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Summary

According to the World Health Organisation (WHO), air pollution is responsible
for 7 million deaths every year, and 91% of the world population lives in places where
air quality exceeds the limits mandated by WHO itself. In recent years, the research
about energy waste and pollution reduction has gained a strong momentum, also
pushed by European and national funding initiatives. The primary purpose of
this large effort is to reduce the effects of greenhouse emission, climate change to
head for a sustainable society. In this scenario, Information and Communication
Technologies (ICT) play a key role in reducing energy consumption and moving
forward to a more sustainable and smart society.

[oT devices are used in many contexts, to add smartness to cities, energy, and
industrial processes. Their pervasiveness, combined with the recent development
of machine learning techniques, allows collecting a large amount of data, enabling
original opportunities to create innovative modelling and optimization approaches.
Consequently, moving towards smart and sustainable energy use, my research activ-
ities have mainly focused on the design and the optimization of innovative machine
learning methodologies, by exploiting primarily neural networks, for the forecast-
ing of time-series in Smart City context. In this manuscript, I propose innovative
and optimized stream data processing and machine learning methodologies, rang-
ing from energy and environmental data and moving to data from CPS systems. I
have designed and validated innovative modelling and control strategies in specific
application case studies: i) Renewables, ii) Smart Building and iii) Smart Health.

In detail, I addressed the issues of prediction of GHI which is the energy compo-
nent necessary for the development of photovoltaic energy, the thermal modelling
of Smart Buildings and finally, I moved toward the person health by addressing the
topic of blood glucose level prediction for Type I diabetic patients. In all the three
cases, the studies were conducted following a bottom-up approach starting from
the analysis and appropriate pre-processing of IoT data, designing neural models
suitable for the type of dataset and its characteristics and finally comparing these
new models with the methodologies of the literature.

In the context of renewables, I developed a methodology for photovoltaic pre-
dictions starting from the physical phenomenon of GHI. Then, I focused on the
optimization of the methods for GHI forecasting in short- and mid-term. Lastly,
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I also investigated how to properly exploit exogenous inputs (i.e. physical factors
related to the phenomenon of solar radiation) to further improve GHI predictions.
In the context of Smart Buildings, I developed a comprehensive methodology that
enables thermal modelling in both new generation and historic buildings, by ex-
ploiting the possibility of creating a very reliable synthetic dataset based on BIM
technology and real weather data (TMY). This configuration allowed me to de-
velop hybrid neural models trained with synthetic data and able to exploit real
data (i.e. provided by IoT devices installed in a real-world demonstrator) for in-
door air-temperature predictions. Finally, by using Transfer Learning techniques,
I was able to specialize the hybrid models on real data. Lastly, in the context
of smart health, I addressed the problem of automated glucose level prediction
leveraging multi-patient CGMS data. The aim was to learn a generalizable glucose
level prediction model from a multi-patient training set, using this model to predict
the future glucose values of a new patient. In practice, the objective is to create
a device that can be purchased and is ready to use, without the need for initial
tuning. Besides, I started to evaluate techniques to specialize this methodology by
integrating real-time information to specialize the predictor system specifically on
the single end-user.
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Chapter 1

Introduction

Professor Philip N. Howard of Oxford University, in [115] has proved that in
2014 the number of connected devices surpassed the number of people on our planet.
Further, as shown in the Figure 1.1, he estimated that more than 50 billion Internet-
connected devices would circulate in 2020, with annual growth of more than 12
billion units.
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Figure 1.1: Philip N. Howard’s Study of Connected Devices in relation to the
population

As a result of this impetuous growth, this year IoT will impact close to 6% of
the global economy, with an incremental revenue potential of $300 billion in ser-
vices [31]. International Data Corporation estimates that this huge amount of smart
devices will generate 79.4 zettabytes of data in 2025 [246]. As the spread of devices



1 — Introduction

and sensors grows, the amount of data that is to be managed and the number of
applications that need to be developed is growing.

This combination of smart devices and a large amount of available data lays the
foundation for the current and future Smart Cities.

1.1 Smart City: where everything is intercon-
nected

International research community has been talking about Smart Cities for years.
However, the term is often used vaguely or improperly, sometimes with an exclu-
sively technological focus, sometimes with a science fiction approach [217]. Mark
Deakin, professor at Edinburgh Napier University and luminary on Smart Cities,
defines it as a city that utilizes ICT to meet the demands of its citizens [63]. Prac-
tically, a city can be considered "smart" when it can manage resources intelligently,
becoming economically sustainable and energy self-sufficient and when it is atten-
tive to the quality of life and needs of its citizens. It is a city in which intercon-
nections are in the most disparate places, where objects exchange information with
each other, developing intelligent infrastructures and smart communities. In a nut-
shell, a city that knows how to keep up with innovations and digital revolution [3].

According to Mckinsey Global Institute report [261], a Smart City, to be defined
as such, must use technology and data to deliver a better quality of life. The
research community agrees that a good quality of life should include improvement
in the following areas:

e economic prosperity
Smart Cities, through their innovative infrastructure, are fertile ground for
technology start-ups and are able to attract knowledge and talent. This,
consequently, attracts venture capital to the cities. Examples of cities such as
London and New York have received an influx of investment capital thanks
to their smart initiatives [258, 126].

o greener environments

The environment is the core of every smart city strategy. Smart cities aim to
reduce pollution and emissions through intelligent urban planning and trans-
portation management, and optimized management of their resources [27,
213]. A city like Beijing has foraged projects as IBM Green Horizons [118]
to identify pollution sources and to improve the city’s air quality forecasting
capability. The project Earthsense [74], developed in the UK, is exploring
exciting new applications such as testing the impact of low emissions vehicles
on reducing air pollution.
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o fast and zero-impact mobility

Improving the daily commuting time is one of the primary objectives for
citizens and commuters to enhance their quality of life. Nowadays, cities that
offer smart-mobility applications in place can reduce commuting time by as
much as 20 per cent on average [87]. Multi-modal mobility solutions allow
passengers great freedom by choosing between many transportation options.
This, results in lower private fuel-vehicles usage since residents can opt for
the transportation mode that better suits them at the moment. Among the
many possible examples, the Polytechnic Institute of Beja promotes the use
and the sharing of electric and regular bikes in academic communities thought
the U-bike Project [38].

o public safety

Together with other areas, public safety is another crucial parameter for citi-
zens. ICT plays a key role in this application area. Indeed employing applica-
tions using, for example, real-time crime mapping [268] or statistical analysis
to detect crime patterns and identify problematic zones [138] to predict the in-
cidence of crime, the law enforcement agency can reinforce security and carry
out more effective prevention. Many cities around the world are rapidly equip-
ping themselves for such purposes. One example was the HunchLab project,
a predictive technology solution in New York City, which significantly lowered
crime [225].

Summarizing, many smart cities are being built all over the world. These cities
pursue and implement many initiatives to promote greener and safer urban en-
vironments, fighting environmental pollution, with better mobility and efficient
public services. All these initiatives are enabled by technologies like the Internet of
Things (IoT) and big data analytics, that form the base of the smart city model.
These technologies allow the generation of a large amount of data that could both
feed more advanced and real-time services and will enable the development of new
control and optimization policies.

1.1.1 Hints of IoT and Big Data in smart cities

Figure 1.2 depicts the three layers of “smartness” necessary to transform an
ordinary city infrastructure in a “smart” environment [4].
In detail, the first layer, which represents the starting base, corresponds to the tech,
which includes networks of sensors and connected devices which gather data. The
second layer consists of the deployment of smart applications that process the raw
data collected, translating it into alerts, insight, and actions. Then, the third layer
involves widely adopting the system by the citizens.
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SMART CITY

______________________________

Sensor and connected
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Figure 1.2: Smartness layers of Smart City

In this scenario, IoT is the essential technology on which modern smart cities
base their initiatives and features. The “things” of the IoT (i.e. smart and con-
nected devices, sensors and applications) collect the data that enables the technol-
ogy solutions to be effective. In short, an interconnected network of smart devices
collects a large amount of data that can be collected and processed to implement
smart services. For example, in a smart city context, governance integrates ICT
solutions to interconnect public services, at the same time engaging communities
in local management, thus promoting cooperation. The Greater London Authority
initiative [100] developed an open and universal platform to share data with local
communities. In general, there are multiple examples of IoT applications in smart
city contexts. Among the most important, we can find:

o city lighting

Cities such as London and Quebec are installing smart street lighting [44].
This technology not only allows better management of energy consumption,
but it also enables quick function as wifi hotspots, public surveillance, charg-
ing outlets for electric cars and phones, and even measure the air quality.
This multitasking technology works both as a sensor and an actuator, pro-
viding services that better the quality of life of the citizens while collecting
relevant data about the environment. Instruments such as streetlamps today
have become multi-function devices, which interconnect to form a capillary
network from which to draw numerous and valuable data.

e waste management
As previously introduced, nowadays, many cities are applying advanced and
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technological solutions to achieve a cleaner environment and reduce waste.
For example, Songdo district in South Korea is reducing noise pollution, elim-
inating garbage trucks [151]. Indeed, many buildings have a smart garbage
collection station where residents dispose of the trash bags, separated by or-
ganic and combustible. The station is equipped with sensors that detect when
it is full. The trash is automatically sent through high-pressure pipes straight
to the recycling centre.

public transport

Connected public transport—sensors send traffic data to the city transporta-
tion management software. Through the post-processing of this data, it is
possible to provide real-time public services such as, for example, waiting
times for the bus or train, alerting the system traffic congestion or delays [84].

As mentioned above, these are just some of the examples of using IoT technology
in smart contexts.

That said, all the smart initiatives need big data analytics and post-processing
to be effective. As demonstrated, the IoT devices generate massive datasets that
must be analyzed and processed to implement smart city services [40]. Big data
platforms, part of the city ICT infrastructure, have to sort, analyze and process
the data gathered from the IoT. Smart cities are, by definition, data-driven. That
is why big data and analytics play a key role. Indeed, the combination of big data
analysis and smart city solutions helps cities to improve the management in critical
segments, such as:

energy

To reduce pollution and energy waste, smart cities are experiencing the chal-
lenge of managing power usage efficiently [32]. This often translates into the
implementation of efficient smart grids [96]. These smart grids allow city
officers to analyze and administer the power consumption in real-time. In-
deed, using data analytics and machine learning techniques, they can predict
periods of heavy usage and plan the energy distribution accordingly. Further-
more, alternative energy production plants, such as solar energy plants, can
be installed to balance energy needs. Moreover, thanks to the use of sensors,
it is possible to carry out predictive maintenance and remote controls.

transportation

A smart transport infrastructure uses big data and IoT technologies to provide
residents with access to faster and safer travel across the city. At the same
time, it gives city authorities data about traffic flow, allowing them to manage
the transit efficiently.

infrastructure
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Having a large amount of data available and being able to process them effec-
tively helps cities to monitor and manage urban issues such as waste disposal,
transportation, and saving resources. Improving infrastructures means being
able to offer better services and thus increase the well-being of the environ-
ment, resources and ultimately citizens.

These are just some of the sectors of smart cities where the combination of IoT tech-
nologies and the management of the resulting data operate successfully. However,
the lowest common denominator of all fields of application is the availability of a
large amount of data. These data, adequately organized, processed and analyzed,
allow to improve already existing services and expand towards new paradigms still
to be explored. Undoubtedly one of the most promising tools in the field is the
study of the available data to predict the future. Predicting the future means being
able to implement new and more efficient control strategies.

1.2 Time-series forecasting: new control strate-
gies

Understanding the past to discover the future. Since humans’ origin, we are
searching for laws that explain the behaviour of observed phenomena. There are
many examples, and these range from how the heart works and the irregularity in
a heartbeat to model the volatility of a currency exchange rate. In other words,
humans are continually seeking to predict the future, and they do this by trying to
understand and model the past [255].

Generally, if the underlying deterministic equations are well known, these can
be solved to forecast the outcome of an experiment based on knowledge. On the
contrary, if the equations are not known, to make a forecast, we have to find both the
rules governing system evolution and the actual state of the system. For example,
phenomena such as the motion of the pendulum carry within it the potential for
predicting its future behaviour, based on the knowledge of its oscillations, without
requiring insight into the underlying mechanism. In contrast, phenomena such as
the air temperature of a building or blood glucose level are subject to many external
factors that are difficult to model with conventional systems. These necessarily
require the study and understanding of underlying mechanisms. Consequently,
human being has developed two approaches to analyze an unfamiliar time series:
i) “understanding” the series and ii) “learning” from the series. Understanding
the series means to give an explicit mathematical understanding of how systems
behave. Instead, learning means to adopt tools and algorithms that can emulate
the structure in a time series. In both cases, the goal is to explain observations the
so-called time-series analysis [255].

Usually, time series analysis has three goals [39]:
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o forecasting
Forecasting aims to accurately predict (in the best possible way and with the
least likely error) the evolution of the system;

e modelling
The goal of modelling is to find the description that accurately captures fea-
tures of the behaviour of the system.

e characterization
The goal of characterization, finally, attempts with little or no a priori knowl-
edge to determine fundamental properties, such as the number of degrees of
freedom of a system or the amount of randomness.

Before the 1920s, forecasting was done by merely extrapolating the series through
a global fit in the time domain [255]. In 1927, Yule invented the autoregressive
technique to predict the annual number of sunspots, thus beginning the time-series
prediction of modern era [117]. This model can predict the next value as a weighted
sum of previous observations of the series. Around 1980, two crucial developments
occurred both enabled by the general availability of powerful computers that per-
mitted much longer time series to be recorded, more sophisticated algorithms to
be applied to them, and the data and the results of these algorithms to be in-
teractively visualized. The first was the state-space reconstruction by time-delay
embedding [255]. This is based on the idea from differential topology and dynam-
ical systems to provide a technique for recognizing when deterministic governing
equations have generated a time-series. The second was the emergence of the field
of machine learning, typified by neural networks, that can adaptively explore an
ample space of potential models [232]. With the shift in artificial intelligence (i.e.
towards data-driven methods) and by means of tools able to record with orders
of magnitude more data points than were available previously, time series were
ready to be analyzed with machine-learning techniques requiring relatively large
data sets. This has made it possible to develop more and more efficient and robust
methods. Still, above all, it has made it possible to discover hidden and non-linear
relationships between data, thus giving new food for thought.

Contexts such as smart cities are the first to benefit from such tools. They rep-
resent breeding grounds for a large amount of data. These data, for the most part,
correspond to time series. By collecting this data and analyzing it using powerful
time series analysis techniques, we are now able to discover new correlations and
dependencies. This allows us to understand more and more the context (i.e. the
city and all its actors) giving us the possibility to hypothesize and develop new
control policies [63]. In the smart energy sector, for example, policies such as De-
mand/Response [226] and Demand Side Management (DSM) [93] have found room
for continuous improvements. Thanks to these new paradigms, in a smart envi-
ronment, energy resources can be shaped and managed according to needs. This
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happens in all sectors, from energy to health and from mobility to safety. The
perfect match between data availability and machine learning techniques, such as
neural networks, give life to smart contexts. These, in turn, represent the ideal
laboratory for continuous experimentation and technological development.

1.3 Machine learning for time-series forecasting

The desire to know and model the future has always guided the human being.
Together, also the aptitude for learning tasks through experience is part of human
growth. Indeed, when a human being is born, he knows nothing, and he is not
able to provide for itself. But as he gains experience, he becomes more and more
autonomous and able to perform even more complex activities every day. These
two skills, mixed, through knowledge and technological development, gave rise to
advanced techniques such as machine learning.

Machine learning includes a set of techniques based on algorithms and statis-
tical models that allow machines to perform specific tasks without using explicit
instructions, relying on patterns and inference instead [137]. Therefore these ad-
vanced techniques, combining statistics and computer science, make computers able
to learn how to perform a specific task without having been programmed to do so,
just like a man in his learning and growth phase. For example, for a human being,
knowing how to distinguish a cat from a dog derives from the awareness of having
acquired the characteristics of the entity "dog" and the entity "cat', learning its
distinctive features (i.e. size, head shape, eyes, etc.) and, consequently, being able
to recognize them.

" N \’
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Figure 1.3: General schema of machine learning approach - Recognition of cats and
dogs.

Figure 1.3 depicts a simplified example of an automatic learning approach based on
the recognition of two class of animals through a series of filters. On the left are the
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system inputs. In this example, the inputs are images with corresponding labels of
the two animals. These images are used to train the system to discern between the
two animals. The central part represents the machine learning system itself, which
trough a set of tools (e.g. weights and filters) learns to recognize animals from
images. Once trained, the machine learning system can discern, with a precision
error, independently each animal image (i.e. cat or dog).

In an automatic learning system, a computer programmed to learn acquires
statistical trends within the data. This ability allows it to recognize autonomously
one class or other ones [12]. For example, by extracting knowledge from the image
data of cats and dogs, the machine could understand on its own that cats have
shorter muzzles and dogs appear in the wider variety of sizes. These characteristics
can be represented in a dataset. A dataset is a set of data organized into essential
mathematical elements such as vectors or matrices. In general, each dataset is
characterized by one or more variables that describe the observable properties of
an object, known as features. In machine learning systems, the list of features that
describe an object is called feature vector. Moreover, the data represented by the
samples, by definition, carry with them a load of information, which, however, must
be optimized to avoid that more features give the same information, a phenomenon
known as redundancy. This is disadvantageous because it can compromise the
accuracy and reliability of these machine learning systems.

In the machine learning phase, the computer must identify trends within the
features and establish a function by which future input will be recognized. At the
same time, the programmer must address on which dataset to choose, or how to
apply what he has learned, to make future decisions. In this phase, there will be
some errors, but the more data the learning algorithm receives, the more effective
its predictions or classifications can become. Hence, it is fundamental that the
baggage of data from which the computer extracts knowledge is as large as possible
to increase the generalization capabilities, but not too large to make the algorithm
unable to apply the "laws" that govern it.

Machine Learning represents a momentous change in the computing paradigm.
Knowledge is extracted from examples and experience, understood as the study
of actual data, representing the culmination of an inductive process. There are
currently three macro-categories of machine learning [173]:

o supervised learning;
« unsupervised learning;

 reinforcement learning;

Supervised learning aims to approximate the mapping function between input and
output, so that, in case of new input data, is it possible to predict the output
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variables for that data. Supervised learning deals with two types of problems: re-
gression and classification [228]. Instead, in the case of unsupervised learning, the
data used are not labelled, thus without prior knowledge. Consequently, data is
only used to search for correlations, patterns or structures within the information
itself. The most commonly used techniques are clustering or dimensionality re-
duction [129]. In clustering, the classification occurs through a process of discrete
grouping data according to intra-class similarity and inter-class differences, while
dimensionality reduction is the equivalent for continuous data. Finally, in a rein-
forced learning field, the system in the training phase receives feedback about its
actions [240]. This type of learning methodology interacts with the environment to
learn a series of combinations and activities that give the best results by storing and
managing the previous experiences. Based on the actions considered virtuous or
harmful, the algorithm adopts decisions (i.e. prediction or classification) according
to the feedback received during the learning phase. Generally, a robust machine
learning model requires:

o in-depth analysis of the available data;

o optimal data-set pre-processing;

careful splitting of a training, test and validation set;

choice of algorithms suitable for the task;
« model scalability.

Nowadays, the industry works with large amounts of data, considered a real eco-
nomic asset [47]. Through specific machine learning techniques aimed at extracting
knowledge of such data, often in real-time, companies can work and make decisions
more efficiently, obtaining numerous advantages. Even high-tech players like smart
cities get innumerable benefits. As introduced in the previous paragraphs, these
advanced laboratories produce an enormous amount of valuable data. They provide
especially time-related data. This considerable amount of data, combined with the
latest machine learning techniques, opens up new horizons and possibilities for re-
search and development. There are many fields of application of machine learning;:
government agencies, financial services, health care, energy, advertising, marketing
and transport are some of the most developed sectors [14].

1.4 Scenarios

In recent years, the research about energy waste and pollution reduction has
gained a strong momentum, also pushed by European and national funding initia-
tives. The primary purpose of this great effort is to reduce the effects of greenhouse
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emission, climate change to head for a sustainable society. In this scenario, In-
formation and Communication Technologies (ICT) play a crucial role in reducing
energy consumption and moving forward to a more sustainable and smart society.

[oT devices are used in many contexts, to add smartness to cities, energy, and
industrial processes. Their pervasiveness, combined with the recent development
of machine learning techniques, allows collecting a large amount of information,
enabling exceptional opportunities to create innovative modelling and optimization
approaches.

My research focuses on developing stream data processing and machine learn-
ing methods, ranging from energy and environmental data and moving to data
from Cyber-Physical Systems (CPS), creating and validating innovative modelling
and control strategies in specific application case studies: i) Smart Building, ii)

Renewables and iii) Smart Health.
L)
-
A

a I ® +

RENEWABLES SMART BUILDING SMART HEALTH
Figure 1.4: Scenarios

Consequently, moving towards a smart and sustainable energy use, my research
activities have mainly focused on the design and the optimization of innovative
machine learning methodologies, by exploiting primarily neural networks, for the
forecasting of time-series in Smart City context.

1.4.1 A common methodology

The central theme of my research is the design of innovative machine learning
methodologies (i.e. neural networks), for the forecasting of time series in the Smart
City scenario. Consequently, I was able to apply these methods to thermal mod-
elling of Smart Buildings, to solar radiation forecasts for photovoltaic simulations
and finally to smart health, by predicting the value of blood glucose.

Consequently, all the contexts in which I have had the opportunity to perform
the experiments have a common denominator: the proposed base-line methodology.
Indeed, all the studies were conducted following a bottom-up approach starting
from the analysis and appropriate pre-processing of IoT data, to design neural
models suitable for the type of dataset and its characteristics. Figure 1.5 shows the
proposed common methodology.

The basic idea is to use real-data (i.e. from real-world demonstrators) to design

11



1 — Introduction

TEST PHASE + TEST PHASE +
C T TRAINING PHASE === ===~ ==~ =< SyNTHETICEXPLOITATION " || REAL DATA EXPLOITATION |
| i 1 1
| h 1 . 1
! 1
| T ' = © o s PO i
| A 1 =} 1 @ b h
| [N 1 GK _.)) 1
1 —{—<@> @ % : | T—T 1 . O—G{ h
| = 1 . (N} . 1
= ﬁ : | Fanonl‘cal H loT Sensors !
! e — Traim Consistent ' Simulations : ! !
! rainin
! Canonical set & Data ! : l I l !
| Simulations : 1 1 1
+ 1 e 1 — 3 1
: . [N 1 |
T o i Neural i Test set o |
! (f-n: \G_, @ > Net k h 1 1
! q -'-w etworks h Consistent '! 1
Lo 0—0/ Pre- Real Data 1 1 Real Data 1
' * processing Py ' Data 11 !
! loTSensors  “___ >/ Prediction ¥ X :
] B .
| models " Trained NNs o Trained NNs |
]
| ) i |
1 " 1 1
| " [ 1

Figure 1.5: Base-line methodology

and optimize robust predictive models. When real data were not sufficient for effec-
tive characterization of the neural networks, we proposed methodologies to obtain
realistic synthetic data (using the few real data available to validate the simulated
ones). In this way we have been able to i) improve the canonical simulation method-
ologies already present and established in the literature and ii) to realize hybrid
predictive models able to learn from synthetic data and to exploit the real ones (i.e.
coming from IoT sensors) for the inference phase, therefore to obtain predictions.
Furthermore, in cases such as historic buildings, where no historical data is present,
and IoT sensors cannot be installed, we propose a full-synthetic methodology based
entirely on realistic synthetic data by obtaining more accurate simulations and by
overcoming the most famous simulation methodologies in literature. Besides, we
investigated some Transfer Leaning techniques to specialize hybrid models on real
data. This "information transfer" allows the hybrid models to transmute in a model
entirely based on real data without performing the learning processes as a whole,
by saving time and computational resources.

