
L1d cache: 32K
Lli cache: 32K
L2 cache: 256K
L3 cache: 15360K
NUMA node0 CPU(s): 0-3, 8-11
NUMA nodel CPU(s): 4-7,12-15

The Cyclone FPGA built on 28-nm low-power process
provides a low cost and low power system, achieving 40
percent lower total power compared with the previous
generation. It has efficient logic integration capabilities,
integrated transceiver variants, and SoC FPGA with an ARM-
based Hard Processor System (HPS).

The capabilities and logic integration were improved
thanks to an 8-input Adaptive Logic Module (ALM), with up
to 12MB of memory and variable precision digital signal
processing (DSP) blocks. As shown in Fig. 9, Cyclone
integrates a HPS which includes processors, peripherals, and
memory controller with the FPGA fabric using a high-
bandwidth interconnect backbone.

Single- or Dual-Core Processor
HPS1/O
1

o
FPGA

Hard Processor System (HPS)

ARM* Cortex*-A9
NEON/FPU
L1 Cache

2 re
ach Gl -
= b2)

uss OTG Ethernet
(x2) (x2)

JTAG 64-KB Timers SPI CAN
Debug/Tracel RAM (x11) (x2) (x2)
"
| NAND Qsp1 SD/SDIO/ DMA UART
| Hard Memory Flash ("42) Flash Ctrl MMC (x2)
Controller*
Shared Multiport DDR HPSto FPGA to FPGA
| 3.125-Gbps and 5-Gbps SDRAM Controller(?) FPGA HPS Configuration
Transceivers® 4 4 4+ @ | |
| | v v

Hard PCle*

*Optional Configuration

Fig. 9. HPS block diagram of Altera Cyclone SoC (from Altera/Intel)

The Stratix device offers up to 48 integrated transceivers
with 14.1 Gbps data rate capability. These transceivers also
support backplane and optical interface applications. It has a
rich set of high-performance building blocks, including a
redesigned Adaptive Logic Module (ALM), 20 Kbit (M20K)
embedded memory blocks, variable precision DSP blocks,
and fractional Phase-Locked Loops (PLLs). All these building
blocks are interconnected by a multi-track routing architecture
and comprehensive fabric clocking network. The main
features of the FPGA platform are depicted in Table II.

TABLE II. FPGA PLATFORM SPECIFICATION (FROM ALTERA/INTEL)

Features Stratix

Logic Elements (K) 952
ALMs 359,200
Registers (K) 1,437
M20K Memory Blocks 2,640
M20K Memory (Mbits) 52
MLAB Memory (Mbits) 10.96
Variable Precision DSP blocks (27x27) 352
Variable Precision Multipliers (18x18) 704




Features Stratix

Global clock networks 16

Regional clocks 92

LVDS channels, 1.4 Gbps (receive/transmit) 210
14.1-Gbps Transceivers 48

PCle hard IP Blocks 4

Fractional PLLs 28

DDR3 SDRAM x72 DIMM Interfaces 6

B. Requirements

Besides the usage of one of the three platforms available,
the NEXTRACK target performance has been taken into
account, namely, the critical modules shall support the data
rates defined in the CCSDS [10], from 7.8125 bps to
2.048 Mbps.

As it was already mentioned in section II, the LDPC
encoding is the most complex and demand module to be
implemented. Therefore, in the preliminary design stage of the
project, this module was the one considered to evaluate and
select the platform. Considering the CPU clock of 3.5 GHz
(available at TTCP) which corresponds an instruction cycle of
0.29 ns enables 1709 instruction cycles per each bit. Table 11T
presents the resulting maximum allowed spent time for
encoding a single codeword.

TABLE IIL TARGET PERFORMANCE CONSIDERING ONLY THE ENCODER

‘ Target output data rate [Mbps]

CPU clock [GHz]

‘ Instruction cycle [ns]

Number of bits - LDPC(128,64)
Number of bits - LDPC(512,256)

‘ Number of bits - BCH(63,56)

Max time for channel

Number of instructions cycles per bit .
v encoding [us]

C. CPU platform

For a first evaluation we compared the CPU performance
available at TTCP with several processors available in the
consortium. The Intel Xeon CPU E5-1620 v2 @ 3.70GHz was
used with similar features and performance to the one
available at TTCP, as shown in Fig. 10.

