
27 September 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NEXTRACK-Next Generation ESTRACK Uplink Services / Abello, R.; Prata, R.; Ugarte, L. S.; Simone, L.; Baldi, M.;
Chiaraluce, F.; Fernandes, R.; Silva, P. F. D.; Garello, R.; Gelfusa, D.; Palomo, J. M.; Paolini, E.. - ELETTRONICO. -
(2019), pp. 1-8. (Intervento presentato al convegno 8th ESA International Workshop on Tracking, Telemetry and
Command Systems for Space Applications, TTC 2019 tenutosi a Darmstadt, Germany nel 2019)
[10.1109/TTC.2019.8895312].

Original

NEXTRACK-Next Generation ESTRACK Uplink Services

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TTC.2019.8895312

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2836381 since: 2020-09-27T17:43:47Z

Institute of Electrical and Electronics Engineers Inc.

978-1-7281-3700-1/19/$31.00 ©2019 IEEE

NEXTRACK - Next Generation ESTRACK
Uplink Services

R. Abell—1, M. Baldi2, F. Chiaraluce2, R. Fernandes3, P. Freire da Silva3, R. Garello4, D. Gelfusa5, J. M. Palomo6,
E. Paolini7, R. Prata3, L. Santos Ugarte8, L. Simone5

1ESA/ESOC, Darmstadt, Germany Ð ricard.abello@esa.int
2Universitˆ Politecnica delle Marche and CNIT, Ancona, Italy Ð email: { m.baldi, f.chiaraluce} @univpm.it

3Deimos Engenharia, Lisbon, Portugal Ð email: { ricardo.fernandes, pedro.silva, ricardo.prata} @deimos.com.pt
4Politecnico di Torino and CNIT, Torino, Italy Ð email: roberto.garello@polito.it

5Thales Alenia Space, Rome, Italy Ð email: {dario.gelfusa, lorenzo.simone}@thalesaleniaspace.com
6Deimos Space S.L.U., Madrid, Spain Ð email: jose-maria.palomo@deimos-space.com

7Universitˆ di Bologna and CNIT, Bologna, Italy Ð email: e.paolini@unibo.it

8WGS Working Solutions working at EUMETSAT, Darmstadt, Germany Ð laura.santos@external.eumetsat.int

AbstractÑ The Consultative Committee for Space Data
Systems has recently updated its recommendation for uplink
communication systems, to cope with new requirements for
telecommand and modern profiles and applications. Two short
Low-Density Parity-Check (LDPC) codes have been added to
the Coding and Synchronization sublayer options, to improve
the link performance. In this paper we focus on the real-time
implementation of the transmitter for the Ground Station
segment. We analyze the critical modules, in particular LDPC
encoding, for which two efficient solutions based on a Shift
Register Adder Accumulator and on Winograd convolution are
considered. We then discuss the selection of a proper hardware
or software platform, and we show that a Central Processing
Unit-based solution is able to achieve the high data-rates
required by the new uplink applications.

KeywordsÑ encoders, low-density parity-check codes, real-
time implementation, space links, telecommand.

I. INTRODUCTION

Uplink digital communication systems from ground
station to space were originally designed in the 1970s to fulfil
the TeleCommand (TC) control requirements: high reliability,
transmission of short messages and receiver simplicity. At that
time, the on-board hardware did not allow the implementation
of complex decoding algorithms and the flight controllers
were simple, requiring few short commands to operate. Since
then the Consultative Committee for Space Data Systems
(CCSDS) has added a few capabilities to meet new mission
requirements. Such capabilities include the extension of the
size of command messages, the addition of an optional Cyclic
Redundancy Check (CRC), and an Automatic Repeat Request
(ARQ) protocol to improve the reliability for larger message
sets.

Although TC continues being an important uplink
application, future spacecrafts will use uplink
communications for a much wider variety of uses. In
particular, on-board applications tend to require larger data
volumes than in the past and do not need a so high
transmission reliability as the TC, for which keeping the
undetected bit error rate extremely low (on the order of 10! 9)

is fundamental.