1.4.2 Smart Energy: solar radiation forecasting

Under the supervision and with the cooperation of my research team, we started
by investigating neural techniques for the prediction of renewable energy produc-
tion that represents a key topic in the smart city scenario. In detail, we proposed
a methodology to perform short-therm photovoltaic energy predictions by produc-
ing a comparative analysis of state-of-art neural networks techniques. Then, we
focus specifically on global horizontal irradiation (GHI) forecasting in short- and
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mid-term, by comparing some state-of-art neural network, as deeply illustrated in
Section 2.2. The experiments were conducted based on global horizontal irradiance
data measured by a meteorological station located at Politecnico di Torino. The
dataset, besides being used raw, has been subjected to two different pre-processing
using the Clear-sky index and Tikhonov regularization respectively, to make easier
the training phase of networks.

At the same time, we investigated the effectiveness of using exogenous inputs
for short- and mid-term solar radiation forecasting. In detail, we identified a subset
of relevant input variables for predicting GHI by applying different feature selection
techniques to a broader set of variables. To assess the usefulness of the selected fea-
tures, we evaluated and compared the prediction performance of the different state-
of-art neural network. Finally, to demonstrate the effectiveness of using exogenous
inputs for short-term solar radiation forecasting, we compared the prediction per-
formance against models using only endogenous data. The results showed that the
adoption of exogenous inputs could significantly improve forecasting performance.
Figure 1.6 shows the generalization of processed flow.

GHI data Exogenous data
Data transformation Data pre-processing Data transformation
Neural network for short- and Neural network for short-term Neural network for short- and
mid-term forecasting forecasting mid-term forecasting

PV simulation

Multivariate configuration State-of-art analysis and

investigation for short- and Shggtc;:f_izrrinl\josri(:qCSIs:;?Ognfor comparison for short- and
mid-term GHI forecasting mid-term GHI forecasting

Figure 1.6: Solar Radiation forecasting flow chart overview.

1.4.3 Smart Building: indoor air-temperature forecasting

In the context of national EEB Cluster Project, we developed a comprehen-
sive methodology to forecast indoor air-temperature trends in existing or newly
constructed buildings (i.e. buildings of which no indoor air-temperature data are
available). Also, in this scenario, our proposed methodology is based on the most
modern and state-of-art-recognized neural networks techniques for time series pre-
diction.
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The aim is to provide a robust and generalizable methodology to enable new
control policies for the thermal management of buildings w.r.t. individual rooms
and the whole building. In view of this, the methodology first of all addresses
the possibility of a lack of data, which are indispensable for reliable training and
validation of neural networks. For this reason, we developed a technology able to
produce a realistic synthetic dataset by simulating a Building Information model
(BIM) of a real-world building with EnergyPlus and by exploiting real weather
data instead of Typical Meteorological Year (TMY) data. In this way, we can
propose a hybrid neural model where the training phase is completely based on
simulated data, while the inference phase is conducted by exploiting real-world
data (e.g. data provided by IoT devices). Therefore, our methodology is ready
to be used immediately after the building is equipped with IoT devices, without
needing any calibrations. Hence, it allows forecasting indoor air-temperature trends
even in case of unavailable historical measurements. All this will enable us to state
that this methodology can be successfully used both on existing buildings in which
a historical dataset is available (using only real data) and on newly constructed
buildings in which a historical dataset is not possible (using realistic synthetic data
to model the construction and real data from IoT sensors for the neural network
inference phase).

In parallel to this, we model, optimize and compare different neural networks to
find the best architectures for short-, mid- and long-term indoor air-temperature
forecast. Identified the most promising structure, we apply transfer learning tech-
niques with the objective of further improve the prediction accuracy. In this way,
buildings that do not have a historical dataset, gradually collecting data, can mi-
grate from a model simulated on synthetic data to a model based on real data. This
gradual transition allows us to avoid new simulations and computational waste by
ensuring more and more accurate prediction.

Figure 1.7 shows the generalization of processed flow.

1.4.4 Smart Health: blood glucose forecasting

Lastly, I had the opportunity to apply machine learning also in the field of
smart health developing an innovative multi-patient data-driven approach to blood
glucose prediction addressing the problem of automated glucose level prediction
leveraging multi-patient Continuous Glucose Monitoring System (CGMS) data.
Specifically, the aim is to learn a generalizable glucose level prediction model from
a multi-patient training set, using this model to predict the future glucose values of
a new patient. This allows improving the usability of models that are solely based
on the past recordings of the same patient. To achieve this, we have designed and
compared different state-of-art neural network for time-series prediction.

Progressively, as second step, we focus on patient-specialized blood glucose pre-
diction system always exploiting the data-driven approach. Thus, based on the
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Figure 1.7: Building air-indoor temperature forecasting flow chart overview.

model previously developed, we designed and implemented our patient-specialized.
Consequently, we tested and evaluated our solution capabilities and performances
to improve the prediction accuracy, possibly on a much larger forecasting time
horizon.

Demonstrate the potential of our model also in patient-specialized version, as
future works, and we plan to apply some techniques, such as Transfer Learning, to
personalize the multi-patients neural network according to glycaemia behaviours of
each patient to monitor.

Figure 1.8 shows the generalization of processed flow.
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Figure 1.8: Glucose blood level forecasting flow chart overview (Type-I diabetes).
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Chapter 2

Neural Networks

One of the most studied applications of machine learning is artificial neural
networks (ANN). An ANN is a computing system inspired by biological animal
brains [137]. Generally, an artificial neural network is composed of computational
units, representing neurons, connected. The connections represent the synapses,
in a biological brain. The neurons are usually organized in layers connected to
each other. This structure can have a feedback connection, i.e. the possibility to
propagate the error back to minimize it.

Neural Networks represent a point of contact between different disciplines such
as neurology, psychology and artificial intelligence [181]. They emulate, through
software and hardware devices, the behaviours of synaptic transmissions that occur
in the brain during the learning and transmission processes of information (i.e.
signals). Neural Networks are a branch of Machine Learning. For this reason, they
have an automatic learning approach that, as the name suggests, is inspired by the
fundamental element through which the brain processes information, the neuron.

A biological neuron is characterized by a structure consisting of 3 essential
elements:

o cellular body
Cellular body represent the core in which is present the nucleus that directs
all the activity of the neuron;

o azon
Single long fibre that transmits messages from the cellular body to the den-
drites of other neurons;

o dendrites
Fibres that receive messages from other neurons and forward these messages
to the cellular body.

Figure 2.1 depicts a schematic representation of a neuron structure.
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Figure 2.1: Representation of a biological neuron structure.

Neurons receive electrical inputs from dendrites, they absorb energy and release
it through axons (i.e. the output channels) to other nearby neurons, by transmit-
ting the information as an electrical impulse through specialized structures called
synapses. The signal can favour the activation of the receiving neuron. In this case,
the synapse is excitatory, and in contraction, it is defined as inhibitory. Only after
a while, called refractory time, the neuron can generate a further impulse, clearly
showing the binary nature of this critical, how simple, biological element [65].

Similarly, an artificial neural network is composed by the interconnection of
simple processing units, the so-called artificial neurons, which have the ability to
extract knowledge from data and store it through weights, the synaptic weights.
Generally, ANNs are distinguished by two important characteristics:

o ANNs were conceived with the ability to approximate any function, both
linear or non-linear. Indeed, the linearity or non-linearity depends only on
the learning process and the activation functions, which can be linear or non-
linear;

o ANNS can update synaptic weights during the training process. The samples
are administered to the neural network, and the weights are calculated and
modified to reduce the minimum distance between the target and the actual
output. In this way, the ANN can build an input-output mapping of the
system, starting from the examples used in the training phase.

Figure 2.2 shows a biological neuron observed trough a light microscope.
Nowadays, researchers have developed multiple types of neural networks, differ-
ent in structure and purpose, from simple feed-forward networks to more complex
recurrent structures. Some of these structures, especially those that specialize in
predicting time series, will be described in more detail further on.
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Figure 2.2: Biological neuron. Author: F.Castets

2.1 A bit of history

The history of artificial neural networks starts in 1943 when McCulloch and Pitts
first proposed the concept of the artificial neuron, which is the basic component of
every ANN [166]. In 1949 Hebb developed a theory for learning based on neural
plasticity, now referred to as "Hebbian learning', which is a type of unsupervised
learning [112]. Hebbian says that a synapse between two neurons is strengthened
when the neurons on either side of the synapse (input and output) have highly
correlated outputs. In other words, when an input neuron fires, if it frequently
leads to the firing of the output neuron, the synapse is strengthened. Following the
analogy to an artificial system, the tap weight is increased with a high correlation
between two sequential neurons. Mathematically, this concept is described by the
Equation 2.1 as following:

wij[n + 1] = w;j[n] + nx;[n)z;[n] (2.1)

where 7 is a learning rate coefficient, and x;[n] and z;[n| are, respectively, the
outputs of the ith and jth elements at time step n.

Based on this hypothesis, a first artificial neural network was proposed in 1954 by
Farley and Clark [85]. In 1958 Rosenblatt created the perceptron [219]. In 1969
Minsky and Papert discovered that perceptrons could not process exclusive-or cir-
cuits. Also, they argued that computers were not powerful enough to handle the
computations needed to simulate a large network [172]. This resulted in a setback
for neural network research. Interest in artificial neural networks was revived by
the development of the backpropagation algorithm, in 1974 [257]. This algorithm
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allowed to train multi-layer networks efficiently. The exponential growth of com-
puter processing power in the last decades greatly contributed to the development
of this field of research.

Nowadays artificial neural networks are used for many different tasks in a wide
range of fields, including facial identification, speech recognition, machine transla-
tion, image classification, game playing, and of course time series forecasting.

2.1.1 The Perceptron

Frank Rosenblatt proposed the Perceptron in 1958. In his research work [219],
the author introduces the first neural network scheme, called Perceptron, the fore-
runner of current neural networks for the recognition and classification of forms,
to provide an interpretation of the general organization of biological systems. The
Rosenblatt probabilistic model is aimed at the mathematical analysis of functions
such as information storage, and their influence on pattern recognition. Figure 2.3
depicts a perceptron and its components.

) weights
inputs
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threshold

Figure 2.3: Rosenblatt perceptron schema.

The perceptron was described as an entity with an input and an output layer and
a learning rule based on error minimization (i.e. error back-propagation function)
which according to the evaluation of the actual output of the network concerning
a given input alters the weights of the connections (synapses) as the difference
between the actual and the desired output. As a linear classifier, the single-layer
perceptron is the most straightforward feed-forward neural network.

Multilayer Perceptron

The Multilayer Perceptron (MLP) is an extension of the simplest perceptron.
Like his predecessor, the MLP is composed of units (i.e. nodes or neurons) organized
in a layer of inputs, one or more hidden layers and an output layer. Figure 2.4
depicts a general schema of a MLP.
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Input Hidden Layer Output
Layer

Figure 2.4: Multilayer Perceptron schema.

The MLP is a feed-forward architecture with fully connected layers. Connections
between units are characterized by adjustable parameters called weights. This
refers to the strength of a link between two nodes [137]. Each neuron computes a
function of the sum of the weighted inputs, the activation function. The functional
model is given by the following Equation 2.2:

Gi(w, W) = F;(>_ Wijh; + Wi) = Fi(D Wijfj(i w4+ wjo) + Wig)  (2.2)

j=1 7=0 =1

Weights are specified by the matrices W = [W;;] and w = [w;;]; where W;; scales
the connection between the hidden unit j and the output unit 7. wj; instead scales
the connection between the hidden unit j and the input unit [. The corresponding
biases are Wy and wjo. These weights are vectorized in a vector 6. The input
units are represented by the vector u(t) while the vector h represents the hidden
neuron outputs. The parameters are determined during the training process, which
requires a training set Z~, composed of a set of inputs, u(t), and corresponding
desired outputs, y(t), specified by:

ZN = [u(t),yt)], t=1,..,N (2.3)

The training phase allows to determine a mapping from the set of training data to
the set of possible weights:

AR (2.4)
the network can predict §(¢) that can be compared to the true output y(¢). The
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prediction error approach is instead based on the introduction of a measure of
closeness in terms of a mean square error criterion, as specified by:

1
Vn(0,Z2N) = —

s 2 L) = gl Ty (1) — §(t[6)] (2.5)

™=

t=1

Weights are then found as:

0 = argyminVy (0, ZN) (2.6)

by some kind of iterative minimization scheme:

where 0 specifies the current iteration, f? the search direction and j the step size.
In the study of systems based on time-series, MLP is one of the most powerful
and performing ANNs [65] family.

2.2 Neural Networks for time-series forecasting

Nowadays, one of the most effective methods for time-series prediction is based
on neural networks [176]. This is due to their versatility and their ability to model
a wide range of systems reducing development time and offering better perfor-
mances [255]. As previously introduced, there are many different types of neural
networks. These differ in architecture and purpose. Equally, there are different
types of specialized neural networks for time-series prediction. In this Section will
be described as the most commonly used neural network for time-series forecast-
ing. These also correspond to the architectures adopted for the realization of the
methodologies which will be presented in detail in the Chapter 3, 4 and 5.

2.2.1 Feed-Forward Neural Networks

The Feed-Forward Neural Network (FFN), or FFNN, was the first and simplest
devised artificial neural network designed on history. As previously introduced, the
Multilayer Perceptron is a fully-connected FFN. Generally, a FFN is composed of
at least three layers: i) an input layer, ii) one or more hidden layers and iii) an
output layer. Each layer is composed of nodes (or neurons). The adjective "fully
connected" means that every node of each layer is connected to all the nodes of the
next layer. An example of a MLP with one hidden layer is shown in Figure 2.5.

The output of each node is calculated using an activation function applied to
the weighted sum of the inputs. The activation function is usually a nonlinear one
(e.g. a common choice being the hyperbolic tangent (tanh)). Considering a MLP
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Hidden
Input
Output

()

Figure 2.5: Feed-Forward Neural Networks.

with n inputs, one hidden layer with m units and one output, the output of the
network can be modelled as follows:

m n
§=FQ_ Wif(Q_wiu; + wi) + W) (2.8)

i=1 j=1
In equation 2.8, F' and f are the activation functions for the output and hidden
layer respectively, W; and w;; are the weights between hidden and output layer and
between input and output layer, W, and w;o are the biases, and u; are the inputs.
Generally, the training process consists in finding the W; and w;; matrices that
minimize the error between the expected output y and the predicted values ¢ (i.e.
the output of the network), according to some metric. This process is called "su-
pervised learning": the network is presented with a set of inputs (training set) and
the expected outputs for each input vector. The network output is compared to
the expected one, and the weights are adjusted using an algorithm of the backprop-
agation family. The Levenberg-Marquardt algorithm [143, 157] is one of the most

widely used in the literature.

Non-linear Autoregressive Neural Network

Non-linear Autoregressive Neural Network (NAR) extends traditional linear au-
toregressive model [147] in that it is entirely distribution-free. Hence, it can be
applied even to time series with intrinsic nonlinearities, such as sudden spikes and
brief, transient periods [185].

A NAR model computes the value of a signal y at time ¢ using n past values of
y as regressors (also called feedback delays), as follows:

y(t) = fly(t = 1),y(t = 2), ... y(t = n)) +e(t), (2.9)

where f is an unknown non-linear function and e(t) is the model approximation
error at the time ¢.
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Function f(-) is computed by optimising a multi-layered neural network, whose
topology is represented in Figure 2.6

Hidden layer :i_ Output layer
1

Yt

Figure 2.6: NAR topology.

At the time ¢, the neural network is fed with the n past values of the signal y. Such
inputs are transferred through multiple layers of neurons, where each neuron is a
simple computational unit characterised by a set of weights W (one per each input
connection j), a bias b and an activation function h. Hence, the output of a neuron
i is computed as follows:

J

where the optimal values of w;; and b; are computed by back-propagation on the
training set [185].

2.2.2 Recurrent Neural Networks

Unlike Feed-Forward neural networks, where the information flows just in one
direction (i.e. from the input to the output) and each layer is characterised by a
different set of parameters, Recurrent Neural Networks (RNN) are characterised
by multiple layers of recurrent units all sharing the same parameters, with loops
allowing the information to propagate back to the same computational units, as
depicted in Figure 2.7). This type of neural architecture enables a mechanism in
which the decision reached at time step t — 1 affects the decision it will reach one
moment later at time step ¢ [155]. Thus RNNs have two sources of input, the
present and the recent past, which combine to determine how they respond to new
data. By doing so, each computational step takes into account not only the current
input at time ¢ but also what was learnt from the previous inputs. This mechanism
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is called memory [170]. Adding memory to neural networks means extrapolate
information from the sequence itself. RNNs, unlike FFNs, use this information to
perform tasks. As result, this makes recurrent networks particularly suitable for
time-series predictions [71].

s= f(Ux,+Ws, _{)

0 //

O Of—l 0 ’ 0+1
v TR
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U unfold TU U U

X X X Xte1

Figure 2.7: Recurrent Neural Network unit.

Figure 2.7 depicts a detail of an unfolding RNN unit. As shown, z; is the input at
time step t, s; is the hidden state, also called memory of the network (initialised to
0), f is a non-linear activation function and, finally, o, is the output. The process
of carrying memory forward mathematically is expressed as follows:

St = f(Ul't + W8t71> (211)

where the hidden state is a function of the input at the same time step x;, modified
by a weight matrix U added to the hidden state of the previous time step hy — 1
multiplied by its own hidden-state-to-hidden-state matrix W. The weight matrices
are filters that determine how much importance to accord to both the present input
and the past hidden state. The error they generate will return via backpropagation
and be used to adjust their weights until error cannot go any lower.

Nonlinear Auto-Regressive Moving Average Neural Network

Nonlinear Auto-Regressive Moving Average neural network (NARMA) belongs
to the family of Nonlinear Autoregressive Moving Average Exogenous Model (NAR-
MAX) [58] and represents a generalization of the NAR model. Unlike the prede-
cessor, that realizes a feed-forward network where a predictor has feedback when
the regressors are selected, the NARMAX family is characterized by the following
equation:

Yt = F(Yro1, Y2, Yr—3s oo Ugy Up1, Up—2, Up—3, -..) + C(q7") + & (2.12)
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where 1, and u; are the variable of interest and the externally determined variable
at time ¢, respectively; €, is the prediction error; C' is a polynomial in the backward
shift operator expressed as:

Clg)=1+caq '+ ... +cnqg ™ (2.13)

Consequently, the past prediction errors depend on the model output, and they
are able to establish feedback. In conclusion, the significant difference between
NAR and NARMA is that NARMA is a recurrent model [155]. Thus, NAR has
a predictor without feedback, while NARMA has feedback through the choice of
regressors. Hence, future network inputs will depend on present and past network
outputs. This might lead to instability of the ANN itself, and it can be challenging
to determine whether or how the predictor is stable. To avoid instability, NARMA
architecture uses a linear MA-filter to filter past residuals. This is a Low Pass
FIR (Finite Impulse Response) filter, commonly used for smoothing an array of
sampled data/signal. The filter takes a set of inputs at the time, and it computes
the average of those samples and produces a single output [153].

Long-Short Term Memory

A well-known limitation of classic RNN architectures, where the parameters of a
large number of layers are learnt by backpropagation, is the instability of long-term
predictions due to either vanishing or exploding gradient problems [95]. Such issues
arise during the training of a deep network, when the error gradients are propagated
back in time to the initial layer, going through continuous matrix multiplications.
As the gradients approach the earlier layers, if they have small values (much lower
than 1), they shrink exponentially until they vanish, making it impossible for the
model to learn. Likewise, very large gradient values (much higher than 1) get larger
and larger and eventually crash the model.

The Long Short Term Memory networks (LSTM) are specifically designed to
overcome this limitation [114]. Indeed, it represents an evolution of the classic
recurrent models. While the structure of the system is fundamentally very similar
to RNN, a different function is used to compute the hidden state [188]. In the RNN,
repeating modules consist of a single layer, typically with a tangential activation
function. The memory in LSTMs is instead implemented as cells (see Figure 2.8),
where specific gating functions decide whether the information needs to be kept or
erased from memory at each time step. The key to this process is the cell state (in
the diagram of Figure 2.8, the green horizontal line), which conveys information to
the next cell. Gates regulate the power of either removing or adding information to
the cell state (respectively, input, output, and forget gates) consisting of sigmoidal
activation functions coupled with pointwise multipliers. Each sigmoid output’s
values in a 0 to 1 range, modulating how much of the corresponding signal should
be let through [188]. Indeed, no matter how deep the network is, through its
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Figure 2.8: Long Short Term Memory topology, where x; is the input and h; is the
output of a cell.

mechanisms, the LSTM network can remember values that are passed through gates
all in 1 state. This makes the LSTM model intrinsically immune to vanishing and
exploding gradient. In detail, the forget gate controls which information should
be removed from the long-term state. Then, the input gate controls which data
should be added to the long-range state. Finally, the output gate controls which
information should be read and output at the current time step. Figure 2.9 shows

Y

i1 [ 2 \ Cy
Tanh>
)
hy \‘( /— hy

Xy
Figure 2.9: In-depth details of a LSTM cell mechanisms.

the detail of the mechanisms within an LSTM cell. Mathematically, LSTM cell
computes its short-term state h;, its long-term state ¢; and its output y; at each
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time step t basing the following set of equations expressed in vectorial:

iy = o(Woz, + Whe_y + ;)
fi=oW T+ W fht—1+bf)

oy = a(W™zy + W"h,_y +b,)

g = tanh(W*9x, + Wh9h,_, + by)
= [t ®@c1+ 1 @ g

Yy = hy = o @ tanh(c;)

(2.14)

where W=, W=/ W= and W9 are the weight matrices of the connections to the
input vector z;, Wh, W W" and W™ are the weight matrices of the connections
to the previous short-term state vector hy_ and b;, bs, b, and b, are the bias terms.

