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AbstractÑ The Consultative Committee for Space Data 
Systems has recently updated its recommendation for uplink 
communication systems, to cope with new requirements for 
telecommand and modern profiles and applications. Two short 
Low-Density Parity-Check (LDPC) codes have been added to 
the Coding and Synchronization sublayer options, to improve 
the link performance. In this paper we focus on the real-time 
implementation of the transmitter for the Ground Station 
segment. We analyze the critical modules, in particular LDPC 
encoding, for which two efficient solutions based on a Shift 
Register Adder Accumulator and on Winograd convolution are 
considered. We then discuss the selection of a proper hardware 
or software platform, and we show that a Central Processing 
Unit-based solution is able to achieve the high data-rates 
required by the new uplink applications. 

KeywordsÑ encoders, low-density parity-check codes, real-
time implementation, space links, telecommand. 

I. INTRODUCTION 

Uplink digital communication systems from ground 
station to space were originally designed in the 1970s to fulfil 
the TeleCommand (TC) control requirements: high reliability, 
transmission of short messages and receiver simplicity. At that 
time, the on-board hardware did not allow the implementation 
of complex decoding algorithms and the flight controllers 
were simple, requiring few short commands to operate. Since 
then the Consultative Committee for Space Data Systems 
(CCSDS) has added a few capabilities to meet new mission 
requirements. Such capabilities include the extension of the 
size of command messages, the addition of an optional Cyclic 
Redundancy Check (CRC), and an Automatic Repeat Request 
(ARQ) protocol to improve the reliability for larger message 
sets. 

Although TC continues being an important uplink 
application, future spacecrafts will use uplink 
communications for a much wider variety of uses. In 
particular, on-board applications tend to require larger data 
volumes than in the past and do not need a so high 
transmission reliability as the TC, for which keeping the 
undetected bit error rate extremely low (on the order of 10! 9) 

is fundamental. 

In order to adapt the current uplink communication 
protocols to the new user applications, the CCSDS has added 
two new Low-Density Parity-Check (LDPC) codes with 
parameters (128, 64) and (512, 256) to its TC 
Recommendation [1], that already included a simpler BoseÐ
ChaudhuriÐHocquenghem (BCH) (63, 56) code.  

The new codes achieve large coding gains and will allow 
the next generation of Near Earth and Deep Space missions to 
work with very low signal-to-noise ratio (SNR) operational 
ranges, and to increase uplink telecommand data rates. This 
will impose additional constraints to both the Ground Station 
transmitter and the on-board receiver.  An in-depth study on 
the receiver feasibility and implementation for the new 
telecommand systems is presented in [2] and [3]. In this paper 
we focus on the transmitter design and implementation. 

The European Space Agency (ESA) has funded a project 
titled ÒNEXTRACK - Next Generation ESTRACK (ESA 
Tracking Stations) Uplink ServicesÓ aiming at gaining 
practical experience in the implementation of the transmitter 
critical parts. The main scopes of the study are: 

¥ To analyze and design the critical modules for the 
uplink Coding and Synchronization sublayer, 
including LDPC encoding, Command Link 
Transmission Unit (CLTU) generation and 
randomization, as well as to develop an off-line 
simulation tool. 

¥ To select a proper platform by comparing hardware 
and software solutions already available at Telemetry 
Tracking and Command Processor (TTCP), the 
ESTRACKÕs Ground Station Modem, and prototype 
the critical modules for real-time implementation. 

¥ To test the prototype and validate the results by 
comparison with an off-line simulation tool. 

In this paper we discuss these issues and we present some 
of the results and conclusions the study has achieved till now. 
The organization of the paper is as follows. In Section II we 
introduce the Channel Coding and Synchronization sublayer 
of the uplink system and we discuss its most important blocks. 

Study funded by European Space Agency under the contract
4000124933/18/D/MB. 
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In Section III we present two efficient solutions for the 
implementation of the LDPC encoder, which is the most 
critical block. In Section IV we discuss software and hardware 
platforms for real-time implementation. In Section V we show 
that a fully software implementation on a CPU-platform is 
able to achieve high bitrates. Finally, conclusions are drawn 
in Section V. 

II. CHANNEL CODING AND SYNCHRONIZATION SUBLAYER 

The relationship of the Channel Coding and 
Synchronization Sublayer of the Uplink Communication 
System to the Open Systems Interconnection (OSI) reference 
model is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

Fig. 1. Channel Coding and Synchronization Sublayer: position on the OSI 
reference model  

As summarized in Fig. 2, if we focus on the Ground 
Element transmitter, the main blocks of the Channel Coding 
and Synchronization Sublayer are: 

¥ Randomizer, for bit transition generation. 