In order to adapt the current uplink communication
protocols to the new user applications, the CCSDS has added
two new Low-Density Parity-Check (LDPC) codes with
parameters (128, 64) and (512, 256) to its TC
Recommendation [1], that already included a simpler BoseÐ
ChaudhuriÐHocquenghem (BCH) (63, 56) code.

The new codes achieve large coding gains and will allow
the next generation of Near Earth and Deep Space missions to
work with very low signal-to-noise ratio (SNR) operational
ranges, and to increase uplink telecommand data rates. This
will impose additional constraints to both the Ground Station
transmitter and the on-board receiver. An in-depth study on
the receiver feasibility and implementation for the new
telecommand systems is presented in [2] and [3]. In this paper
we focus on the transmitter design and implementation.

The European Space Agency (ESA) has funded a project
titled ÒNEXTRACK - Next Generation ESTRACK (ESA
Tracking Stations) Uplink ServicesÓ aiming at gaining
practical experience in the implementation of the transmitter
critical parts. The main scopes of the study are:

¥ To analyze and design the critical modules for the
uplink Coding and Synchronization sublayer,
including LDPC encoding, Command Link
Transmission Unit (CLTU) generation and
randomization, as well as to develop an off-line
simulation tool.

¥ To select a proper platform by comparing hardware
and software solutions already available at Telemetry
Tracking and Command Processor (TTCP), the
ESTRACKÕs Ground Station Modem, and prototype
the critical modules for real-time implementation.

¥ To test the prototype and validate the results by
comparison with an off-line simulation tool.

In this paper we discuss these issues and we present some
of the results and conclusions the study has achieved till now.
The organization of the paper is as follows. In Section II we
introduce the Channel Coding and Synchronization sublayer
of the uplink system and we discuss its most important blocks.

Study funded by European Space Agency under the contract
4000124933/18/D/MB.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore. Restrictions apply. Esattezza

In Section III we present two efficient solutions for the
implementation of the LDPC encoder, which is the most
critical block. In Section IV we discuss software and hardware
platforms for real-time implementation. In Section V we show
that a fully software implementation on a CPU-platform is
able to achieve high bitrates. Finally, conclusions are drawn
in Section V.

II. CHANNEL CODING AND SYNCHRONIZATION SUBLAYER

The relationship of the Channel Coding and
Synchronization Sublayer of the Uplink Communication
System to the Open Systems Interconnection (OSI) reference
model is shown in Fig. 1.

Fig. 1. Channel Coding and Synchronization Sublayer: position on the OSI
reference model

As summarized in Fig. 2, if we focus on the Ground
Element transmitter, the main blocks of the Channel Coding
and Synchronization Sublayer are:

¥ Randomizer, for bit transition generation.

¥ Encoder, for error-control BCH or LDPC coding.

¥ CLTU generation, for delimiting codeblocks.

Fig. 2. Channel Coding and Synchronization Sublayer: constituent blocks

A. Randomizer
The randomizer is used to increase the randomness of the
binary messages to be transmitted. On-board symbol
synchronism circuits need a given transition density, and long
runs may prevent a correct working. The randomizer works by
summing a pseudo-random maximal length sequence
generated by a Linear Feedback Shift Register (LFSR). This
guarantees enough transition density and avoids long runs.

The CCSDS TC randomizer is made by the 8-cell LFSR with
polynomial description p(D) = 1 + D + D2 + D3 + D4 + D6 + D8
depicted in Fig. 3, which generates a sequence with period
N = 28 Ð 1 = 255 bits.

This randomizer is optional for BCH coding and
mandatory for LDPC coding. When adopted, at the beginning
of the Transfer Frame (TF) all the 8 cells are pre-set to 1.
Given T the TF length, the first T bits generated by the LFSR
are ex-ORed to the TF bits to obtain the T-bit randomized
frame to be transmitted, which is then input to the encoder.

Fig. 3. 8-cell LFSR randomizer

If the TF length is not an integer multiple of the encoder
input length, fill bits are appended to obtain an integer
multiple, consisting in the repetition of the 01 pattern.
According to [1], these fill bits may be added either before or
after randomization (since they have already enough bit
transition density, then randomization is not strictly required).