The CPU used in this evaluation has a clock slightly higher
than the target (3.7 GHz vs 3.5 GHz), however, it is a Xeon
processor from first generation while the CPU available at
TTCP is from second generation. Therefore, considering these
features we can conclude that both performances should be
similar. This can be confirmed in Fig. 10, where the rating of
ESA CPU (second bar) is slightly better than the one used by
the consortium (first bar). For the platform evaluation, a
preliminary/simple code has been developed in C/C++
language where the compiler GCC version 7.3.0 was used and
optimization level of “-O3” (maximum performance) was
selected.

CPU Mark Rating
As of 3rd of January 2019 - Higher resuits represent better performance

Intel Xeon E5-1620 v2 @ 3.70GHz (U ;50

Intel Xeon E5-2637 v4 @ 3.50GHz

10,488

PassMark Software © 2008-2019
CPU Single Thread Rating
As of 3rd of January 2019 - Higher resuits represent better performance
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PassMark Software © 2008-2019

Fig. 10. CPUs comparison (from CPU Benchmark)

As a preliminary assessment, instead of the two efficient
algorithms described in section III, the classic uG encoder
(matrix multiplication) has been used in the assessment. Table
IV presents the worst performance results achieved for the
CPU platform considering the encoding of a complete
codeword (start and tail sequences not included).

TABLE IV. PERFORMANCE ACHIEVED FOR CPU PLATFORM

Channel encoding Output bit rate [Mbps] ‘

LDPC(128,64) >22.1
LDPC(512,256) > 48
BCH(63,56) >45

It can be concluded that the CPU performance complies
with the target bit rate for both LDPCs and BCH. In the
performed tests, the achieved bit rate is not always the same,
but it has some fluctuations which can be related with the CPU
resources allocation automatic assignment by the operating
system. For instance, sometimes prior to the first execution the
CPU clock is about 1.5 GHz instead of 3.5 GHz.

If the CPU platform is chosen, the classic uG encoder will
be implemented since the required performance in principle is
achievable. Additionally, the consortium intends to implement
at least one of the efficient encoders described in section III to
further increase the achievable bit-rates.

Furthermore, it should be highlighted that these results do
not include the start and tail sequences, which are easy to add
to the codewords with few processing time required and
consequently increasing the bit rate. It is expected to increase
the performance in about 50% (64/128 bits) or 150%
((64+128)/128 bits) for LDPC(128,64), when only start
sequence or start and tail sequences are used, respectively, and
12.5% for LDPC(512,256), (64/512 bits).

D. HW platforms (ARM based FPGA and FPGA)

The SRAA based encoder of Fig. 8 is efficient in case of
hardware implementation. The encoder parallel structure
presented in Fig. 11 has then been evaluated for both Cyclone
and Stratix FPGA devices. The parallel structure has been
chosen with respect to the iterative architecture due to the few
logic required to implement the SRAA circuit and to take
advantage of the higher bit rate achievable with the parallel
solution. In Table V and Table VI, the estimated complexity
and timing performances achieved by synthesis and
place&route performed with Altera Quartus software are
reported for both Cyclone and Stratix device and both LDPC
codes.
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Fig. 11. LDPC SRAA parallel architecture

TABLE V. LDPC(128,64) PERFORMANCE ESTIMATION

LDPC(128,64) Stratix

Cyclone

Area report Usage | % Usage | %
FFs 402 <1 384 <1
Combinatorial logic element 234 <1 347 <1
Timing report
Max Frequency 341 MHz ‘ 717 MHz
TABLE VI LDPC(S 12,256) PERFORMANCE ESTIMATION

LDPC(512,256) Stratix

Cyclone ‘

Area report Usage | %

FFs 1578 | <3 1565 | <1

Usage | %

Combinatorial logic element | 1117 | <2 | 1117 | <1

Timing report

‘ 264 MHz ‘ 627 MHz

Max Frequency

Considering this preliminary implementation on FPGA
device and the required design margin (factor of 2.5) to be
adopted according to consortium experience in this
preliminary phase, a minimum bit rate equal to about
100 Mbps can be considered achievable with hardware
implementation on Cyclone device, while 250 Mbps could be
achieved with Stratix device in the worst case, for
LDPC(512,256) encoder.

The BCH structure (previously shown in Fig. 4) is simple
and includes few Flip-Flops (FFs) and combinatorial logic
elements as indicated in Table VII.

TABLE VII. ~ BCH ENCODER PERFORMANCE ESTIMATION
BCH encoder ‘ Cyclone ‘ Stratix
Area report Usage | % Usage
FFs 18 <1 19 <1
Combinatorial logic element 13 <1 12 <1
Timing report
Max Frequency 368 MHz 717 MHz

As per the LDPC encoders, the estimation regarding the
maximum frequency is rough due the unconstrained synthesis
and place&route: the FPGA device contains only the BCH
encoder without other circuits and without any constraints
regarding pinout.