¥ Encoder, for error-control BCH or LDPC coding. 

¥ CLTU generation, for delimiting codeblocks. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Channel Coding and Synchronization Sublayer: constituent blocks 

A. Randomizer 
The randomizer is used to increase the randomness of the 
binary messages to be transmitted. On-board symbol 
synchronism circuits need a given transition density, and long 
runs may prevent a correct working. The randomizer works by 
summing a pseudo-random maximal length sequence 
generated by a Linear Feedback Shift Register (LFSR). This 
guarantees enough transition density and avoids long runs. 

The CCSDS TC randomizer is made by the 8-cell LFSR with 
polynomial description p(D) = 1 + D + D2 + D3 + D4 + D6 + D8 
depicted in Fig. 3, which generates a sequence with period       
N = 28 Ð 1 = 255 bits. 

This randomizer is optional for BCH coding and 
mandatory for LDPC coding. When adopted, at the beginning 
of the Transfer Frame (TF) all the 8 cells are pre-set to 1. 
Given T the TF length, the first T bits generated by the LFSR 
are ex-ORed to the TF bits to obtain the T-bit randomized 
frame to be transmitted, which is then input to the encoder.  

 
Fig. 3. 8-cell LFSR randomizer 

If the TF length is not an integer multiple of the encoder 
input length, fill bits are appended to obtain an integer 
multiple, consisting in the repetition of the 01 pattern. 
According to [1], these fill bits may be added either before or 
after randomization (since they have already enough bit 
transition density, then randomization is not strictly required). 

Since the LFSR is always preset to the all-one state at the 
beginning of the TF, the LFSR pseudo-random sequence is 
always the same, obtained by repeating the main period of        
N = 255 bits.  

The real-time implementation of the randomizer can be done 
by using the logic diagram depicted in Fig. 3 or directly by 
storing the 255-bit main LFSR period in a memory and 
summing it when requested, and it is not critical for real-time 
implementation. 

B. BCH encoder 
CCSDS TC Recommendation specifies a binary (63, 56) BCH 
code, where n = 63 is the codeword length and k = 56 is the 
information length. The generator polynomial of this BCH 
code is g(X) = X7 + X6 + X2 + 1 = (X6 + X + 1)(X + 1). The code 
may be regarded as an expurgated (63, 57) Hamming code, 
obtained by allowing even-weight codewords only; its 
minimum distance is dmin = 4, then the code is able to correct 
single errors and detect up to three errors. 

 The BCH encoder can be realized by the shift register digital 
circuits depicted in Fig. 4. This circuit performs systematic 
encoding of a block u = (I0, I1, ..., I55) of 56 bits. At the 
beginning, the shift register is initialized to all-zero and the 
two switches are set to the position 1. The encoder is fed 
serially with the 56 bits u; these bits are propagated to the 
output and, at the same time, they are processed by the 
feedback shift register-based digital circuit. When all the 56 
bits u have been input, the two switches are set to position 2: 
in the seven subsequent clock cycles the complement of the 
seven BCH parity-check bits p = (P0, P1, ..., P6) are output by 
the encoder, and concatenated with u. After these seven clock 
cycles, the switches are set to position 3, yielding the 
generation of one bit F0 = 0 (called the filler bit). The binary 
word c generated from u has length 64 bits and is given by        
c = (I0, I1, ..., I55, PÕ0, PÕ1, ..., PÕ6, F0) where PÕi = XOR(Pi, 1) 
is the complement of bit Pi. 
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Fig. 4. Encoding circuit for the (63, 56) BCH code 

If a block of TFs to be transmitted in one CLTU is not an 
integer multiple of 56, an appropriate number of fill bits is 
added to the block. (The fill pattern is a sequence of alternating 
0 and 1 bits, starting with a zero.) The BCH encoder real-time 
implementation is not consider critical. 

C. LDPC encoder 
The LDPC codes introduced in CCSDS TC 

recommendation [1] have parameters (128, 64) and (512, 
256). These codes are defined through their parity check 
matrix H, which can be obtained starting from the structures 
specified in Fig. 5. According to the figure, the parity-check 
matrices are constructed from Q! Q submatrices where Q = k/4 
= n/8: we have Q = 16 for the (128, 64) LDPC code and Q = 64 
for the (512, 256) LDPC code. 