Since the LFSR is always preset to the all-one state at the
beginning of the TF, the LFSR pseudo-random sequence is
always the same, obtained by repeating the main period of
N = 255 bits.

The real-time implementation of the randomizer can be done
by using the logic diagram depicted in Fig. 3 or directly by
storing the 255-bit main LFSR period in a memory and
summing it when requested, and it is not critical for real-time
implementation.

B. BCH encoder
CCSDS TC Recommendation specifies a binary (63, 56) BCH
code, where n = 63 is the codeword length and k = 56 is the
information length. The generator polynomial of this BCH
code is g(X) = X7 + X6 + X2 + 1 = (X6 + X + 1)(X + 1). The code
may be regarded as an expurgated (63, 57) Hamming code,
obtained by allowing even-weight codewords only; its
minimum distance is dmin = 4, then the code is able to correct
single errors and detect up to three errors.

 The BCH encoder can be realized by the shift register digital
circuits depicted in Fig. 4. This circuit performs systematic
encoding of a block u = (I0, I1, ..., I55) of 56 bits. At the
beginning, the shift register is initialized to all-zero and the
two switches are set to the position 1. The encoder is fed
serially with the 56 bits u; these bits are propagated to the
output and, at the same time, they are processed by the
feedback shift register-based digital circuit. When all the 56
bits u have been input, the two switches are set to position 2:
in the seven subsequent clock cycles the complement of the
seven BCH parity-check bits p = (P0, P1, ..., P6) are output by
the encoder, and concatenated with u. After these seven clock
cycles, the switches are set to position 3, yielding the
generation of one bit F0 = 0 (called the filler bit). The binary
word c generated from u has length 64 bits and is given by
c = (I0, I1, ..., I55, PÕ0, PÕ1, ..., PÕ6, F0) where PÕi = XOR(Pi, 1)
is the complement of bit Pi.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore. Restrictions apply. ESTERNASSERO

Fig. 4. Encoding circuit for the (63, 56) BCH code

If a block of TFs to be transmitted in one CLTU is not an
integer multiple of 56, an appropriate number of fill bits is
added to the block. (The fill pattern is a sequence of alternating
0 and 1 bits, starting with a zero.) The BCH encoder real-time
implementation is not consider critical.

C. LDPC encoder
The LDPC codes introduced in CCSDS TC

recommendation [1] have parameters (128, 64) and (512,
256). These codes are defined through their parity check
matrix H, which can be obtained starting from the structures
specified in Fig. 5. According to the figure, the parity-check
matrices are constructed from Q! Q submatrices where Q = k/4
= n/8: we have Q = 16 for the (128, 64) LDPC code and Q = 64
for the (512, 256) LDPC code.

7 2 14 6 0 13

6 15 0 1 0 7

64 128 4 1 15 14 11 3

0 1 9 13 14 1

Q Q Q

Q Q Q

Q Q Q

Q Q Q

" " " " " "

" " " " " "

" " " " " "

" " " " " "

#

! "$
$
$$
$=
$$# $
$$% &

I 0 I

I I 0
H

I I 0

I I 0

63 30 50 25 43 62

56 61 50 23 37 26

256 512 16 0 55 27 56 43

35 56 62 11 58 3

Q Q Q

Q Q Q

Q Q Q

Q Q Q

" " " " " "

" " " " " "

" " " " " "

" " " " " "

#

! "$
$
$$
$=
$$# $
$$% &

I 0 I

I I 0
H

I I 0

I I 0

Fig. 5. Parity check matrices of the LDPC codes

With reference to the circulant matrices shown in Fig. 5,
IQ and 0Q are the Q! Q identity and zero matrices, respectively,
while " is the first right circular shift of IQ. Explicitly, this
means that " has a non-zero entry at row i and column j if and
only if j = i + 1 mod Q. Consequently, " 2 is the second right
circular shift of IQ, that is, " 2 has a non-zero entry at row i and
column j if and only if j = i + 2 mod Q, and so on. Obviously,
" 0 = IQ. The $ operator indicates modulo-2 element-wise
matrix addition.