Echo State Network

The Echo State Network (ESN) is a RNN that belongs to reservoir computing
class [223]. ESN is composed by an input layer, a recurrent hidden layer called

reservoir and an output layer.
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Figure 2.10: Echo State Network topology.

generic ESN [145]. The core of this model, the reservoir, consists of a large set
of randomly connected neurons that constitute the hidden layer of the network.
Generally, the main idea behind this model is to have a fixed, random, sparsely
connected recurrent layer, and a readout layer, connecting the reservoir to the
output. In a simple vanilla ESN architecture, these output connections are the
only trainable ones. However, it is also possible to add direct trainable connections
from input to output, bypassing the reservoir, and also feedback connections from
output to reservoir [123].
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The state update of a standard discrete-time ESN with N reservoir units, K
inputs and L outputs is governed by the following Equation 2.15:

Tep1 = fF(Wae + Wy, + Wy (2.15)

where f represents the state update activation function, W € R¥*¥ is the reservoir
weight matrix, z; is the reservoir state, W' € RV*L is the feedback weight matrix,
y; is the output, Wi € RV*K ig the input weight matrix and wu, is the input. The
output of an Echo State Network is given by the following Equation 2.16:

v = g(W x4, uy)) (2.16)

where ¢ is the output activation function, We* ¢ REX(N+K) ig the output weight

matrix and [z, 4] is the concatenation of the reservoir and the input states. The
forward connections W from the reservoir nodes to the output units are the only
parameters that are learned during the training process. At the same time, the
other weights are randomly initialized at the creation of the network and remain
fixed.

For the ESN to work correctly, the reservoir must respect the Echo State Prop-
erty (ESP), which states that the effect of initial conditions xy should progressively
vanish as the length of the input sequence goes to infinity. The necessary condition
for the ESP to hold is that the spectral radius A, which is defined as the largest
absolute eigenvalue of the matrix W, must be less than 1. In practice, it has been
shown that the ESN can work properly also for spectral radius A higher but close to
1. However, this condition is neither sufficient nor necessary. Stricter requirements
have been determined in [269].

Another key feature of the ESNs models is that they are straightforward to
train, unlike other recurrent neural networks. This is due to the recurrent fixed
layer. Indeed, this greatly simplifies the training process, allowing a significant
reduction in computational costs.

2.2.3 Convolutional Neural Networks

Firstly researched by Hubel and Wiesel [116], the Convolutional Neural Net-
work (CNN) is a regularized version of multilayer perceptron inspired by biological
process. Nowadays, this kind of ANN represents the state-of-art for image classifi-
cation and pattern recognition. Indeed, it has full applications in image and video
recognition, image classification and natural language processing [136].

A CNN consists of an input layer and an output layer with multiple hidden
layers in between. The hidden layers are typically a set of convolutional layers with
usually a Rectified Linear Unit (ReLLU) as activation function, followed by a flatten
layer and fully connected layers (i.e. dense layers) Figure 2.11 shows a topology
of a general CNN. The convolutional layer represents the core building block of a

29



2 — Neural Networks
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Figure 2.11: Convolutional Neural Network topology.

CNN. This layer is composed by a set of filters, applied to the full, that take a
subset of the input data by sweeping over it and creating features maps. To obtain
a new feature, the resulting feature maps are convolved with a learned kernel, and
the results are passed into a nonlinear activation function (e.g. ReLU). The flatten
layer stays between the convolutional and the dense layer. It transforms a two-
dimensional matrix of features into a vector that can be fed usually into a fully
connected neural network. The dense layer takes all neurons in the previous layers
and connects them to every single neuron of the current layer (typically this is one
or more fully connected layers). Then, an output layer follows the last dense layer.

1D-Convolutional Neural Network

As previously specified, CNNs are particularly suitable models for image pro-
cessing applications as image recognition or classification. To supply applications
based on time series, researchers have recently developed a special kind of CNN
which was specially designed for modelling one-dimensional inputs, the 1D Convo-
lutional Neural Network (1D-CNN) [132].

Nowadays, 1D-CNN models achieve top performance in several signal process-
ing applications [132], thanks to its excellent capability in extracting meaningful
features from sequential data. In detail, the element responsible for the feature
selection process is the filter, which is a feature detector that learns to recognize
a specific pattern in the input data. As shown in figure 2.12, the filter slides
across the input sequence and activates the corresponding neuron in the feature
map whenever a match for that pattern is found. The feature map also indicates
where that specific pattern was found, also providing information about the feature
position. The process of sliding a filter across the input data is called convolution
and consists of a series of multiplications between the filter and the input values. In
general, convolutional layers are composed of several filters working over multiple
input channels, enabling the network to recognize multiple patterns in the input
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Figure 2.12: Filter representation.

data. Moreover, convolutional layers can be stacked together to form a deep archi-
tecture, where each layer builds upon the features detected by the previous layer
hierarchically. Convolutional layers may be followed by a max pooling layer, which
is responsible for reducing the amount of information received from the previous
layer. The pooling layer applies a sliding window over the feature map, selecting
only the max value of each block. Finally, one or more fully connected layers are
added at the end of the network to interpret the features extracted. Figure 2.13
shows an example of a complete generic 1D-CNN architecture.
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Figure 2.13: 1D-Convolutional Neural Network topology.

2.3 System Identification

Generally, when approaching applications based on neural networks, it is com-
mon practice to follow a strict and precise procedure. This is to be effective and
not get lost in the meanders of the tools available today. In the book [185], the
author, prof. Negrgaard suggests a comprehensive procedure to identify a dynamical
system. This procedure consists of four steps as detailed in Figure 2.14.

The first step, the Ezperiment, corresponds to the problem analysis. Generally,
the researcher approaches the problem by identifying the main characteristics and
expected goals. At the same time, it is executed the sampling and data collection to
collect a reliable data-set. Indeed, in neural network applications, once the scope
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Figure 2.14: System identification procedure.

has been identified, an adequate amount of data is needed. Generally, a higher
number of data allows better forecasting performances [233]. Then the available
data must be divided into two different data-sets: the training set and the validation
set, respectively. These data-sets are used in the training and validation phases of
the neural network, which are the Estimate Model, and the Validate Model steps in
Fig. 2.14, respectively.

The second step is the Model Structure Selection. This step allows identifying
the correct architecture model to use [185]. This step is crucial because the use
of the wrong instrument can affect the expected results [48]. At this aim, the
system regressor must be studied. In mathematical modelling, these regressors
identify independent variables able to influence the dependent variables. In time
series, then, these regressors represent previous samplings concerning the predicted
ones [176]. Consequently, the best neural structure can be chosen.

In this step, once the network model and the number of regressors are identified, the
network is first implemented and then trained. This step is called Model Estimation.
In time series scenario, training a neural network is needed to provide:

o the vector containing desired output data;

e the number of regressors to define the prediction;
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o the vector containing the weights of both input-to-hidden and hidden-to-
output layers

o the data structure containing the parameters associated with the selected
training algorithm.

Finally, the training phase produces a training error, which represents the network
performance index [233].

The Model Validation step validates the trained network. Generally, validating
a network allows evaluating its capabilities [171]. In time-series predictions, the
most common validation method consists of analyzing the residuals (i.e. prediction
errors) by cross-validating the test set. This method allows performing a set of
tests, including also the auto-correlation function of the residuals and the cross-
correlation function between controls and residuals. This analysis provides the test
error [233], that is an index considered as a generalization of the error estimation.
This index should not be too high compared to training error. If this happens, the
network could over-fit the training set.

Generally, if the network is overfitting the training set, the selected model struc-
ture contains too many weights. The structure is then subjected to the Network
optimization and final validation. The process requires to return in the Estimate
Model step to change and redefine some structural parameters by optimizing the
whole architecture. For this purpose, the unnecessary weight must be pruned ac-
cording to the Optimal Brain Surgeon (OBS) strategy, that represents one of the
essential optimization strategies [104]. Consequently, once the new weights are
given, the network architecture must be re-validated.

The paths going from the validation block to the previous stage (i.e. the dotted
line) indicate that the whole procedure is executed iteratively. For example, it
can be necessary to go back in the procedure to determinate one or more different
models or, in the worst case, even redo the experiment. Generally, leading back to
model estimation means that the problem has several local minima and find the
global minimum is not easy. The feedback path also covers up an augmentation of
the criterion called regularization or weight decay. Instead, leading back to model
structure selection means that the neural structure is not fit for purpose. Indeed,
this is usually oversized. Thus, it is common to apply the popular strategy of
pruning. Generally, an initial model structure that is large enough to describe the
system is determinate, and it is then reduced gradually until the optima structure is
achieved. Finally, leading back to the experiment phase implies that certain regimes
of the operating range are not reflected in the dataset, thus it is necessary to do
additional experiments to acquire more information about the missing regimes.
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2.4 Forecast horizons configuration

When studying and designing a problem based on neural networks, it is neces-
sary to configure the output forecast time horizons accurately. Indeed, depending
on the desired goals and often also on available resources, there are different con-
figurations of neural architectures. These are generally divided into three main
categories:

o Iterative prediction;
e Multi-output neural network;
¢ Dedicated networks for each forecast horizon.

The first category, the iterative methods, is mainly used for short-term (i.e. few
steps ahead) horizons [134]. These methods are based on neural networks models
trained for single-step predictions (i.e. with only one output). This means that
for each step after the first one, the forecast for the previous step is used as input.
Generally, this approach suffers from disadvantages due to that the prediction errors
tend to accumulate.

The multi-output neural network category requires to use a single network with
n outputs, where n is the number of steps ahead to predict. Unlike the previous
method, during the implementation phase of the neural network architecture, it
is necessary to accurately determine the number of future steps that need to be
predicted. However, especially for longer forecast horizons, this method gives better
performance than the iterative method [266].

Finally, it is possible to use different dedicated neural networks for each forecast
horizon in the analysis. This approach is the most resource-intensive. Besides, this
should have better results for short-term horizon (e.g. few steps ahead) but is
outperformed by the multi-output method for longer horizons [134].

2.5 Models Evaluation

Generally, when operating in the context of the time-series predictions, to obtain
a thorough evaluation of the adopted methods, it is good to perform an analysis of
the prediction results. This in-depth analysis consists of:

o Analytical assessment.
This kind of analysis assesses the validity of the predictions from a regression
analysis point of view, by computing a set of metrics that are widely used to
quantify the similarity of a discrete time-series with a reference ground truth.
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e Qualitative assessment.
This kind of analysis assesses the validity of the predictions from a qualita-
tive point of view (e.g. clinical point of view for predicting blood glucose
levels). Therefore, it would be useful to exploit metrics that are specifically
designed to validate the qualitative outcome of measurements. These metrics,
of course, change depending on the scenario and are strongly related to the
type of dataset under analysis.

Usually, both assessments are performed on a test set that is entirely independent
of the one that was used to design, train and optimise the prediction models.

The most commonly used analytical metrics will be detailed below. These are
usually used in time series analysis. Instead, as far as qualitative metrics are con-
cerned, these will be appropriately described in the following chapters, concerning
the considered context.

2.5.1 Analytical assessment

To evaluate the prediction accuracy of the models, we exploited several metrics
that are widely used in descriptive statistics and in regression analysis to quantify
the similarity between predicted and observed time-series. More specifically, we
focused on a list of metrics that are more often used by time-series literature [99]:

Root Mean Square Error RMSE, or RMSD, refers to the difference between
the predicted and the observed values. It represents the prediction error index that
is the most often used in literature. Mathematically it is expressed as follows:

n J— )2
RMSD _ }OO \/21:1 (ypred,z ytest,z) (217)

ytest n

, as a percentage.

Coefficient of Determination R? is defined as square of the correlation (R)
between predicted and observed values. Thus, it ranges from 0 (absence of corre-
lation) to 1 (complete correlation). Mathematically it is expressed as follows:

Z?:l(ytest,i - ypred,i)2

R*=1- L
E?:l(ytest,i - ytest)2

(2.18)

Prediction Delay Prediction Delay, or Time lag, refers to the minimum time-
shift between the predicted and observed signals which provides the highest corre-
lation coefficient between them.
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Mean Absolute Difference MAD, or MAFE, is the Mean Absolute Difference
between predicted and observed values. Mathematically it is expressed as follows:

MAD = }00 2?21 |ypred,z' - ytesm»|

Ytest n

(2.19)

FIT is computed as the ratio of RMSE and the root mean square difference be-
tween the observed signal and its mean value, as reported in the following equation:

FIT = (1 - VAE O - }:/)2) - 100, (2.20)
eI aE

where Y and Y are respectively the observed and predicted signals and Y is the
mean value of the observed signal. FIT closer to 100% indicates better prediction
accuracy.
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Chapter 3

Solar radiation forecasting

Nowadays, green energy is considered as a viable solution to lower C'O, emissions
and greenhouse effects. Indeed, it is expected that Renewable Energy Sources
(RES) will cover 40% of the total energy request by 2040. This will move forward
decentralized and cooperative power distribution systems, also called smart grids.
Among RES, solar energy will play a crucial role. However, reliable models and
tools are needed to forecast and estimate with reasonable accuracy the renewable
energy production in short-term periods. These tools will unlock new services for
smart grid management.

3.1 Introduction

Nowadays, renewable energy is a very hustling research area. Finding viable,
clean energy sources to replace fossil fuels, or at least to significantly decrease their
usage in short to medium term, has become an extremely critical goal to achieve.
On the one hand, air pollution, of which fossil fuels are a significant contributor,
is causing a real health crisis [244]. According to the World Health Organisation
(WHO), air pollution is responsible for 7 million deaths every year, and 91% of the
world population lives in places where air quality exceeds the limits mandated by
the WHO itself [189]. On the other hand, greenhouse gas emissions from fossil fuels
are also one of the significant drivers of anthropogenic climate changes. According
to a 2018 special report by the Intergovernmental Panel on Climate Change (IPCC),
immediate action must be taken to limit the increase in global temperature to 1.5°C'
and avoid the worst consequences of global warming [162]. For these reasons,
renewable energy sources (RES) will have a crucial role in the future of our society.
Among them, an important part is played by solar energy, which can be used to
produce electricity exploiting photovoltaic (PV) systems. The power output of a
PV panel is directly proportional to the solar irradiance (SI), which in turn depends
on various factors (e.g. latitude, season, and sky conditions).
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There are different components of SI, but the most important one for PV power
generation is Global Horizontal Irradiance (GHI), which is the total irradiance on a
horizontal surface [262]. GHI is related to Direct Normal Irradiance (DNI), which
is the irradiance on a surface perpendicular to the sun, and Diffuse Horizontal
Irradiance (DHI), which is the radiation from light scattered by the atmosphere, as
shown in Equation 3.1:

GHI = DHI + DNI x cos(z) (3.1)

where z is the solar zenith angle (i.e. the angle between the sun and the zenith).
GHI is measured in watt per square metre (W m™2).

To optimise smart grid operations and match power production, distribution
and consumption efficiently and reliably, it is needed to know in advance the amount
of energy produced by power plants, as well as energy consumption. However, one
of the issues posed by some of the most popular renewable energy sources, like wind
and solar energy, is their non-dispatchable and intermittent nature. A dispatchable
energy source can be turned on and off when needed in a short amount of time,
according to needs. This is obviously not true for PV power stations or wind farms.
The sun only shines for a limited amount of hours during the day, depending on
latitude and season, and the irradiance is also affected by clouds. When integrating
non-dispatchable RES into existing power grids, this intrinsic variability must be
taken into account, particularly when the share of energy from these types of sources
increases [180]. An exciting possibility is to integrate RES using smart grid tech-
nologies. A traditional power grid is centralised and involves unidirectional power
flows, where the power is sent from the power plant to customers. In a smart grid,
on the other hand, the process becomes distributed, and the consumer can also be
an active user, giving feedback on electrical use that allows the grid to tune itself
to provide better performance and guarantee better reliability. An example of the
application of smart grid management is Demand-Response (DR) [226]. DR refers
to the changes in electricity consumption patterns by the user in response to fluc-
tuations in power production by renewable energy sources and grid requirements,
as well as for economic reasons like changes in the price of electricity.

As stated above, the most popular RES are non-dispatchable and intermittent
in nature. Solar energy, in particular, is determined both by deterministic (e.g.
latitude, day of the year, hour of the day) and stochastic factors (e.g. effects of the
atmosphere and weather conditions like cloud coverage). In this context, the main
challenge is, therefore, to find a methodology to predict the power generated by a
photovoltaic system accurately. Since PV energy generation is highly correlated to
solar irradiance, it makes sense to concentrate on predicting the latter, in particular
GHI, and then use these predictions to calculate the expected energy production.
For example, a photovoltaic simulator such as the one proposed in [33] could be
employed using GHI predictions as a system input.
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Since solar irradiance is a physical phenomenon, a possibility could be to develop
a physical model. The main problem with this approach is its complexity, mainly
when modelling the stochastic atmospheric phenomena that determine the mea-
sured GHI on the surface. A more straightforward approach is based on time-series
forecasting. A time-series is a collection of data points equally spaced in time and
chronological order [255]. A system that uses a sensor to measure solar irradiance
at evenly spaced time intervals and stores these values generates a time-series. The
idea is to use previous values of the time-series we are interested in predicting, and
one or more related series, one or more future values. Several studies were proposed
in the Literature to find physical and mathematical models to estimate and fore-
cast solar radiation. Classical linear time-series models have been widely used [39].
Simple statistical models, for example, can be used but they might give sub-optimal
results because solar irradiance is a complex nonlinear time-series. However, these
studies have highlighted that these methodologies are not sufficient in the analy-
sis and prediction of solar radiation due to the non-stationary and non-linearity
characteristics [152]. To overcome these limits, a more robust approach is based
on machine learning. One of the most used and studied applications of machine
learning is that of artificial neural networks [252].

3.2 Related Works

The literature encloses several forecasting models for solar irradiance and PV
power. In a 2013 review [67] these models are divided into four main categories i)
statistical models; ii) cloud imagery-based models; iii) numerical weather predic-
tions (NWP) models and iv) hybrid models. As introduced in Section 3.1, statistical
models use previous values of the solar irradiance or PV power time-series to fore-
cast the next values. For this reason, they represent the category of our interest to
which we are inspired and compared. They, in turn, can be divided into linear and
nonlinear models. As a result, according to the purpose of our work, this section
investigates these models by highlighting merits and weaknesses.

Generally, linear methods represent the simplest forecasting model, often used
as a reference to evaluate other more complex. Among them, for example, the
naive methods are based on the simple assumption that the forecasted value of the
time-series is the same as the current value. The following Equation characterises
these methods:

Y1 = Yt (3.2)

where ¢, is the predicted value at time ¢ + 1, while g, is the current value. It is
useless to develop complex models if they cannot outperform this straightforward
technique. For the solar irradiance forecasting, for example, in [141] authors propose
the use of the index for persistence instead of the original solar irradiance, since it
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gives better results. One of the simplest linear models is the autoregressive (AR)
model [150]. An autoregressive model of order p, indicated with the notation AR(p),
is defined as follows:

P
Ot = ¢o + Z GilYi—i + € (3.3)
i=1

¢; are the parameters of the model and ¢; white noise, representing an error term.
So the current value of y is a linear combination of its p previous values. A slightly
more complex model is the autoregressive moving average (ARMA), which combines
autoregressive and moving-average components [150]. An ARMA (p, ¢) model with
p autoregressive terms and ¢ moving-average terms is defined as follows:

P q
g = o+ e+ Y O+ ) i (3.4)
i=1 i=1

The ARMA model can be extended, including exogenous inputs (ARMAX). AR
and ARMA models can be used to forecast stationary time-series. In a stationary
process, the mean and the variance remain constant over time [39]. But processes
like solar irradiance are non-stationary, so they must be transformed into station-
ary time-series, or different models should be developed. The ARIMA model (au-
toregressive integrated moving average) can be used for non-stationary time-series
forecasting. Reikard [215] shows that ARIMA can give good short-term solar irra-
diance forecasting results. His experiments evaluate forecasting horizons of 5, 15,
30 and 60 min, and the ARIMA model not only outperforms simple AR models in
all cases, but it also performs better than feed-forward artificial neural networks
except for the shortest time horizon. This might be caused by the difficulty to train
ANNS, causing them to reach only a local optimum.

However, a limitation of linear models is that they cannot take into account
the non-linearity of many real-life time-series, including solar irradiance. For this
reason, nonlinear techniques for time-series forecasting have become very popular,
and they have been extensively used for solar irradiance prediction [224]. In their
research work [224], the authors exploit several artificial intelligence techniques
to forecast mean hourly solar irradiance. Among all the models tested, the best
results are given by a feed-forward neural network trained with the Levenberg-
Marquardt algorithm. Their best approach, called univariate forecasting, exploits
only the previous value of the time-series. In the work multivariate forecasting is
also evaluated, meaning that other exogenous variables are also used as inputs. The
multivariate approach is shown to improve forecasting accuracy compared to the
univariate one. Martin et al. [159], forecasts half daily values of solar irradiance,
i.e. "accumulated hourly global solar irradiance from solar raise to solar noon and
from noon until dusk for each day". Since this time-series is non-stationary, two
transformations are proposed, the clearness index, which is the ratio between the
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solar irradiance measured at ground level and the extraterrestrial irradiance, and
the lost component, which is the difference of the same quantities. Different feed-
forward neural networks configurations, in terms of the number of hidden layers,
neurons, inputs, are tested, and the best one is selected for each weather station
where the prediction model is evaluated. The results show that ANNs improve the
forecasting accuracy of the reference persistence model and outperform a simpler
linear AR model. Pedro and Coimbra [201] evaluate different PV power forecasting
techniques. Among them, a feed-forward neural network with one hidden layer of
20 neurons. The network has 13 inputs, which are fed with 13 previous values of the
time-series. The forecasting is evaluated for 1 h and 2 h ahead. The neural network-
based technique outperforms the other models evaluated in the study. Lauret et
al. [141] instead compare several machine learning techniques. Simple persistence
and AR models are used as a reference. The GHI time-series is pre-processed by
transforming it in the clear-sky index.

For the shortest time horizons, the machine learning techniques perform better
than the reference models for unstable conditions, while for clear-sky conditions, the
AR model is also accurate. For longer time horizons, though, the machine learning
models, including the feed-forward neural network, clearly outperform persistence
and linear AR techniques. Rana et al. [212] use an ensemble of neural networks
for short-term (from 5 to 60 min ahead) PV power forecasting for both the uni-
variate and multivariate case. They test multiple groups E;, where each ANN
in the ensemble has ¢ neurons in the hidden layer. Each ensemble is made of 20
networks. The final forecasting result is selected by taking the median of the 20 pre-
dictions. This method obtains better results than the reference persistence model
and another machine learning technique called support vector machine (SVM). Mc-
Candless et al. [165] develop a cloud regime-dependent forecasting technique based
on feed-forward neural networks. Instead of using a single "global" neural network,
different ANNs are trained and used for each cloud regime. To determine the cloud
regime, a k-means algorithm is applied to the clearness index time-series. For the
shortest time horizons (15 min) ANNs does not improve upon the reference persis-
tence model, except for the most unstable sky conditions. For longer horizons (from
60 to 180 min), however, the ANNs outperform persistence. It is also shown that
the regime-dependent forecasting always gives better results than a single global
ANN. Monjoly et al. [174] use different multi-scale decomposition techniques to
pre-process the GHI time-series, after transforming it into the clear-sky index. The
various time scale components are then forecasted separately using separate ANNs
or using a hybrid AR-ANN model. The results show that multi-scale decomposition
significantly improves forecasting results, both using ANNs and the hybrid model.