This preliminary synthesis and place&route is able to
indicate a rough order of magnitude estimation regarding the
maximum bit rate allowable with BCH encoder implemented
on FPGA. The real maximum bit rate will be lower depending
on the physical constraint that will be applied.

Considering the required conservative design margin to be
adopted in this preliminary phase (factor of about 2.5
according to consortium experience), a minimum bit rate
equal to 150 Mbps can be considerable achievable with
hardware implementation on Cyclone device, while 280 Mbps
could be achieved with Stratix device.

E. Platform selection

Considering the platforms available at TTCP and the main
factors for its choice, namely: the performance evaluation
performed in the initial stage of the project and the future
portability towards an operational platform, the consortium
considers that the CPU platform is the best choice for the
NEXTRACK project. It complies with the target bit rate and
additionally it guaranties an easy portability thanks to its
software approach. Moreover, the CPU platform has margin
to be improved in terms of performance since none of the
efficient encoders described in section III has been considered
in the evaluation.

V. CONSIDERATIONS ON REAL-TIME IMPLEMENTATION

The requirements of the breadboard include the
functionality, interface and configuration requirements. The
high-level architecture of the breadboard to the CPU platform
is presented in Figure 12. The software will be developed in
C/C++ language enabling in the future an easier portability for
an operational platform when comparing with the hardware
options available, ARM based FPGA and FPGA platforms.
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Fig. 12. High-level architecture of the breadboard

The breadboard is composed by a communication link
composed of the following 2 interfaces:

* An input to receive Information bits according to
TTCP-ICD-TC [10], acting as a server.

* An output to send complete TC CLTU according to
TTCP-ICD-TC [10], acting as a client.



Both interfaces will implement the communication
diagram described in [10], based on a Transmission Control
Protocol (TCP) connection where the SPU designates the
system in charge of the TC radiation in the TTCP and it is
considered the server, while the TeleCommand System (TCS)
designates the Telemetry and Telecommand System
(TMTCS) sub-system requesting the TC radiation is
considered the client.

In addition, the platform will contain a link for
configuration and monitoring, also called TeleCommand and
TeleMetry (TCTM) interface. This is an Ethernet interface
enabling the breadboard configuration through the reception
of parameters sequence selecting the intended operating
mode. Besides the nominal/target operating mode, it will also
allow to perform Unit Tests (UT's) to evaluate each breadboard
module.

The breadboard is composed by a total of seven main
modules, as shown in Fig. 12, including the three critical
modules for Coding and Synchronization sublayer
implementation discussed in the previous sections:

* Randomizer: mandatory or optional depending on the code
choice.

e Channel encoding: with different
LDPC(128,64) or LDPC(512,256) options

BCH(63,56),

e CLTU generation: responsible to generate the breadboard
output frames.

The remaining four modules of the breadboard are:

* Configuration: manage the behavior of the entire
breadboard. The operation modes are deployed from the
configuration module according to the received
configuration.

*  Monitoring: is in charge of gathering test data since last
received configuration, providing telemetry information
about the breadboard status which are sent periodically
through the TCTM interface. The status includes the
number of received transfer frames and the number of
generated CLTU frames.

e Test data: in order to allow Unit Tests, this block includes
some data patterns for transfer frames, randomized
transfer frames and codewords enabling a dedicated test
of each module, as well as the entire chain.

e Local Storage: this block saves the useful data like
information words, randomized transfer frames,
codewords and complete TC CLTU, and also additional
data useful for testing and performance assessment and
improving, such as processing times of each module.

Finally, the work flow for the breadboard software is
presented in Fig. 13. It is composed by three main process:
configuration, monitoring and the nominal operating mode,
which perform the main encoder tasks.

VI. CONCLUSIONS

In this paper we have presented a study on the real-time
implementation of the Channel Coding and Synchronization
sublayer for the Ground Station segment of the uplink system,
taking into account the recent update of the CCSDS
Recommendation which included two new LDPC codes to
improve the link performance. Two efficient solutions have

been presented for LDPC encoding, which is the most critical
module. The platform selection has been discussed, by
comparing different hardware and software choices. The
analysis shows that a Central Processing Unit-based solution
is able to achieve the target data-rates and additionally
guarantees an easy portability thanks to its software
approach.
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Fig. 13. Breadboard software work flow
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