7 2 14 6 0 13

6 15 0 1 0 7

64 128 4 1 15 14 11 3

0 1 9 13 14 1

Q Q Q

Q Q Q

Q Q Q

Q Q Q

" " " " " "

" " " " " "

" " " " " "

" " " " " "

#

! "$
# $
# $$
# $=
# $$# $
# $$% &

I 0 I

I I 0
H

I I 0

I I 0

 

63 30 50 25 43 62

56 61 50 23 37 26

256 512 16 0 55 27 56 43

35 56 62 11 58 3

Q Q Q

Q Q Q

Q Q Q

Q Q Q

" " " " " "

" " " " " "

" " " " " "

" " " " " "

#

! "$
# $
# $$
# $=
# $$# $
# $$% &

I 0 I

I I 0
H

I I 0

I I 0

 

Fig. 5. Parity check matrices of the LDPC codes 

With reference to the circulant matrices shown in Fig. 5, 
IQ and 0Q are the Q! Q identity and zero matrices, respectively, 
while "  is the first right circular shift of IQ. Explicitly, this 
means that "  has a non-zero entry at row i and column j if and 
only if j = i + 1 mod Q. Consequently, " 2 is the second right 
circular shift of IQ, that is, " 2 has a non-zero entry at row i and 
column j if and only if j = i + 2 mod Q, and so on. Obviously, 
" 0 = IQ. The $  operator indicates modulo-2 element-wise 
matrix addition.  

These LDPC codes were designed starting from protographs 
[4] and achieve very good performance. On-board they can be 
decoded by usual iterative LDPC decoding algorithm. As an 
alternative, a non-iterative Most Reliable Basis (MRB) 
algorithm can be applied, at least for the shorter code, which 
achieves a higher coding gain [5]-[7]. 

Starting from the parity check matrix, a generator matrix 
G can be obtained, by using the equation G!HT = 0k! r where 
superscript T denotes transposition, r = n Ð k is the number of 
parity check symbols, and 0k! r is the all-zero matrix with the 
specified size. Since the code is systematic, the matrix G can 
be written as G = [I4Q W], where I4Q is 4Q!4 Q identity matrix 
and W is a block-circulant matrix. More in detail, the structure 

of G is shown in Fig. 6, where every Wi,j is a (dense) circulant 
Q! Q square matrix. 
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Fig. 6. Generator matrix structure 

The scatter chart for the generator matrix of the (128, 64) 
LDPC code is depicted in Fig. 7, where blue dots represent 
bits equal to 1 while all remaining bits are 0. We can note that 
the G right side is dense (about r2/2 bits equal to 1). 

Given the information vector u, we can obtain the 
corresponding codeword as c = uG. Anyway, due to the 
density of G, encoding is not optimized. LDPC encoding is 
then a critical block for real-time implementation. For this 
reason, in the next section we will consider two efficient 
alternative encoding solutions. 

 
Fig. 7. Scatter chart for the generator matrix of the (128, 64) LDPC code 

 

D. CLTU generation 
After channel encoding has been realized, the CLTU 

generation block performs codeword concatenation and 
prepends to the block of concatenated codewords a CLTU 
start sequence. The start sequence depends on the adopted 
channel coding mode. When BCH coding has been selected, 
the 16-bits start sequence 1110101110010000 is used. On the 
other hand, when LDPC coding has been selected, the 64-bits 
start sequence (here expressed in hexadecimal form) 0347 
76C7 2728 95B0HEX is used. 

After the start sequence has been prepended, the CLTU 
generation module appends a tail sequence when the chosen 
configuration requires it. In case BCH encoding has been 
selected, the mandatory 64-bit tail sequence (expressed in 
hexadecimal form) C5C5 C5C5 C5C5 C579HEX is appended 
to the block of concatenated codewords. On the other hand, 
when the system configuration consisting of the (128, 64) 
LDPC coding with CLTU tail sequence has been selected, the 
optional 128-bit tail sequence (again here expressed in 
hexadecimal form) 5555 5556 AAAA AAAA 5555 5555 
5555 5555HEX may be appended. This tail sequence is 
mandatory if we want to apply decoders based on MRB for 
LDPC complete decoding [2], [3]. Unlike, the tail sequence is 
not used at all for the (512, 256) LDPC coding (that, in fact, 
cannot use MRB, because of the high complexity it implies 
for, relatively, long codes). 

The CLTU generation block is quite simple and is not 

0 20 40 60 80 100 120

0

10

20

30

40

50

60

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore.  Restrictions apply. SEPARASSERO



considered critical for real-time implementation. 

III.  EFFICIENT LDPC ENCODING 

Both the (128, 64) and the (512, 256) TC LDPC codes belong 
to the class of quasi-cyclic (QC) LDPC codes, a feature that 
can be exploited to make their encoding (both in hardware and 
software implementation) particularly efficient. In this section 
we present two methods that can reduce the complexity. 