On the other hand, another widely used neural network is the recurrent neural
network, where feedback connections are added. The outputs of these networks
also depend on their current state (memory), not only on the current inputs. This
behaviour makes them very suitable for time-series analysis and forecasting. Among
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these, there are Long Short-Term Memory networks. These are recurrent neural
networks using particular units (LSTM units) as nodes. These units can remember
values for an arbitrarily long amount of time, and this behaviour makes them very
suitable for time-series forecasting. Alzahrani et al. [13] use a deep (i.e. with more
than one hidden layer) recurrent neural network with LSTM units for short-term
forecasting of solar irradiance. The input time-series is sampled at a very high
frequency (100Hz). The advantage of this high-resolution time-series is that it
can capture fast fluctuations. The results show that the deep LSTM has better
accuracy than the reference feed-forward neural network. In [1] the authors exploit
LSTM networks for 1h ahead PV power forecasting. Different LSTM models are
evaluated, and the best one, LSTM for regression with time steps, is selected and
compared with other forecasting techniques, including multiple linear regression
and feed-forward neural networks. The LSTM is shown to give more accurate
results than the other models. Srivastava and Lessmann [234] compare LSTM with
other established forecasting techniques in day-ahead GHI forecasting. They use
satellite-derived GHI values and other atmospheric variables as inputs. In contrast
to the majority of the studies in the literature, many different locations in several
countries with different climates are taken into account, which makes it possible to
assess the validity of the proposed model in different conditions. The LSTM-based
approach is compared to a simple persistence model, a feed-forward neural network
model and another machine learning model called "Gradient Boosting Regression"
(GBR). The results show the superior performance of the LSTM compared to the
other methods.

Another interesting recurrent architecture is the Echo State Network. An ESN
has a sparsely connected hidden layer, called "reservoir', with fixed connections and
weights. The only weights that are learned are those of the output connections.
This property makes these networks easier to train compared to other recurrent ar-
chitectures. Kmet and Kmetova [135] used an ESN for 24 h ahead solar irradiance
forecasting, using the actual mean hourly values of irradiance and other meteorolog-
ical variables like humidity and air temperature. The inputs of the network consist
of 24 hourly values of the selected variables for the present day, and the outputs
are the irradiance forecasting for the next day. The paper shows that this approach
gives good results. In a previous study, on the other hand, Ruffing and Venayag-
amoorthy [221] found that in a real-world application results of an ESN-based solar
irradiance forecasting model were not very promising. In a related field, Deihimi
and Showkati [64] used an ESN for 1h and 24 h ahead electric load forecasting. In
this case, the results showed that the ESN has a good generalisation capability and
can give very accurate results.

Contextually to the developments listed above, the correlation between solar ra-
diation and weather conditions inspired many researchers to adopt a multi-variable
approach, taking into account also potential external factors influencing the solar
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radiation dynamics. Commonly used exogenous inputs are represented by meteo-
rological variables measured on the site of interest, such as temperature, humidity,
wind speed and cloud coverage. In case ground-based meteorological data are
not available, an alternative source of exogenous variables are Numerical Weather
Prediction (NWP) models, which provide weather forecasts for several worldwide
locations with different scales and forecasting horizons. In [253] the authors com-
pared an ANN using only endogenous inputs and an ANN using both endogenous
and exogenous data for forecasting daily solar radiation. The comparison between
the univariate and the multivariate methods showed that the usage of exogenous
inputs produced a performance gain between 0.5% and 1% in terms of RMSE,
providing a significant improvement, especially during the winter season when the
solar radiation variations are more significant. In [212], the author evaluated the
effectiveness of using exogenous inputs in forecasting the electrical power generated
by a PV system from 5 to 60 minutes ahead. The prediction results of the study
showed that the adoption of exogenous inputs does not provide any performance
improvement in the short-term power forecasting. According to the authors, a pos-
sible reason for this is that PV power data already reflects the weather changes in
the short-period, without the need for additional input variables. In conclusion, the
authors believe that meteorological data are more likely to be useful with longer
forecasting horizons.

Even though in the literature there is some evidence of the usefulness of ex-
ogenous inputs in solar radiation forecasting, it is still unclear to what extent
they provide an edge over the univariate case for the different forecasting hori-
zons. Furthermore, we noticed that despite some works collected a large number of
potentially useful input variables, they ended up using only a low number of those
variables after feature selection. We believe that the reason for this lies in the
adoption of too stringent feature selection methods, which overlook the majority
of the collected features and lead to an underutilization of the input variables. In
particular, we think that the employment of the Pearson’s correlation coefficient as
a single feature selection criteria represents a severe limitation to the application of
machine learning models since it is only able to identify linear relationships between
variables [236]. Some studies overcome this limitation by using the Mutual Infor-
mation criteria [174, 141], which is known for recognizing both linear and non-linear
dependencies in the data. Nevertheless, the mutual information still presents the
typical limitations of filter methods, which evaluate the usefulness of each variable
independently of the context of other [101].

3.2.1 Contributions

Concerning presented literature solutions to forecast solar radiation, in this
Chapter, we start by proposing an innovative methodology for implementing two
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different non-linear autoregressive neural networks to predict Global Horizontal So-
lar Irradiance (GHI) in the short-term time period (i.e. from 15 to 120 min ahead).
Both neural networks have been implemented, trained and validated exploiting a
dataset consisting of four years of solar radiation values collected by a real weather
station. We also present the experimental results discussing and comparing the
accuracy of both neural networks. Then, the resulting GHI forecast is given as
input to a Photovoltaic simulator to predict energy production in short-term pe-
riods. Finally, we present the results of this Photovoltaic energy estimation also
discussing their accuracy.

Progressively, we focus on neural techniques for predicting GHI. The aim is
to identify the best instrument with the best configuration. For this purpose, we
propose an optimised methodology for the short- and mid-term GHI forecast ex-
ploiting and comparing four neural networks specifically designed and optimised
(i.e. a NAR, a FFNN, a LSTM and a ESN as detailed in Section 2.2). We applied
three different dataset pre-processing and filtering techniques to identify which of
them has better performances by comparing the prediction results of the different
architectures. As a first analysis, we gave in input to our neural networks the raw
GHI dataset where we applied some basic filters to clean the dataset itself by re-
moving possible errors, such as lack of data or storage error due to sensor sampling.
Then, as a secondary analysis, we applied the Tikhonov regularisation technique
to the very same raw dataset, which smooths the time-series trend-making eas-
ier the training of our neural networks. Finally, as a third analysis, we converted
the raw dataset, consisting of GHI samples, into clear-sky index values, thus re-
moving seasonal trends of the time-series. For a fair comparison, all the datasets
at our disposal are used as input on all the best neural architectures identified
experimentally. The use of pre-processing techniques, together with the capillary
optimisation of neural structures, allows us to increase the prediction time horizon
with an acceptable error rate.

Moreover, compared to state-of-art solutions, the optimisation of neural archi-
tectures from specifically transformed datasets allows us to obtain leaner structures
at the computational level without affecting the prediction accuracy. The results
analysis shows that the clear-sky index approach is the most successful, giving the
most accurate results, particularly for mid-term predictions and the Echo State
Network results to be the neural architecture that best performs in terms of pre-
diction accuracy.

Lastly, we investigate the effectiveness of using exogenous inputs for short- and
mid-term solar radiation forecasting. In this view, we propose a novel approach
consisting on applying multiple feature selection techniques chosen in a way to
counterbalance the limitations of each other, to achieve more robust results than
those that could be obtained by using a single selection method. The predictive
performance of the selected features are evaluated by feeding them into five dif-
ferent machine learning models: namely a FNN, an ESN, a 1D-CNN, a LSTM
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and a Random Forest (RF), as detailed in Section 2.2. To conclude, we compare
the obtained models against models using only endogenous inputs to evaluate the
effectiveness of using exogenous data for short-term solar radiation forecasting.

3.3 Case Study

The case study is represented by a dataset of 6 years GHI measurements (i.e.
from the 1st January 2010 to the 31st December 2015), sampled every 15 minutes
from a meteorological station in the university campus of Polytechnic University of
Turin in Italy. In addition to GHI values, the weather station also provided a set
of meteorological variables measured on-site, namely cloud cover, air temperature,
relative humidity, sea-level pressure and wind speed.

A dataset with additional meteorological variables was derived from Dark Sky
[148], which is a software company specialized in weather forecasting and visual-
ization. The Dark Sky API provides historical weather observations for worldwide
locations by gathering information from multiple sources. The API responses come
up with the distance of the nearest station that contributed to the results, together
with the list of sources used for the aggregation. The nearest station for our site
of interest was located at 1 km of distance. The list of references that contributed
to the responses is the following: the USA NCEP’s Canadian Meteorological Cen-
ter ensemble model [179]; the German Meteorological Office’s Icosahedral Nonhy-
drostatic model [187]; the USA NOAA’s Global Forecast System [182]; the USA
NOAA’s Integrated Surface Database [183]; the USA NOAA/ESRL’s Meteorologi-
cal Assimilation Data Ingest System [139].

During feature engineering, we added three additional variables containing time
information: i) day of the year, ii) hour of the day and iii) minute of the hour.
Furthermore, we decided to replace the variables sunrise time and sunset time
derived from Dark Sky by using a more compact representation called sunshine
duration, which is defined as the amount of time elapsed between the sunrise time
and the sunset time.

To ensure data quality, we carefully examined each variable collected and fixed
any irregularity present in the dataset. The GHI variable presented a single outlier
during this period, consisting of a negative observation probably due to a temporary
malfunction of the pyranometer, while other variables showed some missing values.
Both the outlier and the missing values were replaced by using a simple linear
interpolation. The comparison between the observed GHI values and the clear-sky
(I.s) GHI values computed by using the Ineichen and Perez model [120] revealed
that the measured GHI values exceeded several times the estimated GHI values in
1. conditions. The discrepancies were probably due to some uncertainty in the
measurements of the pyranometer. Therefore, since the clear-sky GHI should be
the maximum value that can be assumed by the observed GHI, we decided to round
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the exceeding GHI values to the corresponding clear-sky GHI values.

The final dataset obtained in this way was composed of 210333 records and 15
input variables. Table 3.1 provides a brief description of each variable present in
the dataset.

Table 3.1: List of input variables

Variable Unit
Global Horizontal Irradiance (GHI) W/m?
Ultraviolet (UV) index -
Air temperature °C
Relative humidity %
Sea-level air pressure hPa
Cloud cover, i.e. the percentage of sky occluded by clouds %
Hourly precipitation intensity mm/h
Hourly precipitation probability %
Wind speed m/s
Wind bearing, measured in degrees progressing clockwise

degrees

from the true north
Dew point °C
Sunshine duration S

Day of the year -
Hour of the day -
Minute of the hour -

Finally, to evaluate the prediction performance of the proposed models, we divided
the dataset into a training set and a test set. The training set consisted of the first
five years of observations in the period 2010-2014, while the test set consisted of
the last year of data, i.e. 2015. It is crucial to notice that all optimizations were
performed by using only the training set to avoid any look-ahead bias.

3.4 Methodology

Predicting the energy production of a PV system means being able to fore-
cast the level of GHI. In turn, predicting the values of GHI means working with
time-series information. This kind of information identifies a sequence of values
chronologically ordered [103]. The study and manipulation of time-series models
bring different benefits. Mainly, it allows i) understanding the underlying forces
and structures that produced the observed data and ii) in fitting a model and in
proceeding to forecast and monitor or even feedback and feed-forward control [186].

In this context, our methodology consists of the design of neural networks to
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predict the GHI for PV energy simulation. As a first step, we focus on short-
term GHI prediction. Then, using a photovoltaic simulator previously developed
by my research team, we use the GHI prediction results obtained as input to the
simulator. In this way, we validate GHI predictions, and we can perform robust
PV simulations in the short-term. Therefore, having endorsed the GHI prediction
methodology with neural networks, we focus on short- and mid-term GHI predic-
tion. Our goal is to compare the most promising neural networks specialized in
time-series forecasting, to find the best one. To this end, we design and optimize
different neural networks, testing multiple configurations. Lastly, we evaluate the
effectiveness of using exogenous inputs for short- and mid-term solar radiation fore-
casting. Again, the aim is to improve the forecast horizon by achieving increasingly
accurate and robust predictions.

3.4.1 Short-term GHI forecasting for PV energy predic-
tions

The first part of our proposed methodology consists of forecasting short-term
Global Horizontal Solar Irradiance (GHI) for photovoltaic energy predictions. To
deal with these time-series data, we adopted, and then compared, two ANNs:
i) Nonlinear Autoregressive neural network (NAR) and ii) Nonlinear Autoregres-
sive Moving Average neural network (NARMA), as described in Section 2.2. NAR
belongs to the family of Nonlinear Autoregressive Exogenous Model (NARX) [227].
It is generally considered as one of the best tools for time-series analysis and does
not suffer from stability problems [241]. This is due to its nonlinear autoregressive
model, which has exogenous inputs. This neural network model bases its prediction
on i) a variable range of past values and also on ii) the current and past values of the
exogenous driving inputs of the time-series in the analysis. However, this process
produces a prediction error that is the knowledge of the past. Indeed, the presence
of this error as a result of prediction means that the future values of the time-series
cannot be predicted precisely. On the other hand, NARMA belongs to the family
of Nonlinear Autoregressive Moving Average Exogenous Model (NARMAX) [58].
It represents a generalization of the NAR model, as described in Section 2.2.2.
However, this model realizes a feed-forward network where a predictor will have
feedback when the regressors are selected.

Comparing the two proposed models, the significant difference is that NARMA
is a Recurrent Neural Network [155], while NAR is not. Thus, NAR has a predictor
without feedback, while NARMA has feedback through the choice of regressors.
Hence, future network inputs will depend on present and past network outputs.
This might lead to instability of the ANN itself, and it can be very difficult to
determine whether or how the predictor is stable. To avoid instability, NARMA
architecture uses a linear MA-filter to filter past residuals. This is a Low Pass FIR
(Finite Impulse Response) filter, commonly used for smoothing an array of sampled
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data/signal. It takes a set of inputs at the time, it computes the average of those
samples and produces a single output [153].

To implement both NAR and NARMA, we exploit the dataset described in
Section 3.3 but of only four years of real GHI values (from 2010 to 2013). These
values are 15 minute time sampled by the weather station in our University Campus.
Then, we divided the dataset asymmetrically into three years for the training-set
(2010-2012) and one year for the validation-set (2013), according to the more recent
approach described in [260]. This allows an even more accurate training phase.

Progressively, we started analyzing the number of past signals used as regressors

for the prediction. Specifically, we used Lipschiz [211] to determinate the lag-
space. This methodology allows identifying the order of Input-Output Models for
Nonlinear Dynamic Systems. Given corresponding input and output sequences, it
calculates a matrix of indices that can help determine a proper lag-space structure.
However, as detailed in [110], this methodology is not always effective. Still, it
represents a good starting point to define the more suitable number of regressors,
which will characterize the future neural networks architectures. Consequently, we
started the design of both our ANNs, considering several regressors in the range
between 1 and 10. This arbitrary choice derives from our previous work [8] that
exploits 10 regressors. On the other hand, ANNs proposed in this work aim at
improving previous performances. Moreover, as previously described, we modified
the pre-process of the input dataset, this allows designing an ANN with no more
than 10 regressors. Fig. 3.1 details the result of the applied lag-space investigation
methodology.
Fig. 3.1 suggests that excellent performance can be achieved with 6 regressors (i.e.
past inputs). All previous values are not computationally advantageous. Even,
between 1 and 4, the result diverges to infinity, and therefore they are not displayed
in the plot. On the other hand, all values above 6, even if advantageous, would risk
transforming ANN architecture into a more complex and less performing structure.
Thus, the best configuration in the computation /performance ratio is achieved with
6 regressors (see the knee-point of the plot in Fig. 3.1). Differently to what we did
in [8], in this work, we adopted also a design space exploration approach [54]. As
a result, we decide to validate (or refute) the findings given by Lipschitz. For this
purpose, we implemented all the possible network combinations (of both NAR and
NARMA models) from 1 to 10 regressors. This allows us to evaluate and compare
all the obtained architectures’ performance and then find the best solutions for
both NAR and NARMA. Fig. 3.2 shows the normalized sum of squared errors
(NSSE) error trends of the two ANNs based on the number of regressors for each
implemented architecture. NSSE error is a network performance index. The lower
NSSE, the better ANN’s performance.

As shown in Fig. 3.2, NAR and NARMA give the best performance with 4 and
2 regressors, respectively. This also represents the best compromise between ANN’s
computation and performance. It is worth noting that these NSSE results improve
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Figure 3.1: Evaluation of Order Index criterion for different lag-space

the indication given by Lipschitz methodology that suggested 6 as the best number
of regressors (see Fig. 3.1).

Once we found the optimal regressors for both NAR and NARMA, we implemented
the two final ANNs starting from two fully connected architectures with one hidden
layer of 30 hyperbolic tangent units. This large number of units could be redundant,
but it is justified by the pruning technique [242], which is used in the next phases
to optimize the network architecture themselves.

Before training, the weights of both ANNs are initialized randomly. This also allows
to initialize i) weights, ii) their decay threshold and iii) the maximum number of it-
erations. However, these parameters are overestimated during the very first training
iteration. Then, we proceeded with the training phase for both NAR and NARMA
networks. Training is a minimizing technique to compute the best weights. For
both architectures, we used the Levenberg-Marquardt algorithm, which interpolates
between the Gauss-Newton algorithm and the method of gradient descent using
a trust region approach [185]. Progressively, we used the methodology illustrated
in [184] for validating both ANNs. This methodology performs a set of tests, in-
cluding autocorrelation function of residuals and cross-correlation function between
controls and residuals to validate system outputs. The result of this process gives
the NSSE error. By definition, this error should not be too large compared to
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Figure 3.2: Evaluation of NSSE after pruning with regard to number of regressors

training error. If NSSE is greater than the training error, the predicted results are
over-fitting the training-set. Table 3.2 illustrates the obtained results for both NAR
and NARMA.

Table 3.2: NSSE comparison after the first and final validation

NSSE NSSE
Neural Network
after first validation after final validation
NAR 1.25 x 1013 1.24 x 1073
NARMA 1.23 x 1073 1.22 x 10*3

A shown in Table 3.2, the validation process yields these indexes as detailed
in the column NSSE after the first validation. The NSSE is equal to 1.25 x 1073
and 1.23 x 1073 for NAR and NARMA, respectively. These indexes will have to be
compared with those obtained after the optimization of the architectures. Then,
we proceeded to the optimization phase of both networks. Our purpose was to
remove excess weights and obtain a smaller error than the one given during the first
validation. To achieve this, we adopted the Optimal Brain Surgeon (OBS) [105],
which is a technique to prune superfluous weights. OBS computes the Hessian
matrix weights iteratively, which leads to a more exact approximation of the error
function. The inverse Hessian is calculated employing recursion. This method
allows for finding the smallest saliency S; as follows:
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w2

S; = STH T, (3.5)
where [H™!];; is the (i,7)th element of the inverse Hessian matrix and w; repre-
sent the ith element of the vector # containing the network weights. The saliency
identifies the quality of the connection between the various network units. This
methodology allows verifying the state of the saliency iteratively. If the saliency S;
is much smaller than the mean-square error, then some synaptic weights are deleted
and the remaining ones are updated. The computation stops when no more weights
can be removed from the network without a large increase of the mean-square error.
Once the new weights are given, we re-validated both resulting pruned NAR and
NARMA.

Through the same methodology used in the first validation phase, we proceeded
to the validation of the final network using the new weights. The resulting NSSE
error indexes for both ANNs are illustrated in the column NSSF after final valida-
tion in Table 3.2. NSSE error indexes are 1.24 x 107 and 1.22 x 10™3 for NAR
and NARMA respectively. In both cases, the new NSSE values are lower than the
ones given after the first network validation. Thus, the optimization for both ANNs
succeeded. The resulting NAR with 4 regressors and NARMA with 2 regressors are
trained and validated. Hence, they are ready to forecast GHI values in short-term
time-periods, and their results will be discussed in next Section 3.5.1.

3.4.2 Comparative analysis of state-of-art neural networks
for GHI forecast in short- and mid-term horizons

As the second step of our methodology, we focus specifically on the forecast the
values of GHI in short- and mid-term time-horizons. For this reason, we design and
implement the following neural network architectures:

o Nonlinear Autoregressive Neural Network;
o Feed-Forward Neural Network;
o Long Short-Term Memory Neural Network;

o Echo State Network;

We also applied three different pre-processing techniques to the input dataset to
obtain better performances in terms of prediction accuracy and computation level.
Moreover, we consider also both one-step and multiple steps predictions for each
selected model. Making a one-step prediction means taking GHI samples at times
t,t—1,t—2,...,t —n to predict GHI at time ¢t + 1, i.e. in 15 min, since that is the
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distance of two consecutive samples in the dataset. Instead, for multi-step predic-
tion, we evaluate two different techniques, iterative and multi-output, respectively.
In the iterative approach, the artificial neural network has a single output, so it
can only predict one-step ahead. For subsequent steps, the predicted value for time
t+ 1 is used as one of the inputs for the prediction at time ¢ + 2, and so on. In the
multi-output approach the network has n output nodes, giving the prediction for
t+1,t+2,...,t+n in parallel. Progressively, the networks are first trained using
the raw GHI time-series, after only some basic pre-processing (i.e. removing errors
due to sensor sampling). Then, we applied two different technique to pre-process
this raw GHI dataset: i) Tikhonov regularization and ii) clear-sky index conversion.
The Tikhonov regularization technique smooths the time-series trend avoiding pos-
sible spikes. Whilst converting GHI time-series into clear-sky index values removes
all possible seasonal trends. In both cases, we trained all our neural networks again,
and then we optimized their architectures. Each of the three resulting datasets has
been split into training- and test-set (i.e. data never used during the training).
To fair compare their performances in forecasting GHI, we trained all our neural
networks with the very same training-set, and we tested them with the very same
test-set. Figure 3.3 summarizes the overall process.
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Figure 3.3: Methodology outline

Data transformation

We exploit a dataset of 6 years GHI measurements, sampled every 15 minutes
from a meteorological station in Turin, as described in Section 3.3. The dataset has
been subjected to necessary some pre-processing. First, GHI can never be negative
(i.e. GHI < 0), so any negative values were set to 0. Then, comparing the raw GHI
values in the dataset with the generated clear-sky values (I.s), some of them were
higher than the corresponding I.,. This is probably due to some sampling error
by the sensor or, in some cases, to some short-term cloud enhancement effects [16].
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Since most of these peaks usually occur when the solar zenith angle is big [229],
which is also when the reliability of the sensor is lower, it was decided to filter these
anomalous peaks, so for each GHI > I.,, GHI was set equal to I..

After these basic pre-processing, we divide the dataset into training- and a test-
set (5 years for Training (2010-2014) and 1 year for Test (2015), with 175296 and
35038 samples, respectively). Furthermore, we introduced two dataset transforma-
tions to improve prediction performance: i) Tikhonov regularization and ii) clear-
sky index.