These LDPC codes were designed starting from protographs
[4] and achieve very good performance. On-board they can be
decoded by usual iterative LDPC decoding algorithm. As an
alternative, a non-iterative Most Reliable Basis (MRB)
algorithm can be applied, at least for the shorter code, which
achieves a higher coding gain [5]-[7].

Starting from the parity check matrix, a generator matrix
G can be obtained, by using the equation G!HT = 0k! r where
superscript T denotes transposition, r = n Ð k is the number of
parity check symbols, and 0k! r is the all-zero matrix with the
specified size. Since the code is systematic, the matrix G can
be written as G = [I4Q W], where I4Q is 4Q!4 Q identity matrix
and W is a block-circulant matrix. More in detail, the structure

of G is shown in Fig. 6, where every Wi,j is a (dense) circulant
Q! Q square matrix.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

! "
$
$

=# $
$
$
% &

I 0 0 0 W W W W

0 I 0 0 W W W W
G

0 0 I 0 W W W W

0 0 0 I W W W W

Fig. 6. Generator matrix structure

The scatter chart for the generator matrix of the (128, 64)
LDPC code is depicted in Fig. 7, where blue dots represent
bits equal to 1 while all remaining bits are 0. We can note that
the G right side is dense (about r2/2 bits equal to 1).

Given the information vector u, we can obtain the
corresponding codeword as c = uG. Anyway, due to the
density of G, encoding is not optimized. LDPC encoding is
then a critical block for real-time implementation. For this
reason, in the next section we will consider two efficient
alternative encoding solutions.

Fig. 7. Scatter chart for the generator matrix of the (128, 64) LDPC code

D. CLTU generation
After channel encoding has been realized, the CLTU

generation block performs codeword concatenation and
prepends to the block of concatenated codewords a CLTU
start sequence. The start sequence depends on the adopted
channel coding mode. When BCH coding has been selected,
the 16-bits start sequence 1110101110010000 is used. On the
other hand, when LDPC coding has been selected, the 64-bits
start sequence (here expressed in hexadecimal form) 0347
76C7 2728 95B0HEX is used.

After the start sequence has been prepended, the CLTU
generation module appends a tail sequence when the chosen
configuration requires it. In case BCH encoding has been
selected, the mandatory 64-bit tail sequence (expressed in
hexadecimal form) C5C5 C5C5 C5C5 C579HEX is appended
to the block of concatenated codewords. On the other hand,
when the system configuration consisting of the (128, 64)
LDPC coding with CLTU tail sequence has been selected, the
optional 128-bit tail sequence (again here expressed in
hexadecimal form) 5555 5556 AAAA AAAA 5555 5555
5555 5555HEX may be appended. This tail sequence is
mandatory if we want to apply decoders based on MRB for
LDPC complete decoding [2], [3]. Unlike, the tail sequence is
not used at all for the (512, 256) LDPC coding (that, in fact,
cannot use MRB, because of the high complexity it implies
for, relatively, long codes).

The CLTU generation block is quite simple and is not

0 20 40 60 80 100 120

0

10

20

30

40

50

60

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore. Restrictions apply. SEPARASSERO

considered critical for real-time implementation.

III. EFFICIENT LDPC ENCODING

Both the (128, 64) and the (512, 256) TC LDPC codes belong
to the class of quasi-cyclic (QC) LDPC codes, a feature that
can be exploited to make their encoding (both in hardware and
software implementation) particularly efficient. In this section
we present two methods that can reduce the complexity.

A. SRAA-based encoding
As explained in the previous section, given the systematic

generator matrix G = [I 4Q W] of the TC LDPC codes, the W
matrix is dense, then the complexity of the straightforward
encoding c = uG may be problematic on some platforms. A
method to circumvent this problem consists of exploiting the
QC property possessed by both TC LDPC codes. To do so, let
us focus on the structure of the matrix G reported in Fig. 6. As
mentioned above, each Wi,j is a square Q! Q (generally dense)
circulant matrix, meaning that any of its rows may be obtained
as the right circular shift of the previous row by one position.

To efficiently perform the product uG (both in software
and in hardware), we can write the information block u as
u = (u1, u2, u3, u4), where all ui, i = 1, ..., 4, have length Q bits.
Hence, we have c = (u1, u2, u3, u4, p1, p2, p3, p4), where

pj = u1W1,j + u2W2,j + u3W3,j + u4W4,j.