A. SRAA-based encoding 
As explained in the previous section, given the systematic 

generator matrix G = [I 4Q W] of the TC LDPC codes, the W 
matrix is dense, then the complexity of the straightforward 
encoding c = uG may be problematic on some platforms. A 
method to circumvent this problem consists of exploiting the 
QC property possessed by both TC LDPC codes. To do so, let 
us focus on the structure of the matrix G reported in Fig. 6. As 
mentioned above, each Wi,j is a square Q! Q (generally dense) 
circulant matrix, meaning that any of its rows may be obtained 
as the right circular shift of the previous row by one position.  

To efficiently perform the product uG (both in software 
and in hardware), we can write the information block u as 
u = (u1, u2, u3, u4), where all ui, i = 1, ..., 4, have length Q bits. 
Hence, we have c = (u1, u2, u3, u4, p1, p2, p3, p4), where  

pj = u1W1,j + u2W2,j + u3W3,j + u4W4,j. 

Next we exploit the fact that all Wi,j matrices are Q! Q 
circulant blocks. For such a purpose, we denote by gi,j

(l) the 
l-th row of Wi,j, for l = 1, ..., Q. With reference to the generic 
term involved in the above expressions of pj, letting 
ui = (u(i! 1)Q+1, u(i! 1)Q+2, ..., uiQ), we have 

uiWi,j = u(i! 1)Q+1gi,j
(1) + u(i! 1)Q+2gi,j

(2) + É + u iQgi,j
(Q). 

 The calculation of each pj requires to perform the above 
computation four times, one per each i = 1, ..., 4. In hardware, 
the calculation of pj may be performed efficiently using a 
digital circuit called Shift Register Adder Accumulator 
(SRAA) [8], shown in Fig. 8.  

 
Fig. 8. SRAA encoder 

This circuit features two shift registers for Q bits each, as 
well as Q logic AND and Q logic XOR gates. The calculation 
of pj is performed in four different phases, one per each i = 1, 
..., 4. At the beginning of phase i, the vector gi,j

(1) is preloaded 
in the first register, which is in charge of generating all rows 
of Wi,j in the subsequent Q Ð 1 clock cycles. In each clock 
cycle of phase i, all elements of the shift register are multiplied 
(logical AND) by the bit u(i! 1)Q+t, t = 1, É, Q, and the result is 
accumulated (logical XOR) in the corresponding position of 

the second Q-bits register. At the end of the four phases, the 
latter register contains pj. Overall, the efficient encoder is 
composed of four SRRA circuits.  

Besides being very useful for hardware implementation of 
the LDPC encoder (for both the length-128 and the length-512 
codes), this encoding strategy may be exploited in a software 
implementation, too, yielding a much more efficient encoding 
algorithm than the straightforward approach consisting of 
direct uG multiplication. 

B. Winograd-based encoding 
In this section we present an alternative encoding technique, 
based on Winograd convolution [9]. This method exploits the 
fact that circulant matrices are Toeplitz matrices. 

In a Toeplitz matrix, all elements on a descending diagonal 
from left to right are constant. Any circulant matrix is clearly 
a Toeplitz matrix, as can be seen in this example of a 4!4 
circulant matrix: 
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Now, any p! p Toeplitz matrix T with even p can be 
decomposed as 
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where: 

¥ 0 and I  are p/2! p/2 null and identity matrices, respectively; 

¥ T0, T1, T2, T1 !  T0, T2 !  T0 are p/2! p/2 Toeplitz matrices. 

The above decomposition can be exploited to perform 
efficiently the product vT = vABC, where v = [v0 v1] is a 
vector of length p (v0 and v1 are both of length p/2). 

The product [v0 v1]ABC is developed in three steps as follows: 

1. Evaluation:  

[v0 v1] A = [v0 v1 v0+v1]. 

 This first step requires p/2 additions. 

2. Multiplication: 

[v0 v1 v0 + v1] B = [v0(T1 !  T0) v1(T2 !  T0) (v0 + v1)T0] 

= [z0 z1 z2]. 

This second step requires three products of vectors of 
length p/2 by (p/2)!( p/2) Toeplitz matrices. 

3. Interpolation 

[z0 z1 z2]C = [z1 + z2  z0 + z2]. 

This final step requires two additions of p/2-bit vectors. 

It is important to note that in step 2 we trace back the product 
of one vector of length p by a Toeplitz matrix of dimension p 
to 3 products of vectors of length p/2 by Toeplitz matrices of 
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dimension p/2. This process can be iterated, as far as we get 
matrices of even dimension. Since the vector-matrix product 
has quadratic complexity, overall we get considerable savings 
in terms of elementary operations. 