Tikhonov regularization Generally, raw GHI data is characterized by many
sudden peaks and variations. For this reason, we decide to try smoothing the
data to make the training of the neural networks easier. The disadvantage of this
approach is that some information about the variability of the phenomenon will
necessarily be lost. However, the potential benefit is that the networks could more
easily follow the trends in the data, particularly on medium or long term predic-
tions. This is a trade-off, meaning that the choice of this approach might depend
on the required prediction horizon and the application for which the predictions
are needed. Then to smooth the original data, we exploit the Tikhonov regular-
ization [122]. This technique is used for time-series analysis and forecasts in other
domains, like glucose level prediction [6]. However, it is not commonly used for
solar irradiance forecasting.
The filtered signal is given by:

§=Ugw (3.6)

In Equation 3.6, w is the N-dimensional first derivative of the input signal, while
Uy is the integral operator matrix (Equation 3.7).

1 0 0 ... 0 0 0]
110 ... 000
111 ...0060
Ug=|: @ & & 1 0 (3.7)
111 ...100
111 ...110
11 1 1 1 1)

To calculate w, the function f(w) (Equation 3.8) needs to be minimized.

fw) = [ly = Uaw|* + Agl| Law]|* (3.8)

In Equation 3.8 L4 is the second derivative operator matrix, while \; is the regu-
larization parameter, set to 3000, in accordance to [6]. An example of the results
of the filtering can be seen in Figure 3.4.
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Figure 3.4: Original data vs. smoothed data

Filtered data will be used for training the networks. Since the filter eliminates some
peaks and spikes in the GHI data, giving a smoother signal, it should be easier for
the neural networks to approximate it, potentially increasing the generalization ca-
pability of the model. Once the neural networks are trained, the original unfiltered
GHI data will be used for testing, as shown in Figure 3.3.

Clear-sky index The solar irradiance time-series exhibits a seasonality compo-
nent and is therefore non-stationary. Some authors assert that neural network can
work well even with non-stationary time-series, given enough training data [224].
Others prefer to transform the solar irradiance into a stationary series [201, 174].
For stationary series, statistical properties like mean and variance are constant in
time. This should make it easier to predict than a non-stationary series. For this
purpose, the clear-sky index (K.) is used in literature. K, is the ratio between
the measured irradiance and the expected irradiance under clear sky conditions.
For this work, after evaluating the performance of the network with the original
GHI data, we chose to repeat the experiments using the clear-sky index, defined
in Equation 3.9, where [, is the measured irradiance, and I is the calculated
clear-sky irradiance.
Im

K.=— .
I (3.9)

The K. series was then used to train the networks. Since I., > I,,,, then 0 < K. <1,

so it is not necessary to scale the input data. To make predictions, K. values were
used as inputs, then the predicted values (i.e. the outputs of the network were
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multiplied by the corresponding clear-sky values to obtain the GHI predictions)
that could then be compared with the expected values.

Prediction Model Building

Between the solutions we propose and compare, one of the most commonly used
is the Feed-Forward Neural Network (FFNN). Contextually, we exploit a NAR ar-
chitecture also based on the Multilayer Perceptron like the FFNN. Besides, we
propose an LSTM architecture, often used for time-series forecasting and success-
fully applied to GHI prediction in recent studies [13], [1]. Finally, the Echo State
Network that is a less traditional recurrent architecture, but it has shown promis-
ing results in time-series forecasting [135]. In the following subsections, we will
present the neural architectures considered in this study. For each of them, we
will describe the properties and strengths, giving particular emphasis to the hy-
perparameters taken into consideration and properly investigated. In Section 3.5,
instead, we will present and detail all the network configuration w.r.t. the exploited
dataset. This is because the optimization of the architecture strictly depends on
the dataset under consideration.

Echo State Network The Echo State Network (ESN) is a recurrent neural net-
work composed by an input layer, a recurrent hidden layer called "reservoir" and an
output layer as detailed in Section 2.2.2. ESNs are an implementation of so-called
"reservoir computing" [223]. The main idea is to have a fixed, random, sparsely
connected recurrent layer, and a readout layer, connecting the reservoir to the out-
put. In the most straightforward architecture, these output connections are the
only trainable ones. It is also possible to add direct trainable connections from
input to output, bypassing the reservoir, and feedback connections from output to
reservoir [123].

One interesting feature of ESNs is that they are straightforward to train, unlike
other recurrent neural networks. In ESNs, the recurrent layer is fixed, and this
greatly simplifies the training process. Some hyperparameters need to be deter-
mined. Then we exploited a trial-and-error approach to identify the number of
inputs (regressors). For the size of the reservoir, Lukosevicius [149] suggests that a
"big" reservoir is usually better, given the sparsity of the connections between its
units. It is not possible to implement an arbitrarily big reservoir since memory con-
sumption needs to be taken into account. Keeping this in mind, the first choice was
to use 500 units. Starting from that upper limit, reservoirs with 50, 100, and 200
units were also tested, to verify the assumption that "bigger is better'. The reser-
voir density was chosen again by trial-and-error, and 0.1 was selected for its value.
Another critical parameter is the spectral radius. As already discussed, a value
lower than one should guarantee the echo state property. It is usually an excellent
choice to choose a value close to 1, as suggested in [149], so 0.9 was selected.
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Nonlinear Autoregressive Neural Network The Nonlinear Autoregressive
Neural Network is an ANN that extends a traditional linear autoregressive model,
as detailed in Section 2.2.1. It is particularly suitable for non-linear time-series that
report unexpected spikes and fleeting, transient periods [184].

Progressively, we determined the hyperparameters of the network, in particular
the number of both regressors and units in the hidden layer. Since there is no rule
to determine the best amount of regressors mathematically, the choice was made by
trial-and-error, going from 2 up to 20 regressors. Regarding the units in the hidden
layer, we overestimate the initial number selecting 30 hidden units. This because,
in this methodology, we can adopt pruning functionality that allows to eliminate
superfluous weights and determine the best network configuration [8]. Once the
parameters were selected, the network training was performed using the Levenberg-
Marquardt algorithm [143]. Consequently, we have pruned the obtained network
with the Optimal Brain Surgeon algorithm [108], and we trained the network again
before making the inference for the predictions.

Feed-forward Neural Network Based on the Multilayer Perceptron, the FNN
is characterized by a dense, fully connected layer, where information only moves
from one side to the other. In a preliminary phase, we considered different archi-
tectures with different hidden layers. We found that the best compromise between
prediction and computation accuracy is an architecture with two hidden layers.
Once the model has been chosen, we determined the hyperparameters, i.e. number
of regressors and activation function. For the hidden layers, we have opted for
the hyperbolic tangent (tanh) activation function, since it is a common choice and
gives good results [128]. For the output layer, instead, we have chosen a linear
activation function. As for the number of inputs and units in the hidden layer,
there is no established mathematical technique to select the best parameters. In
this case, we opted for a trial-and-error approach. First, we arbitrarily decided to
choose the number of units as two times plus one the number of inputs for networks
with a single hidden layer. Then, we investigated the number of regressors from 2
to 20, evaluating the performance for each case. The optimization algorithm used
for training is the Adaptive Moment Estimation (Adam optimizer) [131]. This al-
gorithm is closely related to two other optimization techniques, Root Mean Square
Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad), combining
their features together. To avoid the phenomenon of overfitting, we have used the
early-stopping technique [206]. In practice, during the training phase, training is
stopped when there is no improvement in the validation set for a few steps. The
additional benefit of early-stopping is the significant reduction of the training times.

Long Short-Term Memory Neural Network The Long Short-Term Memory
Neural Network (LSTM) represents an evolution of a canonical recurrent neural
network developed to solve the "vanishing gradient" problem [114], as detailed in
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Section 2.2.2. This is a problem that arises during the training of such neural net-
works with backpropagation methods. These architectures are particularly suitable
in the prediction of time-series because, thanks to their structure, they can preserve
the error that can be back-propagated through time and layers. By maintaining a
more constant error, they allow recurrent nets to continue to learn over many time
steps. Since the LSTM was proposed, different variations of the architecture were
developed [98]. The typical LSTM unit is composed of a cell, an input gate, an
output gate, and a forget gate. The LSTM unit structure is shown in Figure 2.8.

For our implementation, we used an LSTM layer for the hidden part of the
networks, while the output layers are simple dense layer, as for the FFNN. As
already discussed for the FFNN in Section 3.4.2, the same trial-and-error approach
was adopted to determine the number of regressors, hidden units and hidden layers.
The Adam optimizer was again used for training, and the same early-stopping
technique was also used to avoid overfitting. The benefit given by early-stopping on
training times was particularly significant with the LSTM networks, whose training
times are significantly longer than those of the FFNN. Even for a much smaller
LSTM, with 10 hidden units vs 200 for the FFNN, each epoch took approximately
8 times longer.

Multi-step predictions

In according to Section 2.4, we evaluate the iterative prediction and multi-
output neural network approach. The experimental results have proved that the
multi-output approach outperforms the iterative one (see Section 3.5.3), and it was
therefore chosen for all the following experiments. This does not apply to the NAR
network, however, since the realized model already contains a function to perform
multi-step predictions, which was therefore used.

3.4.3 In-depth analysis of Multivariate Configurations for
GHI forecast

Finally, we investigated the advantages of using exogenous inputs for short- and
mid-term GHI forecasting. Therefore, we exploit the whole dataset (as described
in Table 3.1) by applying some statistical techniques to find the best configuration
of exogenous input.

To facilitate the analysis by statistical models, we normalized the GHI values
by using the clear-sky index transformation, which is a widely used transformation
that introduces stationarity in solar radiation time series by removing the seasonal
and daily trends, as detailed in Section 3.4.2.
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Feature selection

The objective of feature selection is to find which are the most significant in-
put variables to make the most effective use of the available information. Indeed,
the selection of key features can improve the prediction performance of machine
learning models and may reduce the computational costs involved in the training
process. In [101], the authors classified the feature selection methods into three ma-
jor categories: i) filter methods, ii) wrapper methods, and iii) embedded methods.
Filters rank features based on some correlation criteria. Wrappers aim to find the
best subset of features based on their empirical prediction performance. Finally,
embedded methods employ learning machines that perform feature selection as part
of their training process. Therefore, we selected a couple of the most commonly
used methods for each category mentioned above, employing a total of six feature
selection techniques. In the following, we provide a brief description of the feature
selection methods adopted by our methodology, concluding with the final results of
the feature selection process.

Correlation criteria The Pearson correlation coefficient measures the linear re-
lationship between two variables. It takes values between -1 and 1, where 1 is a
positive linear correlation, 0 is lack of linear correlation, and -1 is a negative linear
correlation. The Pearson correlation criteria estimate between two variables x, and
y is given by the following formula, where the bar notation stands for the sample

mean: . B B

_ Yz =) (yi — 7)
Vi (i — T)2(yi — )2
Since Pearson’s correlation can assume both positive and negative values, we de-
cided to adopt a different measure to compare the input variables. For this purpose,
we used the coefficient of determination R?, which is defined as the square of the
correlation coefficient R and represents the fraction of variance in the target vari-
able that is explained by individual variables. The coefficient of determination

between the input variables and solar radiation constituted our ranking criteria for
this method.

R

(3.10)

Information criteria In information theory, the mutual information (MI) is a
measure of the mutual dependence between two random variables. More precisely,
it is a measure of the statistical dependence between the density of a variable x and
the density of a variable y. The following formula gives the mutual information:

MI = /x/yp(x,y) log <m> dxdy (3.11)

where p(z) and p(y) are the probability densities of x and y, and p(z,y) is their
joint probability density. In case of continuous variables, the densities p(z), p(y)

58



3.4 — Methodology

and p(x,y) are estimated by discretizing the variables or by approximating their
densities with Parzen windows. For this method, the input variables were ranked
based on their mutual information with solar radiation.

Sequential forward selection The sequential forward selection (SFS) is a greedy
search algorithm that aims to find the best subset of features that maximizes the
prediction performance. The SBS algorithm starts with an empty set and at each
step adds the feature whose insertion gives the highest prediction performance. The
process is iterated until the desired number of features is added. To evaluate each
subset of features, we used a simple Linear Regression model. The training set
consisted of 4 years of data in the period between 2010 and 2013, while the test set
comprised the following year of data, i.e. 2014. The algorithm iteratively inserted
the variable whose insertion obtained the lowest Mean Squared Error (MSE) on
the test set. The ranking of features was obtained by sorting the input variables
based on their insertion order.

Sequential backward selection The sequential backward selection (SBS) al-
gorithm starts with the complete set of all features and at each step removes the
feature whose removal gives the highest prediction performance. The process is
repeated until the subset contains the required number of features. The model and
the dataset splitting are the same used with the forward selection algorithm. The
algorithm iteratively deleted the feature whose removal obtained the lowest MSE
on the test set. Differently from the SFS algorithm, the ranking of features was
obtained by sorting the input variables based on their deletion order.

LASSO regression Least Absolute Shrinkage and Selection Operator Regression
(LASSO Regression) is a Linear Regression model that uses [; regularization. In
particular, a penalty term is added to the cost function by using the [; norm of the
model parameters. The regularized version of the cost function is defined as:

J(0) =

3=

S0z —y)* +a> |6 (3.12)
=1 i=1

where m is the number of training instances, n is the number of input variables, z;
is the input vector, y; is the target, 6 is the parameter vector of the model, and «
is the regularization hyperparameter. The peculiarity of [; regularization is that it
tends to yield sparse feature vectors by setting to zero the weights of least significant
features. In this sense, LASSO Regression can be understood as a feature selection
technique. The sparsity of the feature vector can be enhanced by augmenting the
regularization hyperparameter a. Here, we trained a LASSO Regression model to
predict solar radiation values, eventually sorting the input variables based on the
magnitude of their coefficients.
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Random forest A Random Forest is an ensemble of Decision Trees, each one
trained on a different random subset of the training set. In Decision Trees, essen-
tial features are generally located closer to the root of the tree, while irrelevant
features are located closer to the leaves. The feature importances can be estimated
by computing the average depth at which each feature appears across all the trees
in the forest. Thus, features were ranked based on their relative importance.

Table 3.3 shows the final results of the feature selection process. The final
ranking was obtained by computing the mean position of each feature across the
different feature selection methods. The threshold between the selected features
and the discarded features was chosen by using a trial-and-error approach during
the model evaluation phase. In particular, we noticed a performance improvement
until we inserted the day of the year variable. On the other hand, the variables
pressure, wind speed, precipitation probability, precipitation intensity and minute
penalized the prediction performance once inserted. In conclusion, we found that
the most relevant features for solar radiation forecasting are UV index, temperature,
sunshine duration, cloud cover, hour, wind bearing, dew point and humidity.

Table 3.3: Feature selection results

Features Methods Ranking
R? | MI | SFS | SBS | LASSO | RF
UV index 1 1 1 1 1 1 1
temperature 3| 4 6 2 2 6 3
~| sunshine duration 4 7 5 4 4 5 4
<| cloud cover 9| 8 3 6 6 2 5
~| hour 12 ] 2 7 5 8 4 6
9| wind bearing 51 3 4 8 9 9 6
dew point 7 | 10 9 3 3 7 6
humidity 2|6 2 13 14 3 6
day 1] 5 8 7 10 11 8
J| pressure 13 ] 11 | 10 9 ) 8 9
:% wind speed 6 |9 | 14 | 14 12 10 10
2| precipitation probability | 8 | 13 | 11 10 11 13 11
A precipitation intensity 10 | 12 | 12 11 7 14 11
minute 14 ] 14 | 13 12 13 12 13
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Neural Networks implementation and optimization

In the following, we present the state-of-art neural networks that we exploit to
predict short-term solar radiation and investigate the exogenous input configura-
tion. In detail, these are namely a FNN, anESN, a 1D-CNN, a LSTM and, finally,
the machine learning technique of Random Forest (RF). The best architectures for
the proposed models were found by using a trial-and-error approach. In particular,
the models were trained by using the first four years of observations (2010-2013),
while the following year (2014) was used for validation. The models were trained
and tested multiple times for each configuration evaluated to minimize the perfor-
mance fluctuations due to the random initialization of model parameters. Finally,
the setting with the lowest error on validation data was selected.

Feedforward Neural Network As start configuration, we have set the number
of epochs equal to 500, while the batch size equal to 200 samples. To prevent
overfitting and reduce the training time, we adopted the early stopping criteria with
the patience of 10 epochs and a validation split equal to 0.1 (10% of the training
set). Thus, if the model does not show any improvement in the validation set for
10 epochs, the training is stopped. The training hyperparameters are summarized
in Table 3.4, and these are the same for all the following neural networks presented
in this phase work.

Table 3.4: Training hyperparameters

hyperparameter Value
Optimizer Adam
Loss Mean sqaured error

Learning rate 0.001
Epochs 500
Batch size 200
Validation split 0.1

Stopping criteria | early stopping with patience equal to 10

The FNN was implemented in Python by using the Keras library with Tensorflow
backend [51]. Firstly, we investigated the number of past observations to use as
input by evaluating the model performance with a different number of regressors.
The FNN obtained the best prediction performance by using the previous 3 obser-
vations for each input variable. The final architecture of the FNN was composed of
two hidden layers of respectively 100 units and 50 units, and a final output layer of
16 units, corresponding to the number of prediction horizons of interest. The hid-
den layers used a hyperbolic tangent (tanh) activation function, while the output
layer used a linear activation function.
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Echo State Network The Echo State Network, in according to Section 2.2.2 and
Section 3.4.2, was implemented in Python by using the open-source library easyesn
[277]. As before, the best hyperparameters for the ESN were found through a
trial-and-error approach. Thus, we found that the best prediction performance for
the ESN was obtained by using only 1 regressor for each input variable. The final
ESN configuration used a reservoir of 100 units with a reservoir density of 0.1. The
spectral radius was set to 0.9, while the leaking rate was set to 0.2.

1D Convolutional Neural Network The 1D-CNN was implemented in Python
by using the Keras library with Tensorflow backend [51]. The best configuration for
the 1D-CNN was achieved by using the past 5 observations of each input variable.
The convolutional part of our network used two 1-dimensional convolutional layers
with 32 filters and a kernel size equal to 2. The activation function used for each
convolutional layer was the hyperbolic tangent function. No pooling layer was
inserted after the convolutional layers because the number of features was quite
small and did not show a limitation in terms of computational costs. Finally, a
fully connected layer with 100 units was added at the end of the network, using
a hyperbolic tangent activation function. Like in the FNN, the output layer was
constituted of 16 output units with a linear activation function. The full description
of the 1D-CNN hyperparameters is provided in table 3.5. The hyperparameters for
the training process were the same used for the FNN, and they are summarized in
Table 3.4.

Table 3.5: 1D-CNN hyperparameters

Layer type Units | Filters | Kernel size | Stride | Padding | Activation
Convolution 1d - 32 2 1 valid tanh
Convolution 1d - 32 2 1 valid tanh

Dense 100 - - - - tanh
Dense 16 - - - - linear

Long Short-Term Memory The LSTM neural network was implemented in
Python by using the Keras library with Tensorflow backend [51]. The best per-
formance for the LSTM was obtained by using the past 3 observations for each
input variable. The final LSTM architecture was composed of two recurrent layers
with 50 units using a tangent hyperbolic activation function. Like in the previous
networks, the output layer used 16 output units with a linear activation function.
The full description of the LSTM hyperparameters is provided in Table 3.6, while
Table 3.4 summarize all the training hyperparameters.
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Table 3.6: LSTM hyperparameters

Layer type | Units | Activation
LSTM 50 tanh
LSTM 50 tanh
Dense 16 linear

Random Forest A Random Forest is an ensemble of Decision Trees where each
predictor is trained by using a different random subset of the training set, sampled
via the bagging or the pasting methods. In general, when Decision Trees perform
regression tasks, they are called Regression Trees, while the corresponding ensemble
model is called Random Forest regressor. The prediction of a Regression Tree is
given by the mean target value of the training data reaching the leaf node. The
Regression Tree algorithm tries to iteratively split the training data at each node
such that the MSE between the target values and mean of target values is as low
as possible. The following equation describes the cost function that the training
algorithm tries to minimize at each node:

mie _ My _
ko te) = =5 37 (Frege = 91)* + =2 37 (rigne — 0)° (3.13)

icleft M icright

where k is the feature chosen for the splitting, t; is the splitting threshold value, m
is the cardinality of the training subset reaching that node, mj s and m,;gn: are the
cardinalities of the next training subsets, y; are the training subset target values,
and y is the mean target value. The prediction of a Random Forest regressor is
obtained by averaging the predictions of individual trees.

Finally, we have implemented The Random Forest regressor in Python by us-
ing the sklearn open-source library [200]. The model showed the best prediction
performance when using 10 regressors for each variable. The ensemble model was
limited to 100 Decision Trees since a greater number of estimators did not show
substantial improvements. To prevent overfitting, the minimum number of samples
reaching a node was used as stopping criteria. By using a trial-and-error approach,
we decided to stop the tree growth when the number of samples reaching a node
goes below 100 instances. Table 3.7 summarize the hyperparameters:

Table 3.7: Random Forest hyperparameters

Hyperparameter Value
Estimators 50
Minimum samples split | 100
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3.5 Results

This Section presents and discusses all the experimental results.

3.5.1 Results on GHI forecast in short-term time-horizon

The first experimental results are focused on GHI forecasting in short time
windows (i.e. 15 minutes). This is the minimum time interval on which many
services for smart grid management work (e.g. Demand/Response [226]). However,
we moved further predicting also GHI up to next two hours (again with 15 min
time intervals). As described in Section 3.4.1, we implemented two Non-linear
Autoregressive Neural Networks, i) NAR with 4 regressors and ii) NARMA with
2 regressors, that exploit the dataset described in Section 3.3. In this section, we
present the obtained results, and we also compare and discuss the two different
architectures.

To evaluate the performance of our networks, we compare the results of our
predictions with real measured values. To achieve this, we used a set of indicators.
In according to Section 2.5, these metrics are: i) the RMSD that represents the
standard deviation of differences between predicted and observed values, ii) the
MAD that represents a measure of statistical dispersion obtained by the average
absolute difference of two independent values drawn from a probability distribu-
tion, iii) the MBD that measures the average squares of errors between predicted
and measured values and vi) the r? that represents the proportion between the
variance and the predicted variable. All these values are expressed in percentage.
Finally, we also considered two other indicators to evaluate the overall network
performance: Willmott’s Index of Agreement (WIA) and Legates’ Coefficient of
Efficiency (LCE). WIA represents the standardized measure of the degree of model
prediction error [259]. LCE is the ratio between the mean square error and the
variance in the observed data [142].