Next we exploit the fact that all Wi,j matrices are Q! Q
circulant blocks. For such a purpose, we denote by gi,j

(l) the
l-th row of Wi,j, for l = 1, ..., Q. With reference to the generic
term involved in the above expressions of pj, letting
ui = (u(i! 1)Q+1, u(i! 1)Q+2, ..., uiQ), we have

uiWi,j = u(i! 1)Q+1gi,j
(1) + u(i! 1)Q+2gi,j

(2) + É + u iQgi,j
(Q).

 The calculation of each pj requires to perform the above
computation four times, one per each i = 1, ..., 4. In hardware,
the calculation of pj may be performed efficiently using a
digital circuit called Shift Register Adder Accumulator
(SRAA) [8], shown in Fig. 8.

Fig. 8. SRAA encoder

This circuit features two shift registers for Q bits each, as
well as Q logic AND and Q logic XOR gates. The calculation
of pj is performed in four different phases, one per each i = 1,
..., 4. At the beginning of phase i, the vector gi,j

(1) is preloaded
in the first register, which is in charge of generating all rows
of Wi,j in the subsequent Q Ð 1 clock cycles. In each clock
cycle of phase i, all elements of the shift register are multiplied
(logical AND) by the bit u(i! 1)Q+t, t = 1, É, Q, and the result is
accumulated (logical XOR) in the corresponding position of

the second Q-bits register. At the end of the four phases, the
latter register contains pj. Overall, the efficient encoder is
composed of four SRRA circuits.

Besides being very useful for hardware implementation of
the LDPC encoder (for both the length-128 and the length-512
codes), this encoding strategy may be exploited in a software
implementation, too, yielding a much more efficient encoding
algorithm than the straightforward approach consisting of
direct uG multiplication.

B. Winograd-based encoding
In this section we present an alternative encoding technique,
based on Winograd convolution [9]. This method exploits the
fact that circulant matrices are Toeplitz matrices.

In a Toeplitz matrix, all elements on a descending diagonal
from left to right are constant. Any circulant matrix is clearly
a Toeplitz matrix, as can be seen in this example of a 4!4
circulant matrix:

1 0 0 1

1 1 0 0
=

0 1 1 0

0 0 1 1

! "
$! "# $ # $# $ % &# $
% &

0 1

0

T T

T T2
.

Now, any p! p Toeplitz matrix T with even p can be
decomposed as

! "
$
% &

!! " ! "
! " # $ # $! =# $# $ # $
% &# $ # $% & % &

0 1

2 0

1 0

2 0

0

T T
T = =

T T

T T 0 0 0 I
I 0 I

= 0 T T 0 I 0 ABC
0 I I

0 0 T I I

where:

¥ 0 and I are p/2! p/2 null and identity matrices, respectively;

¥ T0, T1, T2, T1 ! T0, T2 ! T0 are p/2! p/2 Toeplitz matrices.

The above decomposition can be exploited to perform
efficiently the product vT = vABC, where v = [v0 v1] is a
vector of length p (v0 and v1 are both of length p/2).

The product [v0 v1]ABC is developed in three steps as follows:

1. Evaluation:

[v0 v1] A = [v0 v1 v0+v1].

 This first step requires p/2 additions.

2. Multiplication:

[v0 v1 v0 + v1] B = [v0(T1 ! T0) v1(T2 ! T0) (v0 + v1)T0]

= [z0 z1 z2].

This second step requires three products of vectors of
length p/2 by (p/2)!(p/2) Toeplitz matrices.

3. Interpolation

[z0 z1 z2]C = [z1 + z2 z0 + z2].

This final step requires two additions of p/2-bit vectors.

It is important to note that in step 2 we trace back the product
of one vector of length p by a Toeplitz matrix of dimension p
to 3 products of vectors of length p/2 by Toeplitz matrices of

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore. Restrictions apply. ELEGGERETE

dimension p/2. This process can be iterated, as far as we get
matrices of even dimension. Since the vector-matrix product
has quadratic complexity, overall we get considerable savings
in terms of elementary operations.