Let us return to our encoding problem and consider again the 
generation of 

pj = u1W1,j + u2W2,j + u3W3,j + u4W4,j     (j = 1, 2, 3, 4) 

as stated in Section III.A. To calculate each pj we need to 
perform 4 products of vectors of length Q (= 16 or 64) by Q! Q 
Toeplitz matrices. As a consequence, encoding can be 
performed efficiently by applying the described technique 16 
times, one for each Wi,j. 

We finally note that: 

¥ The 16 vector-matrix products can in principle be 
performed in parallel. 

¥ For each j = 1, 2, 3, 4, we need to perform 3 (binary) 
sums of vectors of length Q to assemble pj. In total, 
we have 12 sums of vectors of length Q. 

¥ Step 1 can be performed only once for each ui, thus 
producing further savings in complexity. 

This technique looks then very promising for real-time 
implementation. 

IV. SELECTION OF THE PLATFORM 

One of the initial project goals was to select the platform 
where the critical modules will be implemented having into 
account a future portability towards an operational platform 
available at TTCP. This section describes the possible 
platforms and the respective selection. 

A. Plaforms available at TTCP 
ESA has the following three kinds of platforms available 

at the TTCP: CPU, ARM based FPGA and FPGA. These 
platforms are integrated in two types of units/devices: Data 
Processing Unit (DPU) and Signal Processing Modules 
(SPM). 

A DPU includes two processors Intel Xeon CPU E5-2637 
v4 @ 3.50 GHz while a SPM has inside two FPGAs from 
Altera/Intel: the FPGA Stratix which is a powerful pure 
FPGA, and a Cyclone SoC FPGA with dual-core ARM 
CortexA9. 

The Intel Xeon processor E5 v4 is a multi-core enterprise 
processor built on 14nm process technology designed to have 
low power and high performance, the processor was designed 
for a platform consisting of a processor and the Platform 
Controller Hub (PCH) supporting up to 46 bits of physical 
address space and 48-bits of virtual address space. Table I 
addresses the main features of the CPU platform available at 
TTCP. 

TABLE I.  CPU PLATFORM SPECIFICATION (FROM ESA) 

Features Values 

CPU(s):     16 

On-line CPU(s) list:  0-15 

Thread(s) per core:       2 

Core(s) per socket:       4 

Socket(s):       2 

Features Values 

Model name: Intel¨ Xeon¨ CPU E5-2637 v4 @ 3.50GHz 

L1d cache:      32K 

L1i cache:      32K 

L2 cache:    256K 

L3 cache: 15360K 

NUMA node0 CPU(s): 0-3,  8-11 

NUMA node1 CPU(s): 4-7,12-15 

 
The Cyclone FPGA built on 28-nm low-power process 

provides a low cost and low power system, achieving 40 
percent lower total power compared with the previous 
generation. It has efficient logic integration capabilities, 
integrated transceiver variants, and SoC FPGA with an ARM-
based Hard Processor System (HPS).  

The capabilities and logic integration were improved 
thanks to an 8-input Adaptive Logic Module (ALM), with up 
to 12MB of memory and variable precision digital signal 
processing (DSP) blocks. As shown in Fig. 9, Cyclone 
integrates a HPS which includes processors, peripherals, and 
memory controller with the FPGA fabric using a high-
bandwidth interconnect backbone. 

 
 

Fig. 9. HPS block diagram of Altera Cyclone SoC (from Altera/Intel) 

The Stratix device offers up to 48 integrated transceivers 
with 14.1 Gbps data rate capability. These transceivers also 
support backplane and optical interface applications. It has a 
rich set of high-performance building blocks, including a 
redesigned Adaptive Logic Module (ALM), 20 Kbit (M20K) 
embedded memory blocks, variable precision DSP blocks, 
and fractional Phase-Locked Loops (PLLs). All these building 
blocks are interconnected by a multi-track routing architecture 
and comprehensive fabric clocking network. The main 
features of the FPGA platform are depicted in Table II. 

TABLE II.  FPGA PLATFORM SPECIFICATION (FROM ALTERA/INTEL) 

Features Stratix 

Logic Elements (K)        952 

ALMs 359,200 

Registers (K)    1,437 

M20K Memory Blocks    2,640 

M20K Memory (Mbits)        52 

MLAB Memory (Mbits)            10.96 

Variable Precision DSP blocks (27x27)      352 

Variable Precision Multipliers (18x18)      704 

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 23,2020 at 10:41:09 UTC from IEEE Xplore.  Restrictions apply. Esagerazione