Fig. 3.5 and Fig. 3.6 show the results of predictions given by proposed NAR and
NARMA compared with real measured values sampled by weather station (dashed
and continuous lines, respectively). These results include predictions with eight
different time-steps, from &k = 1 (i.e. next 15 min) to k& = 8 (i.e next 120 min).
Both cases refer to the first seven days of June 2013. Prediction trends of both
architectures are very similar. Indeed, they follow with good accuracy the real
meteorological trends: i) clear sky, ii) cloudy and iii) rainy conditions, especially
for 1 < k < 3. Instead for k > 3, the prediction accuracy decreases. These aspects
are better highlighted by Table 3.8 that reports the results of GHI predictions
in terms of performance indicators considering the whole of 2013, which is our
validation-set for both architecture. These indexes highlight that the prediction
performance worsens by increasing the predictive k-steps. Indeed, GHI predictions
for high values of k has a higher error compared with real measurements. In both
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cases, the analysis of indexes highlights that the best GHI predictions are given with
smaller time intervals. For example, MAD reveals that the forecast error grows as
the prediction step k increases. Indeed, for & = 1, the error is about 12.96% and
12.81% for NAR and NARMA, respectively. Whilst for & = 8, the error exceeds
the 55%. Also, RMSD has a similar trend. A good performance of r? is given
when its values are closer to 1. In both cases, this happens for a lower & values.
For k = 1 and k = 2, 72 is over 0.92 for both ANNs. For k > 4, it decreases
down to about 0.70. This trend is also confirmed by both LCE and WIA that
highlight a decreasing of the overall performance on high prediction steps. Under
these circumstances, the performance indexes for 1 < k < 3 are suitable to perform
Photovoltaic energy estimations and simulation results will be discussed in the next
Section 3.5.2. With this configuration, the maximum error rate for GHI prediction
(expressed in MAD) is less than 25%.

Table 3.8: Performance Indicators for GHI predictions

NAR Neural Network NARMA Neural Network

Pred. | Time | MAD MDB 2 RMSD LCE  WIA MAD MDB 2 RMSD LCE  WIA
Steps | [min] | [%]  [%] (%] %] 7] (%]

k=1 15 1294 0.16 095 3531 0.89 0.99 1280 0.36 095 3503 090 0.99
k=2 30 | 19.47 081 092 4680 0.84 098 | 19.15 1.06 092 46.07 0.84 0.98
k=3 45 | 2487 180 0.89 5441 0.80 097 |24.67 223 089 5365 0.80 0.97
k=4 60 | 30.16 3.06 0.86 6105 0.76 0.96 |30.23 4.09 086 60.24 0.76 0.96
k=5 75 | 35.67 477 0.83 6729 0.71 0953635 686 083 6682 071 095
k=6 | 105 | 41.78 7.23 0.79 7393 0.66 0.94 | 4330 1046 0.79 74.16 0.65 0.94
k=7 | 115 | 4890 10.65 0.75 80.94 0.60 0.92 | 50.61 14.57 0.74 81.88 0.60 0.92
k=8 | 120 | 56.90 15.23 0.70 88.51 0.54 0.90 | 58.18 19.01 0.69 89.89 0.53 0.90

To train and validate the proposed ANNs, we run our simulations in a server
equipped with a CPU 2x Intel Xeon E5-2680 v3 2.50 GHz and 128 Gb of RAM.
Table 3.9 reports the execution time for both ANNs considering the three main
phases: i) ANN initialization before Pruning, ii) Pruning and iii) ANN initialization
after Pruning.

ANN initialization before Pruning refers to the computational time needed to
initialize ANNs with random values for the first training and validation. It in-
cludes all the steps needed before carrying out the network pruning. As shown
in Table 3.9, NAR with 4 regressors needs about 1 min. Whilst, NARMA with 2
regressors needs about 2:30 min because its overall architecture is more complex
concerning NAR; hence, it needs more computational resources. This is highlighted
during the Pruning in Table 3.9, which refers to computational time to evaluate and
eliminate unnecessary weights in order to optimize ANNs. This procedure takes
around 1 hour for NAR and about 1:48 hour for NARMA. Thus, the optimization
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Table 3.9: Computation time for both NAR and NARMA

NAR NARMA
ANN initialization before Pruning | 00:01:13 00:02:24
Pruning 01:04:12 01:47:58

ANN initialization
00:01:07 00:01:22

after Pruning

‘qé - Total 01:06:32 | 01:51:44
P k=1 00:00:14 | 00:00:14
% ; k=2 00:00:13 00:00:14
g — g k=3 00:00:14 | 00:00:14
g k=4 00:00:16 00:00:18
:*5 k=5 00:00:18 00:00:16
T k=6 00:00:19 | 00:00:19
= k=7 00:00:19 00:00:20
k=38 00:00:20 00:00:21

process is almost doubled for NARMA concerning NAR. Finally, ANN initializa-
tion after Pruning is the time needed to train and validate the optimized ANNs.
As highlighted in Table 3.9, it dropped to 1:22 min for NARMA concerning the
previous ANN initialization before Pruning while it is almost constant for NAR.
Once both ANNs are pruned, the computation time to provide GHI forecasts
varies between 14 and 21 seconds for 1 < k < 8. This enables possible future
applications where these ANNs are trained, validated and pruned on servers or
cluster systems, since these phases need more computational resources. Then, the
optimized ANNSs can be deployed on embedded devices to provide GHI forecast. In a
smart grid scenario, examples of application that can benefit from this forecast are:
i) energy dispatching and load balancing [254], ii) battery management system [209],
iii) Demand/Response services [226] and iv) vehicle-to-grid applications [210, 264].

3.5.2 PV energy estimation

As already discussed in Section 3.5.1, the proposed ANNs forecast GHI in short-
term time windows with reasonable accuracy. This allows estimating in advance
energy produced by PV systems. To achieve this, we exploited the PV energy sim-
ulator (PVsim) presented in [35] that takes as input the GHI forecast resulting by
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both NAR and NARMA. The combination of both ANNs and PVsim unlocks devel-
opment of innovative services and control policies for better management of future
smart grids [226] that can also be tested and validated exploiting the methodology
in [33].

PVsim is a GIS software infrastructure that simulates PV production in real-
sky conditions. The inputs for these simulations are i) a Digital Surface Model
(DSM) and ii) GHI trends. DSM is a digital elevation model that represents terrain
elevation, including all objects on it (i.e. buildings). It is used by PVsim to identify
rooftops and to simulate the evolution of shadows in clear-sky conditions during the
day. Then, this is combined with GHI trends to simulate solar incident radiation
and, consequently, PV production in real-sky conditions with a time-resolution of
15 minutes. In a default configuration, PVsim retrieves real GHI trends from a
weather station in our University Campus. To forecast PV energy production in
short-term time intervals, we interpose our ANNs between weather station’s data-
source and PVsim. So that, both ANNs get the last real GHI measurements from
the weather station and provide the resulting GHI forecast to PVsim.

As mentioned in Section 3.5.1, results of our ANNs for 1 < k < 3 on GHI
forecast are suitable to perform PV energy estimations. Hereafter, we present re-
sults obtained for these three time intervals, i.e. next 15, 30 and 45 minutes. To
evaluate the error rate, we compared PVsim results of GHI forecast trends given
by NAR and NARMA with those of real GHI trends retrieved by weather station.
Fig. 3.7 shows PVsim results for three significant days in June 2013 with different
meteorological conditions: i) sunny, ii) cloudy and iii) rainy. Blue continuous-line
represents simulations given by real GHI trends, red dashed-line given by NAR
GHI trends and green dashed-dotted-line given by NARMA GHI trends. As shown
in Fig. 3.7, best performance is achieved when PVsim gets as input results of GHI
trends from both ANNs with £ = 1. This is also confirmed by performance indi-
cators reported in Table 3.10 that considers the whole 2013. Indeed, the accuracy
of PV energy estimations decreases by increasing the prediction step k. Regarding
PVsim simulations preformed with NAR GHI trends, MAD increases from 10.31%
to 19.22% for k = 1 and k = 3, respectively. Also RMSD has a similar trend,
increasing from 27.96% to 44.65%. MDB varies from —0.61 to —2.65. 72 for k =1
is equal to 0.97. Whilst, the error increases with an r> = 0.92 for k = 3. Finally,
LCE varies from 0.92 to 0.84 and WIA decreases from 0.99 to 0.97. Similar trends
are achieved by PVsim simulations preformed with NARMA GHI trends. MAD
increases from 10.11% for k = 1 to 18.47% for k = 3. MDB is —0.17 for k = 1,
—0.74 for k = 2 and —1.55 for k = 3. r? varies from 0.97 to 0.92. RMSD rises from
27.86% to 43.97%. Finally, LCE varies from 0.91 to 0.85 and WIA decreases from
0.99 to 0.98.

A comparison of these performance indicators highlights that NARMA GHI
trends give slightly better PV energy estimations than NAR GHI trends. We can
assert that both ANNs can simulate GHI trends in short-term periods with good
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Table 3.10: Performance Indicator for PV simulation with NAR and NARMA

NAR Neural Network NARMA Neural Network
Pred. | Time | MAD MDB RMSD MAD MDB RMSD
Stops | [min] | [ [ 2 [ OB OWIA| T St 12 Tps LOEWIA

k=1 15 | 1031 -0.61 097 2796 0.92 0.99 | 10.11 -0.17 097 27.86 091 0.99
k=2 30 | 1545 -1.58 094 3815 0.87 0.98 | 1493 -0.74 094 37.66 0.88 0.98
k=3 45 | 19.22 -2.65 092 4465 0.84 097 | 1847 -1.55 0.92 4397 0.85 0.98

accuracy. This is also confirmed when we use ANNSs’ results to estimate PV energy
production.

3.5.3 State-of-art Neural Network implementation and op-
timization for GHI forecast in short- and mid-term
time-horizon

As second analysis, we focused on how to improve predictions of GHI values. For
this purpose, we selected some of the state-of-art neural networks optimizing the
implementation process concerning the case study. Also, as a detail in Section 3.4.2,
we investigated some pre-processing techniques to obtain better performances in
terms of prediction accuracy and computation level. Therefore, in this Section, we
present our experimental results. First, we analyze and compare the prediction
models. Then, we prove that by using a multi-output artificial neural network for
predictions with many steps ahead, we can obtain better results than the iterative
method, justifying the choice of the former approach. Finally, we describe the
prediction performances obtained with raw GHI data, Tikhonov regularisation and
clear-sky index.

Iterative vs. multi-output networks

As introduced in section 2.4, we have applied two different methodologies for
multi-step predictions, iterative and multi-output. The former uses a single-step
model and iteratively generates multiple predictions; the latter gives the desired
n predictions exploiting a single step of calculation (i.e. n steps in the future).
Figure 3.8 shows the comparison for the FFNN exploiting raw GHI data with time
horizon from 15 min to 2h.

The performance is similar for the first 30 minutes, but the multi-output net-
work starts improving for mid-term time horizons. Increasing the time horizon
will result in the accumulation of the error, further widening the gap between the
two approaches. Figure 3.9 depicts the same experiment for the LSTM network
still exploiting raw GHI. Again, the experimental results report similar behaviour
with the LSTM network for the first 30 min. Instead, we do not apply our itera-
tive approach to NAR and ESN because their models already embed a feature to
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Figure 3.8: Comparison of RMSD for iterative and multi-output predictions using
a Feed-Forward Neural Network (raw GHI)

perform multi-step predictions. These results justify our choice of using networks
with multiple outputs to predict GHI many steps ahead, in accordance with [134].
Consequently, all the results illustrated in the following sections are based on the
multi-output approach.
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Figure 3.9: Comparison of RMSD for iterative and multi-output predictions using
a Long Short-Term Memory (raw GHI).
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Table 3.11: MAD (%), R?, and RMSD (%) of NAR predictions

Model Indicator 15min 30min 45min 60min 75min 90min 105min 120 min
MAD 10.79 16.95 21.64 26.12 30.79 35.79 41.32 47.48
NAR-7 (7 regressors) R? 0.96 0.93 0.91 0.89 0.86 0.83 0.80 0.76

RMSD 30.50 41.29  47.78  53.30  58.79  64.60 70.78 77.26

MAD 10.85 16.74 21.03 24.90 28.86 32.84 36.96 41.39
NAR-12 (12 regressors) R? 0.96 0.93 0.91 0.89 0.87 0.85 0.83 0.81
RMSD 30.43 40.62 46.62 51.41 56.14 60.65 65.05 69.55

GHI prediction exploiting raw GHI data

In this section, we present the performance of our neural networks optimised to
use the raw GHI dataset for both training and test (see Section 3.4.2).

Starting from NAR, we used as reference the architecture deeply described in [8].
Consequently, we design the same network (with 7 regressors and 30 neurons, be-
fore pruning), exploiting the very same dataset (for both training and test) to
guarantee a fair comparison. Then, as described in Section 3.4.2, different numbers
of regressors were evaluated, trying to improve the performance and find the best
network. Table 3.11 reports the comparison of raw GHI predictions between the
reference model with 7 regressors [8] (hereinafter NAR-7) and our best model with
12 regressors (hereinafter NAR-12) in terms of MAD, R? and RMSD.

The results report that NAR-12 performs slightly better than NAR-7 for all
three statistical indicators, particularly for longer time horizons. Up to 45 min, the
performance of predictions is quite similar. The improvements can be noted from
60 min onward. At 120 min, NAR-12 performs better than NAR-7 with improve-
ments of about 6%, 0.05 and 8% for MAD, R? and RMSD, respectively. Conse-
quently, we chose this new model to be compared with the other networks.

For FENN, LSTM and ESN, we have tested different configurations, as described
in Section 3.4.2, and we compared their RMSD values to decide which parameters
give the best results.

In the following, we report the configuration of each neural network:

o FFNN: 19 regressors and 2 hidden layers; the first layer with 200 neurons
and the second with 100 neurons.

o LSTM: 16 regressors with 2 hidden layers; the first layer with 10 neurons
and the second with 5 neurons.

o ESN: 3 regressors with a reservoir of 500 neurons.

Looking at these parameters, it can be noted that both FFNN and LSTM work
better with a higher number of regressors, while the ESN has the best performance
with just 3 regressors. As for the size of the networks, the ESN works well with a
big reservoir, as recognised in literature [149]. The FFNN also has better results
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using a significant amount of units. Whilst, the LSTM works better with a smaller
architecture.

Our first expectation was that the multi-output architecture used for multi-step
prediction improves the results of the NAR, particularly for longer time horizons.
We also expected that the LSTM would perform better than the FFNN. In fact,
its recurrent structure should be more suitable to model the temporal behaviour of
GHI time-series. Moreover, LSTM has shown excellent performance in many tasks,
including time-series forecasts [98].

160

——ESN
s LsT™M
FFNN e
120 ----NAR-12 ,»"

MAD (%)

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time (min)

Figure 3.10: MAD over time for GHI prediction.

Figures 3.10 to 3.12 show plots of MAD, R? and RMSD over the time for all
the proposed neural network architectures. These plots show that the results are
very similar for short-term predictions (i.e. up to 60min). Then, the four trends
start diverging each other for all three indicators. Performance of NAR-12 (see
the green dotted line) rapidly decreases compared to the other networks. Contrary
to our expectations, LSTM does not outperform the FFNN (see red and yellow
dotted-lines, respectively). Both architectures have very similar trends with a few
negligible differences. These plots strongly highlight the outstanding results of
the ESN for mid-term forecasts, which outperforms the other neural networks.
Table 3.12 details the values of MAD, R? and RMSD for the four networks up
to 120 min ahead predictions. In our view, this is a good time horizon in which
the forecast error is still acceptable. As reported in Table 3.12, at 120 min ESN
outperforms the other neural networks with MAD = 29.03%, R?> = 0.88 and
RMSD = 55.22%, clearly improving the performance of about 12%, 0.07 and 14%
(for MAD, R?, and RMSD, respectively) w.r.t. NAR-12.
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Figure 3.11: R? over time for GHI prediction.
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Figure 3.12: RMSD over time for GHI prediction.

GHI prediction exploiting Tikhonov regularisation

As a second analysis, we focused on predictions based on the Tikhonov regular-
isation applied to the raw GHI dataset, as described in Section 3.4.2. As discussed
in [6], Tikhonov regularisation does not apply to real-time data. Thus, we exploited
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Table 3.12: MAD (%), R?, and RMSD (%) for GHI predictions with raw data

Network Indicator 15min 30min 45min 60min 75min 90min 105min 120 min

MAD 10.85 16.74  21.03 2490 28.86 32.84 36.96 41.39
NAR-12 R? 0.96 0.93 0.91 0.89 0.87 0.85 0.83 0.81
RMSD 3043  40.62  46.62  51.41 56.14  60.65 65.05 69.55

MAD 12.62 19.53 25.66 28.55 30.00 33.76 35.94 40.10
FFNN R2 0.96 0.93 0.91 0.90 0.88 0.87 0.86 0.84
RMSD 31.15 40.54  46.49 50.20 53.81 56.81 59.85 63.78

MAD 16.87  19.29  21.51 23.86 2647  28.98 31.54 34.36
LSTM R? 0.95 0.93 0.91 0.90 0.89 0.87 0.86 0.85
RMSD 34.27 4175 46.20  49.67 5291  56.03 58.92 61.84

MAD 10.96 15.97 19.05 21.49 23.62 25.53 27.34 29.03
ESN R? 0.96 0.94 0.93 0.91 0.90 0.89 0.89 0.88
RMSD 29.60 38.55 43.10  46.31 49.03 51.28 53.31 55.22

the "hybrid" approach presented in [6] in which the Tikhonov regularisation is ap-
plied only on the training set used for training our ANNs. Instead, the test-set,
used to asses the performance of our ANNSs, consists of raw GHI data.

Since the dataset is different w.r.t our previous NAR-7, we applied the very same
methodology described in [8] to design the best NAR suitable for this training-set
pre-processed with Tikhonov regularisation. The resulting architecture (hereinafter
NAR-10) is characterised by 10 regressors and 21 neurons, before pruning. To de-
sign and train the best network architecture for FFNN, LSTM and ESN, we applied
the same trial-and-error approach described in Section 3.5.3. In the following, we
report the configuration of each neural network:

e FFNN: 10 regressors and 2 hidden layers; the first with 50 neurons and the
second with 25 neurons.

o LSTM: 16 regressors with 2 hidden layers; the first with 10 neurons and the
second with 5 neurons.

o ESN: 3 regressors with a reservoir of 100 neurons.

Table 3.13 reports the values of MAD, R? and RMSD for the four ANN up
to 120 min ahead predictions. Comparing these results with those in Table 3.12
(i.e. prediction performance exploiting raw GHI data), we can notice that the
performance of all the ANN gets worse when we exploit this "hybrid" approach.
In general, the error on predictions is too high, and it is not acceptable. This is
also confirmed by the trends reported in Figures 3.13 to 3.15. Thus, this "hybrid"
approach is not suitable for this application scenario.

If we apply the Tikhonov regularisation also on the test-set, performances sig-
nificantly improve in average of about 10%, 1 and 25% for MAD, R? and RMSD,
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Table 3.13: MAD (%), R?, and RMSD (%) for networks trained with Tikhonov

filtered data, inference using raw GHI

Network Indicator 15min 30min 45min 60min 75min  90min 105min 120 min

MAD 13.83  25.01  35.07 45.13 55.61 66.64 78.17 89.46
NAR-10 R? 0.93 0.81 0.66 0.49 0.27 0.01 —0.30 —0.61
RMSD 41.65 68.45 91.20 113.03 135.10 157.53  180.69  200.80

MAD 16.66  23.37  30.35 38.41 47.06 55.64 64.08 72.56
FFNN R? 0.93 0.89 0.82 0.72 0.58 0.41 0.21 —0.01
RMSD 4220  53.55  67.29 84.05 102,96 121.84 14040  158.60

MAD 15.65 19.16  23.41 28.23 33.00 37.93 42.90 47.80
LSTM R? 0.95 0.92 0.88 0.84 0.79 0.74 0.69 0.63
RMSD 36.72  45.71  54.47 63.18 71.78 79.97 87.76 95.53

MAD 12,17 21.10  29.30 37.80 46.68 55.50 63.98 72.47
ESN R? 0.95 0.87 0.78 0.67 0.54 0.39 0.22 0.05
RMSD 35.73  56.01  73.69 90.94 10773  123.66  139.19  153.80

O 1 1 1 1 1 1 1 1 1 1 1
30 60 90 120 150 180 210 240 270 300 330 360 390 420

Time (min)

Figure 3.13: MAD trend evolution for predictions with "hybrid" approach based on
Tikhonov regularisation.

respectively (see Table 3.14 and Figures 3.16, 3.17 and 3.18. However, as previously
anticipated, the Tikhonov regularisation should be rethought to work in real-time.
This because, generally, the Tikhonov filter methodology should be applied to the
whole data set. Instead, in a real application, exploiting real-time data, this is not
applicable since new data would have to be filtered when it becomes available.
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Figure 3.14: R? trend evolution for predictions with "hybrid" approach based on
Tikhonov regularisation.
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Figure 3.15: RMSD trend evolution for predictions with "hybrid" approach based
on Tikhonov regularisation.

Clear-sky index prediction

As a third analysis, we focus on predictions exploiting the clear-sky index (K.,).
The same network configurations for the NAR, FFNN, LSTM and ESN used for
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Table 3.14: MAD (%), R?, and RMSD (%) for networks trained with Tikho. filtered
data, inference using Tikho. filtered GHI

Network Indicator 15min 30min 45min 60min 75min 90min 105min 120 min

MAD 0.95 2.56 4.72 739  10.56  14.23 18.44 23.24
NAR-10 R? 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.95
RMSD 3.28 5.49 837 11.92 16.14  21.02 26.64 32.90

MAD 5.15 6.78 8.17 9.27 10.06  10.50 11.09 12.08
FFNN R? 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.98
RMSD 6.21 8.47 10.72  12.88  14.87 16.85 19.33 22.42

MAD 3.38 2.85 3.12 3.82 4.75 5.83 7.07 8.50

LSTM R? 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
RMSD 4.99 4.68 5.40 6.77 8.56  10.67 13.05 15.68
MAD 0.65 1.46 2.51 3.79 5.31 7.06 9.00 11.13
ESN R? 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98

RMSD 2.76 4.35 6.26 8.47  10.99 13.81 16.90 20.21

120
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Figure 3.16: MAD trend evolution for predictions with Tikhonov regularisation
applied also to the test-set.

the GHI prediction exploiting Tikhonov regularisation (see Section 3.5.3) were also
applied to this new dataset.