Let us return to our encoding problem and consider again the
generation of

pj = u1W1,j + u2W2,j + u3W3,j + u4W4,j (j = 1, 2, 3, 4)

as stated in Section III.A. To calculate each pj we need to
perform 4 products of vectors of length Q (= 16 or 64) by Q! Q
Toeplitz matrices. As a consequence, encoding can be
performed efficiently by applying the described technique 16
times, one for each Wi,j.

We finally note that:

¥ The 16 vector-matrix products can in principle be
performed in parallel.

¥ For each j = 1, 2, 3, 4, we need to perform 3 (binary)
sums of vectors of length Q to assemble pj. In total,
we have 12 sums of vectors of length Q.

¥ Step 1 can be performed only once for each ui, thus
producing further savings in complexity.

This technique looks then very promising for real-time
implementation.

IV. SELECTION OF THE PLATFORM

One of the initial project goals was to select the platform
where the critical modules will be implemented having into
account a future portability towards an operational platform
available at TTCP. This section describes the possible
platforms and the respective selection.

A. Plaforms available at TTCP
ESA has the following three kinds of platforms available

at the TTCP: CPU, ARM based FPGA and FPGA. These
platforms are integrated in two types of units/devices: Data
Processing Unit (DPU) and Signal Processing Modules
(SPM).

A DPU includes two processors Intel Xeon CPU E5-2637
v4 @ 3.50 GHz while a SPM has inside two FPGAs from
Altera/Intel: the FPGA Stratix which is a powerful pure
FPGA, and a Cyclone SoC FPGA with dual-core ARM
CortexA9.

The Intel Xeon processor E5 v4 is a multi-core enterprise
processor built on 14nm process technology designed to have
low power and high performance, the processor was designed
for a platform consisting of a processor and the Platform
Controller Hub (PCH) supporting up to 46 bits of physical
address space and 48-bits of virtual address space. Table I
addresses the main features of the CPU platform available at
TTCP.

TABLE I. CPU PLATFORM SPECIFICATION (FROM ESA)

Features Values

CPU(s): 16

On-line CPU(s) list: 0-15

Thread(s) per core: 2

Core(s) per socket: 4

Socket(s): 2

Features Values

Model name: Intel¨ Xeon¨ CPU E5-2637 v4 @ 3.50GHz

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 15360K

NUMA node0 CPU(s): 0-3, 8-11

NUMA node1 CPU(s): 4-7,12-15

The Cyclone FPGA built on 28-nm low-power process

provides a low cost and low power system, achieving 40
percent lower total power compared with the previous
generation. It has efficient logic integration capabilities,
integrated transceiver variants, and SoC FPGA with an ARM-
based Hard Processor System (HPS).

The capabilities and logic integration were improved
thanks to an 8-input Adaptive Logic Module (ALM), with up
to 12MB of memory and variable precision digital signal
processing (DSP) blocks. As shown in Fig. 9, Cyclone
integrates a HPS which includes processors, peripherals, and
memory controller with the FPGA fabric using a high-
bandwidth interconnect backbone.

Fig. 9. HPS block diagram of Altera Cyclone SoC (from Altera/Intel)

The Stratix device offers up to 48 integrated transceivers
with 14.1 Gbps data rate capability. These transceivers also
support backplane and optical interface applications. It has a
rich set of high-performance building blocks, including a
redesigned Adaptive Logic Module (ALM), 20 Kbit (M20K)
embedded memory blocks, variable precision DSP blocks,
and fractional Phase-Locked Loops (PLLs). All these building
blocks are interconnected by a multi-track routing architecture
and comprehensive fabric clocking network. The main
features of the FPGA platform are depicted in Table II.

TABLE II. FPGA PLATFORM SPECIFICATION (FROM ALTERA/INTEL)

Features Stratix

Logic Elements (K) 952

ALMs 359,200

Registers (K) 1,437

M20K Memory Blocks 2,640

M20K Memory (Mbits) 52

MLAB Memory (Mbits) 10.96

Variable Precision DSP blocks (27x27) 352

Variable Precision Multipliers (18x18) 704

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore. Restrictions apply. Esagerazione