The transformation of GHI into K. removes the seasonal trends due to the
changing position of the sun during the year, and the clear-sky model already takes
into account the atmosphere turbidity. So the networks only have to predict the
stochastic component due to clouds. The expectation is that the results will be
better than those described in the previous sections, because these filtered data
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Figure 3.17: R? trend evolution for predictions with Tikhonov regularisation applied
also to the test-set.
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Figure 3.18: RMSD trend evolution for predictions with Tikhonov regularisation
applied also to the test-set.

should be easier to model for the neural networks. The analysis of the obtained
results confirms this assumption. As shown in Figures 3.19 to 3.21, the gap between
ESN and the other three neural networks is reduced in terms of MAD, R?, and
RMSD. The ESN has only a slight improvement but still is more performing than
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the others. It appears that the ESN was already able to extract the seasonal trends
from the raw GHI data better than the other networks. When only the stochastic
component needs to be predicted and the rest is handled by the clear-sky model,
the differences among the networks greatly decreases. As reported in Table 3.15, at
120 min ESN is still outperforming the other neural networks with M AD = 25.47%,
R? = 0.88 and RMSD = 55.02%. Comparing the ESN with the NAR-10, which
gives worst performances among the four neural networks, there is an improvement
of about 0.6%, 0.03 and 5.4% (for MAD, R?, and RMSD, respectively).

g
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<
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Figure 3.19: MAD over time for K. prediction
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Figure 3.20: R? over time for K, prediction
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Figure 3.21: RMSD over time for K. prediction

Table 3.15: MAD (%), R?, and RMSD (%) for K, prediction

Network Indicator 15min 30min 45min 60min 75min 90min 105min 120 min

MAD 9.75 14.43 17.31 19.71 21.72 23.44 24.93 26.15
NAR-10 R? 0.96 0.94 0.92 0.91 0.89 0.88 0.87 0.85
RMSD 29.61 39.18  44.28 4832  51.83  54.85 57.71 60.42

MAD 10.38 14.20 16.59 18.71 20.80 22.28 23.66 25.14
FFNN R2 0.96 0.94 0.92 0.91 0.90 0.89 0.89 0.87
RMSD 29.81 38.83  43.89 46.93  49.21 51.49 53.39 56.04

MAD 10.30  14.02 16.46 18.24  19.92  21.54 23.03 24.38
LSTM R? 0.96 0.94 0.92 0.91 0.90 0.89 0.89 0.88
RMSD 3034 39.25  43.75 4690 4952  51.54 53.37 55.24

MAD 10.10 14.66 17.40 1947  21.24 22.80 24.17 25.47
ESN R? 0.97 0.94 0.92 0.91 0.90 0.90 0.89 0.88
RMSD 29.56 38.71 43.42 46.51 49.05 51.14 53.05 55.02

Final remarks on prediction results

Considering the results discussed in the previous sections and reported in Fig-
ure 3.22, the main findings can be summarised as follows:

o designing ANNs following the multi-output approach to forecast GHI provides
better performances than the iterative approach:

o the Echo State Network is the ANN architecture that better performs among
those tested;
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Figure 3.22: Performance comparison of all the presented ANN: (a) MAD, (b) R?
and (c) RMSD.

o using the clear-sky index the prediction accuracy significantly improves and
allows to use smaller networks with fewer regressors;

o best performances are achieved when Tikhonov regularisation is applied. How-
ever to be suitable for GHI forecasts, it should be rethought to work in real-
time;

e 120min is the maximum time horizon reached by our ANNs in which the
forecast error is still acceptable.
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3.5.4 Multivariate configurations for GHI forecast in short-
and mid-term time-horizon

Finally, we start our investigation on the exploitation of exogenous inputs in
the training phase of neural networks for GHI forecast in short- and mid-term time-
horizon. Therefore, in this section, we present the prediction results obtained by
using the machine learning models illustrated in Section 3.4.3. In this way, we
demonstrate the effectiveness of using exogenous inputs for solar radiation fore-
casting by comparing the obtained results against a model using only endogenous
inputs, detailing the best multivariate configuration found.

Models evaluation

To evaluate how far ahead our models can still achieve acceptable forecasting
errors, we performed multi-step ahead predictions with a time step of 15 minutes.
Therefore, we adopted a Multiple-Input Multiple-Output (MIMO) approach [26],
where a single model with multiple outputs allows to predict multiple values at
once.

In according to Section 2.5, we exploit some analytical indexes to evaluate and
compare the prediction performances of our predictive models. To overcome the
performance variations due to the random initialization of parameters, each model
was trained multiple times, using the final 10% of the training set for validation.
Thus, the model with the lowest validation error was finally evaluated on the test
set. Tables 3.17, 3.18 and 3.19 show the forecasting error for each prediction hori-
zon in terms of MAD, RMSD and R?, respectively. The underlined values indicate
the model with the lowest error for that specific prediction horizon. In case of sim-
ilar errors, the model with fewer parameters was selected. Figures 3.23, 3.24 and
3.25 provide a visual comparison of the prediction errors, where the red area indi-
cates an excessive degradation in the prediction performance. Overall, the LSTM
demonstrated the best prediction performance among the five models, producing
acceptable forecasting errors up to 4 hours ahead. The FNN and the 1D-CNN also
demonstrated excellent prediction performance, comparable to those of the LSTM
for prediction horizons shorter than 2 hours. The ESN presented the highest fore-
casting errors, revealing poor prediction performance in modelling multivariate time
series. The RF performed slightly better than the ESN, showing promising results.
The figures between 3.30 and 3.29 compare the GHI values predicted by the LSTM
against real observed GHI values for three days with different weather conditions,
from 1-h to 4-h ahead.

The experiments were run on a computer equipped with an Intel Core i5 pro-

cessor with 1.4 GHz and 4 GB of main memory. The execution times for training
and testing each model are reported in table 3.16.
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Table 3.16: Training and test execution times.

Model | Training time [mm:ss] | Test time [mm:ss]
RF 00:45 00:11

FNN 01:01 00:01

ESN 02:51 00:12

LSTM 05:05 00:06

CNN 04:31 00:03

Table 3.17: MAD results.

Pred. horizon Models

RF FNN | ESN | LSTM | CNN
15 mins 11.40 | 11.15 | 10.39 | 10.74 | 11.00
30 mins 14.94 | 14.61 | 14.79 | 14.11 | 13.90
45 mins 16.90 | 16.04 | 17.36 | 15.96 | 15.71
60 mins 18.37 | 1747 | 19.32 | 17.25 | 17.22
75 mins 19.47 | 18.62 | 20.89 | 18.36 | 18.28
90 mins 20.43 | 19.54 | 22.21 | 19.16 | 19.40
105 mins 21.32 | 20.54 | 23.36 | 19.98 | 20.32
120 mins 22.12 | 21.20 | 24.32 | 20.80 | 20.78
135 mins 22.87 | 21.98 | 25.10 | 21.28 | 21.51
150 mins 23.57 | 22.74 | 25.76 | 22.03 | 22.44
165 mins 24.17 | 23.44 | 26.31 | 22.66 | 22.90
180 mins 24.77 | 23.65 | 26.74 | 22.95 | 23.58
195 mins 25.31 | 24.48 | 27.15 | 23.37 | 24.89
210 mins 25.82 | 24.84 | 27.57 | 23.83 | 25.07
225 mins 26.33 | 25.51 | 27.97 | 24.09 | 24.75
240 mins 26.84 | 26.24 | 28.34 | 24.51 | 25.02

Improvement of exogenous inputs

To demonstrate the effectiveness of using exogenous inputs for short-term solar
radiation forecasting, we compared the five multivariate models with their uni-
variate counterparts trained by using only endogenous inputs. Figures 3.30, 3.31
and 3.32 provide a visual comparison between the univariate and multivariate mod-
els in terms of MAD, RMSD and R?, respectively. According to the results, the
models using both endogenous and exogenous inputs demonstrated better predic-
tion performance with respect to the models using only endogenous inputs. In
particular, the performance improvements due to exogenous inputs are more pro-
nounced for longer prediction horizons, while for shorter prediction horizons the
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Figure 3.23: Model comparison based on MAD.

Table 3.18: RMSD results

Pred. horizon Models

RF FNN | ESN LSTM | CNN
15 mins 30.39 | 29.92 | 29.22 | 29.81 | 29.73
30 mins 37.95 | 3795 | 37.56 | 37.54 | 36.91
45 mins 41.63 | 41.16 | 41.71 | 41.10 | 40.79
60 mins 44.14 | 43.55 | 44.51 | 43.31 | 43.18
75 mins 45.87 | 45.35 | 46.68 | 44.96 | 45.26
90 mins 47.29 | 46.51 | 48.42 | 46.28 | 46.46
105 mins 48.65 | 47.83 | 49.96 | 47.45 | 47.51
120 mins 49.90 | 48.99 | 51.35 | 48.55 | 48.75
135 mins 51.08 | 49.90 | 52.54 | 49.51 | 49.75
150 mins 52.11 | 50.90 | 53.65 | 50.36 | 50.56
165 mins 53.07 | 52.01 | 54.58 | 51.35 | 51.21
180 mins 53.99 | 52.94 | 55.29 | 52.11 | 52.26
195 mins 54.82 | 53.82 | 56.01 | 52.82 | 53.71
210 mins 55.62 | 54.58 | 56.70 | 53.66 | 54.16
225 mins 56.37 | 55.32 | 57.39 | 54.44 | 54.60
240 mins 57.14 | 56.31 | 58.09 | 55.19 | 55.75

performance of the two approaches are very similar. Tables 3.20, 3.21 and 3.22
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Figure 3.24: Model comparison based on RMSD.

Table 3.19: R? results

Pred. horizon Models

RF FNN | ESN | LSTM | CNN
15 mins 0.96 | 0.96 | 0.97 | 0.96 0.96
30 mins 094 | 094 | 094 | 0.94 0.95
45 mins 0.93 093 |0.93 | 0.93 0.93
60 mins 0.92 | 092 |0.92 | 0.92 0.93
75 mins 0.92 092 | 091 | 0.92 0.92
90 mins 0.91 1091 091 |0.91 0.91
105 mins 0.91 | 091 |0.90 | 0.91 0.91
120 mins 0.90 | 0.90 |0.89 | 0.91 0.90
135 mins 0.90 | 0.90 | 0.89 | 0.90 0.90
150 mins 0.89 | 0.90 | 0.88 | 0.90 0.90
165 mins 0.89 | 0.89 | 0.88 | 0.89 0.89
180 mins 0.88 | 0.89 | 0.88 | 0.89 0.89
195 mins 0.8% | 0.88 | 0.87 | 0.89 0.88
210 mins 0.88 | 0.88 | 0.87 | 0.88 0.88
225 mins 0.87 | 0.88 | 0.87 | 0.88 0.88
240 mins 0.87 | 0.87 |0.86 | 0.88 0.88
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Figure 3.26: GHI prediction with LSTM for 1-h ahead.

compare the models using exogenous inputs with the models using only endogenous
inputs in terms of MAD, RMSD and R?, respectively. The underlined values indi-
cate the model with the lowest error for that specific prediction horizon. In case of
similar errors the model with less parameters was selected. In the third column we
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Figure 3.27: GHI prediction with LSTM for 2-h ahead.
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Figure 3.28: GHI prediction with LSTM for 3-h ahead.

reported the percentage improvement of each multivariate model with respect to
its univariate implementation, where a positive value indicates a beneficial impact
of exogenous inputs in prediction performance. The results clearly show that the
multivariate approach outperforms the univariate approach for almost every pre-
diction horizon. Indeed, all statistical metrics present a certain improvement in the
multivariate scenario from 30 min to 240 min ahead, showing higher improvements
for longer forecasting horizons. For example, the LSTM trained by using both en-
dogenous and exogenous inputs achieved an impressive performance improvement
of 22.14% in terms of MAD for 4 h ahead predictions. The RSMD and the R?
indices also show an outstanding performance improvement of 18.99% and 8.64%
for 4 h ahead forecasts, respectively. On the other hand, the univariate approach
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Figure 3.29: GHI prediction with LSTM for 4-h ahead.

surpassed the multivariate solution only for 15 min ahead forecasts, where the 1D-
CNN reported the best results in terms of MAD with 9.61%. As a matter of fact,
the MAD index shows that there are no advantages in the multivariate approach
for 15 min ahead predictions, reporting only negative performance improvements
for all models in that prediction horizon. To conclude, the results show that the
adoption of exogenous inputs can significantly improve the forecasting performance
for prediction horizons greater than 15 min, while for very short prediction hori-
zons the performance improvement due to exogenous inputs can be considered as
negligible. On these bases, we suggest to adopt a multivariate approach only for
longer forecasting horizons, where the benefits provided by exogenous inputs give
reasons for the higher computational costs required by more complex models. On
the contrary, we believe that endogenous inputs can suffice for very short-term solar
radiation predictions, since there is no evidence that exogenous inputs can provide
performance improvements for very short prediction horizons.
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Figure 3.30: Improvement of exogenous inputs in terms of MAD
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Figure 3.31: Improvement of exogenous inputs in terms of RMSD
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Table 3.20: Improvement of exogenous inputs in terms of MAD

Endogenous + Exogenous Endogenous Improvements
Time (min) | RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN
15 1140 11.15 10.39 10.74 11.00 | 9.82 9.73 10.19 10.01 9.61 |-16.09% -14.59% -1.96% -7.29% -14.46%
30 14.94 14.61 14.79 14.11 13.90 | 14.22 14.22 14.74 1428 14.04 | -5.06% -2.74% -0.34% 1.19% 1.00%
45 16.90 16.04 17.36 1596 15.71 | 16.77 16.69 17.47 1683 16.72| -0.78%  3.89%  0.63% 5.17%  6.04%
60 18.37 17.47 19.32 17.25 17.22 | 18.78 1854 19.52 18.80 18.87 | 2.18% 5.77% 1.02%  8.24% 8.74%
75 19.47 18.62 20.89 18.36 18.28 | 20.50 20.25 21.25 20.49 20.37 | 5.02% 8.06%  1.69% 10.40% 10.26%
90 20.43 19.54 2221 19.16 19.40 |21.98 22.07 22.73 22.02 21.68| 7.05% 11.46%  2.29% 12.99%  10.52%
105 21.32 20.54 23.36 19.98 20.32 | 23.30 23.34 24.07 23.36 23.16 | 8.50% 12.00% 2.95% 14.47% 12.26%
120 2212 21.20 24.32 20.80 20.78 | 24.67 24.74 25.33 24.68 24.64 | 10.34% 14.31% 3.99% 15.72% 15.67%
135 22.87 21.98 25.10 21.28 21.51 | 25.89 25.88 26.49 2582 25.82 | 11.66% 15.07% 5.25% 17.58% 16.69%
150 23.57 22.74 25.76 22.03 2244 | 26.95 27.09 2744 26.89 27.07 | 12.54% 16.06% 6.12% 18.07% 17.10%
165 24.17 23.44 2631 22.66 22.90 | 28.02 28.05 28.31 2791 27.98 | 13.74% 16.43% 7.06% 18.81% 18.16%
180 24.77 23.65 26.74 22.95 23.58 |28.89 28.91 29.01 28.78 28.83 | 14.26% 18.19% 7.82% 20.26% 18.21%
195 25.31 24.48 27.15 23.37 24.89 | 29.62 29.85 29.66 29.55 29.71 | 14.55% 17.99% 8.46% 20.91% 16.22%
210 25.82 24.84 27.57 23.83 25.07 | 30.33 30.56 30.25 30.28 30.47 | 14.87% 18.72% 8.86% 21.30% 17.72%
225 26.33 25.51 27.97 24.09 24.75 | 30.93 31.08 30.72 30.92 31.01 | 14.87% 17.92% 8.95% 22.09% 20.19%
240 26.84 26.24 2834 24.51 25.02 | 3146 31.60 31.21 31.48 31.64 | 14.69% 16.96% 9.20% 22.14% 20.92%
Table 3.21: Improvement of exogenous inputs in terms of RMSD
Endogenous + Exogenous Endogenous Improvements
Time (min) | RF  FNN ESN LSTM CNN | RF FNN ESN LSTM CNN RF FNN ESN LSTM  CNN
15 min 30.39 29.92 29.22 29.81 29.73 | 29.50 29.65 29.69 29.58 29.83|-3.02% -0.91% 1.58% -0.78%  0.34%
30 min 37.95 37.95 37.56 37.54 36.91 |38.73 38.74 38.84 38.67 38.78| 2.01% 2.04% 3.30% 2.92% 4.82%
45 min 41.63 41.16 41.71 41.10 40.79 | 43.34 43.64 43.59 43.27 4349 | 3.95% 5.68% 4.31% 5.02%  6.21%
60 min 44.14 4355 4451 43.31 43.18 | 46.46 47.04 46.75 46.37 46.58 | 4.99% 7.42% 4.79%  6.60%  7.30%
75 min 45.87 45.35 46.68 44.96 4526 | 49.04 49.60 49.29 4899 49.23 | 6.46% 8.57%  5.30% 8.23%  8.06%
90 min 47.29 46.51 48.42 46.28 46.46 | 51.12 51.42 51.34 51.02 51.32 | 749% 9.55% 5.69% 9.29%  9.47%
105 min 48.65 47.83 49.96 47.45 47.51 | 53.04 53.69 53.27 53.02 53.03| 828% 10.91% 6.21% 10.51% 10.41%
120 min 49.90 48.99 51.35 48.55 48.75 | 55.24 55.56 55.20 55.18 54.73 | 9.67% 11.83% 6.97% 12.02% 10.93%
135 min 51.08 49.90 52.54 49.51 49.75 | 57.29 57.75 56.94 57.23 56.78 | 10.84% 13.59% 7.73% 13.49% 12.38%
150 min 52.11 50.90 53.65 50.36 50.56 | 59.24 59.77 58.53 59.16 58.72 | 12.04% 14.84% 8.34% 14.87% 13.90%
165 min 53.07 52.01 54.58 51.35 51.21 | 61.16 61.83 59.94 61.04 60.62 | 13.23% 15.88% 8.94% 15.87% 15.52%
180 min 53.99 5294 5529 52.11 5226 | 62.73 63.66 61.12 62.64 62.11 | 13.93% 16.84% 9.54% 16.81% 15.86%
195 min 54.82 53.82 56.01 52.82 53.71 | 64.20 64.74 62.18 64.09 63.39 | 14.61% 16.87% 9.92% 17.58% 15.27%
210 min 55.62 54.58 56.70 53.66 54.16 | 65.68 65.90 63.17 65.58 64.60 | 15.32% 17.18% 10.24% 18.18% 16.16%
225 min 56.37 55.32 57.39 54.44 54.60 | 67.01 67.25 63.96 66.83 65.93 | 15.88% 17.74% 10.27% 18.54% 17.18%
240 min 57.14 56.31 58.09 55.19 55.75 | 68.27 68.68 64.78 68.13 67.20 | 16.30% 18.01% 10.33% 18.99% 17.04%
Table 3.22: Improvement of exogenous inputs in terms of R?
Endogenous + Exogenous Endogenous Improvements
Time (min) | RF  FNN ESN LSTM CNN| RF FNN ESN LSTM CNN RF FNN ESN LSTM CNN
15 min 096 096 097 096 096 | 0.97 096 096 096 0.96 |-1.03% 0.00% 1.04% 0.00% 0.00%
30 min 094 094 094 094 0.95| 094 094 094 094 094 | 0.00% 0.00% 0.00% 0.00% 1.06%
45 min 093 093 093 093 093|092 092 092 093 092 | 1.09% 1.09% 1.09% 0.00% 1.09%
60 min 0.92 092 0.92 092 093 | 091 091 091 0.91 091 | 1.10% 1.10% 1.10% 1.10% 2.20%
75 min 0.92 092 091 092 092|090 090 090 090 090 | 2.22% 2.22% 1.11% 2.22% 2.22%
90 min 091 091 091 0091 091 | 0.90 0.89 0.89 090 089 | 1.11% 2.25% 2.25% 1.11% 2.25%
105min [ 0.91 091 090 091 091 | 0.89 088 089 089 089 | 2.25% 3.41% 1.12% 2.25% 2.25%
120 min 090 090 089 0.91 090 | 08 088 088 088 0.88 | 2.27T% 227% 1.14% 3.41% 2.27%
135 min | 0.90 0.90 0.89 0.90 0.90 | 0.87 0.87 0.87 0.87 0.87 | 3.45% 3.45% 2.30% 3.45% 3.45%
150 min 0.80 0.90 088 090 090 | 086 0.86 0.86 0.86 0.86 | 3.49% 4.65% 2.33% 4.65% 4.65%
165 min | 0.89 0.89 0.88 0.89 0.89 | 0.85 0.85 0.86 0.85 0.85 | 4.71% 4.71% 2.33% 4.71% 4.71%
180 min 088 0.89 0.88 0.89 0.89 | 0.84 084 085 084 085 | 4.76% 5.95% 3.53% 5.95% 4.71%
195 min 088 088 0.87 0.89 0.88 | 0.83 083 085 084 084 | 6.02% 6.02% 2.35% 5.95% 4.76%
210 min | 0.88 0.88 087 088 0.88 | 083 0.83 084 083 0.83 | 6.02% 6.02% 3.57% 6.02% 6.02%
225 min 0.87 0.88 087 08 088|082 082 084 082 0.83 | 610% 7.32% 357% 7.32% 6.02%
240 min 087 087 086 0.88 0.88 | 0.81 081 083 081 082 | 7.41% 741% 3.61% 8.64% 7.32%
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3.6 Discussion and Remarks

In this Chapter, we presented a methodology to forecast solar radiation values
in short- and mid-term time-periods exploiting neural networks. In a smart grid
scenario, this forecast is needed to estimate in advance the energy production of
renewable energy sources enabling novel control strategies and services for grid
management, such as Demand/Response policies [226].

The first part of our methodology presents a newel solution to forecast GHI in
short-term period by implementing two different non-linear autoregressive neural
networks, NAR and NARMA, respectively. Both neural networks have been im-
plemented, trained and validated exploiting a dataset consisting of four years of
solar radiation values collected by a real weather station. Then, the results of these
ANNSs have been given as input to a Photovoltaic simulator (PVsim) [35] to esti-
mate the energy production of photovoltaic systems. The accuracy of these results
is also acceptable, especially for time horizon from future 15 to 45 minutes.

In the second part, we focus specifically on short- and mid-term GHI forecast
based on state-of-art artificial neural networks. The goal is to identify the most
performing tool that allows us to make more accurate GHI predictions. To achieve
this, we designed, optimised and compared four ANN architectures based on 1)
NAR, ii) FFN, iii) LSTM and iv) ESN. Contextually, using these architectures,
three different approaches were evaluated: i) the raw GHI was directly used to train
the networks and to make predictions; ii) the training set of the GHI series was
filtered with Tikhonov regularisation before performing the training procedure; iii)
the GHI time-series was transformed into the clear-sky index series, which was then
used to train the networks and make predictions. The obtained results suggest a few
interesting considerations. First of all, using a multi-output approach significantly
improves the accuracy of multi-step predictions when more than 60 min in the future
is required. In our case, this means that for forecast horizons of 45or 60 min and
longer this approach is to be preferred over a single-output model used iteratively.
Considering that a single-output model is simpler, it may be better to use the
iterative approach when a long-term prediction is not needed for the application.

The ESN gives very good results compared to other models, mainly when di-
rectly predicting GHI. Moreover, compared to the other models, it needs a smaller
number of regressors to give very accurate results. This can be important in terms
of availability. Given the lack of research in the literature on GHI forecasting with
ESN, these findings are genuinely new results worthy of further studies.

The proposed model that uses Tikhonov regularisation to filter the training
data and uses the unfiltered GHI for the testing part, which is used successfully
in other fields involving time-series forecasting, like blood glucose predictions, does
not appear suitable for GHI forecasting. Therefore, filtered data was used in input
for the testing part, too. This is not ideal since this method would require, when
the system is used for actual predictions "in the field", to filter the data every time

95



3 — Solar radiation forecasting

a new forecast is requested, which might limit the applicability of the method.
Moreover, the Tikhonov filter was applied to the whole testing set, divided into
long segments, but in a real application, using real-time data, this is not possible,
because new data would have to be filtered when it becomes available (e.g. in our
scenarios every 15min). The algorithm would have to be modified accordingly, and
the way it might affect the results needs to be studied more in detail. However,
with this approach (i.e. exploiting filtered data in the entire process, from training
to inference) the results were more interesting, showing that potentially, filtered
data allows maintaining a better accuracy for short- and mid-term forecast.

The clear-sky index K. significantly improves prediction accuracy when pre-
dicting many steps ahead, particularly for NAR, FFNN and LSTM networks. As
already stated, the improvement for ESN is small. However, using K. allowed the
ESN to give better results with a smaller reservoir, which is important in terms of
memory usage.

Finally, we evaluated the effectiveness of using exogenous inputs for short-term
solar radiation forecasting. In detail, we identified a subset of relevant input vari-
ables for predicting GHI by applying different feature selection techniques to a
broader set of variables. The results of feature selection revealed that the most
significant input variables for predicting solar radiation are: i) UV index, ii) cloud
cover, iii) temperature, iv) humidity, v) dew point, vi) wind bearing, vii) sunshine
duration and viii) hour of the day.

To assess the usefulness of the selected features, we evaluated and compared
the prediction performance of five different machine learning models, namely i) a
FNN), ii) an ESN), iii) a 1D-CNN, iv) LSTM and v) a Random Forest. Overall,
the LSTM demonstrated the best prediction performance among the five models,
producing acceptable forecasting errors up to 4 hours ahead. The FNN and the
1D-CNN also demonstrated excellent prediction performance, comparable to those
of the LSTM for prediction horizons shorter than 2 hours. The ESN presented
the highest forecasting errors, revealing poor prediction performance in modelling
multivariate time series. The RF performed slightly better than the ESN, showing
promising results.

Finally, in order to demonstrate the effectiveness of using exogenous inputs for
short-term solar radiation forecasting, we compared the multivariate models with
their univariate counterparts. The results showed that the adoption of exogenous
inputs can significantly improve the forecasting performance for prediction hori-
zons greater than 15 min, while for shorter prediction horizons the performance
improvement due to exogenous inputs can be considered as negligible. Overall,
the results demonstrated the effectiveness of using exogenous inputs for short-term
solar radiation forecasting.
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Chapter 4

Indoor air-temperature
forecasting

Climate change is having devastating effects on our planet. Consequently, the
contrast against energy waste and pollution has become mandatory and widely en-
dorsed. Strictly connected to pollution and C'O, emissions issues, the energy sector
is one of the main actors. Therefore energy management has become mandatory in
every field of our society. Many countries are promoting different incentives to fos-
ter low-carbon and sustainable initiatives, especially in the building sector. Indeed,
the building sector energy management is one of the most critical. Only in Eu-
rope, buildings are responsible for 40% of total energy consumption, affecting more
than a third of the total pollution produced. Therefore, energy control policies of
buildings (e.g. forecast-based policies such as Demand Response and Demand Side
Management) play a decisive role in reducing energy waste.

4.1 Introduction

Nowadays research in the framework of green energy consists in reducing en-
ergy consumption and C'Oy emissions to contrast global warming, as highlighted
during the last international conference on climate changes (COP21) [247]. At a
global level, it has therefore been decided to promote many initiatives in order
to move towards a more sustainable society. This is having a substantial impact
on our cities, especially in the building sector. Indeed, buildings are responsi-
ble for about 40% of the total energy consumption and about 36% of the total
pollution in Europe, as reported by the European Union Directive on the FEn-
ergy Performance of Buildings [79]. Consequently, the scientific community agrees
that to reduce this energy waste, novel tools are needed to model, monitor and
control building energy behaviours. The European Union declared: "Information
and Communication Technologies (ICTs) have an essential role to play in reducing
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the energy intensity and increasing the energy efficiency of the economy, in other
words, in reducing emissions and contributing to sustainable growth" [57]. Contex-
tually, the recent improvements in ICTs offer an archipelago of devices, software
architectures and communication paradigms that can enable the deployment of real
smart-buildings and cities. Devices, such as low-power Wireless Sensor Networks
(WSNs) for environmental monitoring, and novel smart-meters for electric load
profiling and recognition, give the possibility of monitoring and characterisation
of energy consumption behaviour of buildings and dwellings. On the other hand,
recent improvements in Building Information Models (BIMs) [75] makes possible to
physically model the buildings considering their construction materials, sub-systems
and usage behaviour.

Rising ICTs such as IoT technologies, BIM, and Machine Learning are becom-
ing key players to design and develop new control strategies based on systematic
knowledge and prediction of energy behaviour. Hence, all existing buildings should
deploy novel technologies to convert into Smart Buildings [124] that can interoper-
ate in the Smart Cities of the future [43]. Indeed, existing buildings, especially the
public ones, are often equipped with building management systems to allow moni-
toring and control of Heating Ventilation and Air Conditioning (HVAC). However,
a Smart Building has to react in (near-) real-time to guarantee the right level of
comfort to inhabitants and save energy. In this view, existing HVAC can be en-
hanced with pervasive and heterogeneous IoT devices with a minimum construction
impact by exploiting distributed software platforms [198]. This allows exhaustive
fine-grained monitoring of each room in the building and fosters the development
of new control strategies both at the building and at the district level.

4.2 Enabling technologies for Smart Energy Man-
agement

As previously introduced in Section 4.1, the relentless rise of ICTs is paving the
way for new green and sustainable paradigms in Smart Building context. Technolo-
gies such as IoT, BIM and machine learning are key players to design and model
new energy control strategies. According to what is already abundantly detailed in
Section 1.1, this section presents the latest enabling technologies to be implemented
for smart energy management in buildings. Specifically, it provides an overview of
the latest IoT and BIM technologies that can be applied to move forward the Smart
Building and Smart City views.

4.2.1 IoT for Energy Monitoring

Contextually to the development of Smart Cities and Smart Buildings, the
scientific community has addressed many challenges to facilitate the deployment of
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IoT technologies such as Smart Meters and Wireless Sensor Networks (WSN). This
in order to realize seamless, energy-efficient, reliable and low-cost remote monitoring
and control solutions.

Smart meters are internet-connected devices able to provide information for
billing, monitoring and controlling purposes [22]. The information produced by
these devices, in turn, enable the development of supervise systems able to monitor
and prevent contingencies, faults and unconventional behaviour. Generally, the
main functionalities of smart meters can be summarized as following [24]:

data collection /recording;
» two-way communication;
e programming capabilities;
» load control.

Instead, the most common communication technologies are the Radio Frequency
(RF) and the Power Line Communication (PLC) [275].

WSNss are networks of devices (called nodes) working cooperatively to commu-
nicate gathered information from a monitored area [214]. As the name suggests,
this network works through wireless links. For that reason, the gathered data are
sent to a hub that uses these data locally or sends them to other networks (e.g.
Internet through a gateway). In the Smart City domain, WSNs can be divided into
three main subsets [81]:

o Home Area Networks (HANSs);
o Neighborhood Area Networks (NANs);
« Wide Area Networks (WANS).

HANs establish a communication path among smart meters and home appli-
ances through low-cost communication technologies and protocols (e.g. Wi-Fi,
Bluetooth, ZigBee and Spirit). These networks enable end-users and energy man-
ager to collect information on the environment. Differently, NANs are established
between data collectors and smart meters in a neighbourhood area through Wi-Fi
and RF mesh technologies. Indeed, these networks are short-range communication
typologies, and they are used to collect data from smart meters and transmit them
to a data concentrator. Lastly, WANs create a communication path between a
service provider data centre and data concentrators. In general, these networks are
based on LTE, mobile networks, fibre or power line communication networks. The
deployment of WSN technologies offers numerous advantages such as lower costs,
scalability, reliability, accuracy, flexibility in a wide range of applications [107].
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4.2.2 Building Information Models

The increasing energy efficiency of cities and buildings is one of the most chal-
lenging research areas to test the potential of Building Information Modelling (BIM)
methodology.

Generally, BIM is intended as a digital three-dimensional representation of a
building, based on objects with associated information whereby it is possible de-
velop a working method based on cooperation between different professionals in-
volved in the construction process from a shared database. The BIM is a key
element for the building life-cycle:

o design;

e construction;
¢ management;
o deconstruction.

In a Smart Building framework, BIM allows analyzing the existing building
stock to promote better management and retrofitting actions. Indeed, the BIM
model can be used to generate the geometry of the energy model, minimizing mis-
interpretations and improper approximations encountered in practice [80]. This is
the main advantage of using BIM for energy modelling. BIM provides the oppor-
tunity to easily simulate different optimization scenarios, both in the design and
refurbishment phases. This aspect is guaranteed by the possibility to validate the
building energy model based on the real data gathered from monitoring activi-
ties and energy bills. Furthermore, exploiting BIM for energy simulations allows
the interoperability and data exchange among different software (i.e. modelling,
management and simulation software).

4.3 Related Works

In the last few years, due to the increase in greenhouse gas emissions and energy
demand, many resources have been allocated to study and develop efficient solutions
to reduce energy waste [56]. The building sector is one of the main responsible for
global pollution due to its intrinsic construction characteristics [11] and for its
inefficient use [193]. Consequently, both the scientific and political communities
are focused on making the buildings (either already existing or new ones) more
energy-efficient, moving forward to the Smart Building concept [198].

The literature presents many studies providing methodologies to model build-
ings and enable in-depth analysis and simulations [92, 158]. Furthermore, the
interest in this topic is plentifully confirmed by the success obtained by different
commercial software such as EnergyPlus [60] and TRNSYS [243]. These software

100



4.3 — Related Works

provide very robust and accurate results, consequently, they have become milestone
as simulation tools for building- and energy-managers that need to evaluate thermal
energy performance in buildings. However, they are extremely demanding in terms
of computational resources [34], which makes them unfeasible for Model Predictive
Control (MPC) systems. Consequently, to overcome such limitations, researchers
have developed new methodologies to provide a better compromise between compu-
tational costs and thermal estimations accuracy [55]. These start from an accurate
model of the building and then obtain a more compact approximated representa-
tion via i) model order reduction, ii) model aggregation or iii) ad-hoc dynamics
extraction. Therefore, the thermal behaviours of buildings have been modelled as
Resistor-Capacitor (R/C) circuits [66], exploiting an aggregation-based reduction
approach to perform localized attenuation preserving relevant properties. In [216],
the authors have developed a reduction methodology able to extract linear dy-
namics of thermal behaviours in buildings starting from simulation software (like
EnergyPlus). However, these kinds of methodologies require very detailed struc-
tural information as thermal equations that often are not available (particularly
for already existing building). Moreover, the reductions frequently introduce very
significant losses on accuracy. R/C circuits for building modelling have also been
exploited in [161], where authors presented a methodology based on Unscented
Kalman Filter and thermal network representation to estimate thermal dynamics
in buildings. However, the complexity of the model increases with increasing build-
ings complexity (for example, buildings with many rooms), making this approach
suitable for small constructions.

Simultaneously, researchers have investigated another approach based on Very
Large Scale Integration (VLSI) techniques to build a compact thermal model.
Generally, VLSI-based solutions exploit matrix pencil [144] and subspace identi-
fication [76] that do not consider physical restrictions and hence make the compact
model very flexible. These solutions take advantage of a detailed analysis of numer-
ical simulations or real-world sampled data, making the training phase of the whole
model very accurate. However, VLSI-based solutions are generally not suitable to
deal with the non-linearity of a whole building thermal system. As a result, the
scientific community has approached to machine learning techniques, such as Arti-
ficial Neural Networks (ANNs), that efficiently address non-linear problems. The
literature presents several attempts to use ANN-based solution [220, 69, 177]. All
these models, generally, have improved accuracy compared to state-of-the-art phys-
ical models. However, although the improved accuracy compared to the traditional
physical models, all these ANN-based solutions exploit very limited data-sets con-
sisting of real-world measurements (that are typically difficult to obtain and often
incomplete) for both the training and the validation. As result, the ANNs perfor-
mances have a very negative impact in terms of accuracy and prediction horizon,
as well as on their generalization capabilities. To address this problem, the authors
in [274] have used a simplified BIM of a fictitious building to create with EnergyPlus
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a synthetic data-set of indoor air-temperature trends and then used this data-set
to train two Recurrent Neural Networks. However, this solution over-simplifies the
model, which makes it very distant from representing the thermal dynamics of a
real-world building. Most recent works generally have a better capability of dealing
with complex models. For example, in [86], authors proposed an overall framework
for energy consumption prediction in buildings, comparing three different machine
learning algorithms based on deep extreme learning machine, adaptive neuro-fuzzy
inference and artificial neural networks. More recently, in [2] authors presented a
big-data platform for predicting and characterizing energy consumption of build-
ings connected to the district heating system, exploiting multi-regression method
between power consumption and environmental conditions. However, a general
limitation of these models is that they do not provide any prediction of internal
temperature conditions of the building.

In recent years, more and more authors have exploited ANNs to predict indoor
temperature. In [164], the authors have developed an ANN to predict hourly tem-
perature profile and humidity values of a room in humid regions. Nonetheless, the
authors did not provide a thorough numerical evaluation of the performance of their
work in terms of errors, but only provided correlation coefficients w.r.t the ground
truth and a graphical validation of their model. In [20], the authors described an
ANN for indoor temperature forecasting in smart buildings. This solution consists
of a methodology for the selection of the input parameters of the ANN and con-
cluded that the best combination is achieved by using outdoor and building facade
temperature sensors. In [270], the authors have compared the performance of two
different neural network models for predicting indoor temperature profiles, exploit-
ing thermostat data together with outdoor weather information. Finally, in [265],
authors recently proposed a modified version of a long short-term memory model
for the prediction of the indoor temperature in a smart building. The data-set is
composed of 5-minute samples, with a maximum prediction horizon of 30 minutes.
However, the limits of these models are extremely short forecasting horizons.

4.3.1 Contributions

In order to overcome the limits listed above in the literature, this thesis presents
an innovative methodology to forecast indoor air-temperature trends in existing or
newly constructed buildings (of which, therefore, no indoor air-temperature data
are available). This methodology is based on the most modern and state-of-art-
recognized neural networks techniques for time series prediction. The aim is to
provide a robust and generalizable methodology to enable new control policies
for the thermal management of buildings w.r.t. individual rooms and the whole
building. Given this, the methodology first of all addresses the possibility of a
lack of data, which are indispensable for reliable training and validation of neural
networks. Indeed, differently from standard ANN-based literature solutions, our
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methodology exploits a huge synthetic dataset for training the model. This dataset
is obtained by simulating a BIM model of a real-world building with EnergyPlus
exploiting real weather data instead of Typical Meteorological Year (TMY) data.
As the training is entirely based on simulated data, the methodology is ready to be
used immediately after the building is equipped with IoT devices, without needing
any calibrations. Hence, it allows forecasting indoor air-temperature trends even
in case of unavailable historical measurements. All this allows us to state that
this methodology can be successfully used both on existing buildings in which
a historical dataset is available (using only real data) and on newly constructed
buildings in which a historical dataset is not available (using realistic synthetic
data to model the building and real data from IoT sensors for the neural network
inference phase). In parallel to this, we model, optimize and compare different
neural networks in order to find the best architectures for short-, medium- and long-
term indoor air-temperature forecast. Identified the most promising architecture,
we apply transfer learning techniques with the objective of further improve the
prediction accuracy. In this way, buildings that do not have a historical dataset,
gradually collecting data, can migrate from a model simulated on synthetic data to
a model based on real data. This gradual transition allows avoiding new simulations
and computational waste by ensuring more and more accurate prediction. In all
the phases that make up the methodology, the intermediate and final results are
validated using both analytical and qualitative metrics. In particular, concerning
qualitative analysis, the proposed methodology uses the Fanger analysis, a method
for evaluating thermal comfort in a building, based on environmental and occupants
variables.

4.4 Methodology

This Section describes in detail the proposed methodology to forecast indoor
air-temperature values in existing or newly constructed buildings (i.e. buildings
without a consistent set of historical data). The main steps of the solution are in
the following:

1. design and development of realistic artificial indoor-air temperature trends
by exploiting BIM model of our demonstrator;

2. validation of the thermal energy simulation by exploiting real data provided
by IoT devices installed in our demonstrator;

3. design and development of a NAR neural network for the comparison and
validation of models based entirely on synthetic data and hybrid models (i.e.
trained with syntetic data and inferred with real data);
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4. design and development of the most modern and performing neural networks
for time series prediction identify the most promising model to be adopted in
the indoor-air temperature forecast context;

5. application of Transfer Learning methodologies to specialize the hybrid model
on real data.

In Figure 4.1, summarizes the main steps of our proposed solution.
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Figure 4.1: Main steps of the proposed system.

During the training phase, time-series data consisting of realistic artificial indoor-air
temperature trends (see Section 4.5) are given as input to build a prediction model
based on NAR. In the test phase, new unseen data from the realistic artificial test
set are fed into the trained models to obtain the temperature predictions. Finally,
in the exploitation phase, new unseen data sampled by loT devices (deployed in
the real-world building) are given as input to the trained models to evaluate the
final predictions against real indoor air-temperature values. The rationale for split-
ting the experimental assessment into two different phases (test and exploitation)
is the following. In the test phase, the model is tested on a large synthetic data-set
obtained with EnergyPlus simulations, as for the training. Hence, the aim of this
test is assessing the prediction capabilities of the model in a significant number of
examples. In the exploitation phase, the NAR is assessed on a much smaller real-
world data-set, which is less representative in terms of size but on the other hand,
provides better insights into the generalization capabilities of the model in real-life
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conditions. On top of that, it provides an indirect assessment of the reliability of
the synthetic data that were used for training the model. Once we consolidated
the methodology, we start exploring different state-of-art neural networks for the
time-series forecasting. Our goal is to identify and optimize the most promising
neural model, using the hybrid methodology (i.e. training with simulated data
and inference with real data). To this purpose, we designed and optimized three
neural networks: i) an Echo State Neural Network (ESN), Long Short-Term Mem-
ory (LSTM), One-dimensional Convolutional Neural Network (1D-CNN). Once we
have identified the best model, we apply Transfer Learning techniques in order to
specialize the hybrid model entirely on real data.

In the following, we report in details the main phases of the system, describing:
i) the thermal energy simulation process to realize a consistent synthetic data-set,
ii) the validation process of a neural model based entirely on synthetic data and
of a hybrid neural model trained with synthetic data and inferred with real ones,
iii) the design and optimization of different state-of-art neural networks for time
series prediction and iv) the application of Transfer Learning techniques on the
most promising model to further specialize it on the real data provided by our
demonstrator.

4.4.1 Thermal energy simulation

This Section describes the followed methodology to perform energy simulations
starting from BIM and correlating IoT data within an integrated process. The
building energy modelling and monitoring approach is one of the most challeng-
ing topics in Smart City scenario. In this context: i) BIM establishes a proper
knowledge of the buildings; ii) technical investigations aimed at energy efficiency
are required by EU Energy Performance of Buildings Directive [79]; iii) IoT links
different domains and provides real data from the field. These factors constitute
the key issues for this research development.

To achieve it, BIM models have been developed with Autodesk Revit 2016 [21]
starting from on-site surveys. They include i) accurate building envelope charac-
terizations in terms of correct stratigraphy, thermal and physical properties; ii)
facility management information (e.g. room type and occupants); iii) materials
nomenclature standards. Thus, they become a significant repository of graphi-
cal and alphanumeric information useful for energy analysis. To properly set the
model to perform energy simulations, the BIM needs simplifications by removing
excessive details in the architectural model, such as decorations and staircases (see
Figure 4.2). These details are unnecessary and slow down the simulation or can
even include inaccuracies in final results. Figure 4.3 shows the Energy Analysis
Model (EAM) that consists of rooms and analytical surfaces generated from the
BIM model and exported by Revit in gbXML data-format. Figure 4.4 reports the
proposed energy modelling optimization process. The FAM Simulation Engine
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Figure 4.2: BIM model.

block performs building simulations using EnergyPlus [245]. It needs the following
inputs:

o Geometry and materials of building components (e.g. stratigraphy and shades)
and their thermal and physical properties, these come from BIM models;

o Real weather data such as i) air dry-bulb temperature, ii) solar radiation and
iii) average air temperature;

o Data retrieved from Heating Ventilation and Air Conditioning systems such
as 1) nominal power and flow rate of radiators, ii) nominal power and efficiency
of boiler, iii) climate control unit, iv) on/off profile of the heating system;

e Occupancy of rooms, including number of users and time-shifts.

The outputs of the FAM Simulation Engine block are radiant, operating and in-
door temperature. It also provides the energy consumption profiles of the build-
ing. Traditionally energy simulations with EnergyPlus are performed using Typical
meteorological year (TMY). TMY is obtained by averaging hourly meteorological
measurements collected for 10 years. Thus, it does not represent real weather con-
ditions. As a strong point of our simulations, we integrated in our software plat-
form third-party weather data-source from the nearest weather station. Hence, real
weather information (i.e. solar radiation, outdoor air temperature and humidity)
are considered in the simulation process replacing the default TMY.
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Figure 4.3: Energy Analysis Model (EAM).
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Figure 4.4: Proposed energy modeling optimization process.

[oT devices send indoor air temperature and humidity every 15 minutes. Such
data are needed by the FAM Validation block in Figure 4.4 to validate the per-
formed simulations. This validation is done by comparing the results of the EAM
Simulation Engine with the real measured values coming from the deployed IoT de-
vices. Analyzing temperature and consumption trends, factors that may affect the
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energy model can be identified, such as user behaviours, malfunctions and anoma-
lies in the system. For instance, user-awareness applications can help in minimizing
not energy-efficient behaviours. Whilst maintenance activities can be planned to
monitor and solve identified anomalies (e.g. by comparing measured and simu-
lated data, it is possible to discover irregular trends of real indoor temperatures
due to faults in on/off schedules of the heating system or efficiency losses of the
building-system).

In addition, BIM models can be used to evaluate different design and/or refur-
bishment scenarios (see Figure 4.4) (e.g. external/internal coat application, fixtures
replacement and power peaks regulation). Thus, this updated BIM model is a new
input for the energy modelling optimization process. This process is iterative and
can help building- and energy-managers in evaluating the best solution for both
energy performances and Return of Investment.

4.4.2 Hybrid predictive model validation

The process of Thermal energy simulation allows us to realize a consistent syn-
thetic data-set. Consequently, we use this near-realistic data-set to design two
different NAR models in order to validate the exploitation of syntactic data in the
framework of indoor air-temperature forecasting in existing or newly constructed
buildings. In detail, we implement:

« a model completely based on syntetic data (i.e. design, training, validation
and inference phases);

e a hybrid model trained and validated with synthetic data but inferred with
real-world data;

As a result, for these models we compare prediction performance by highlighting
their strengths and weaknesses.

As introduced in Chapter 2, NAR is an ANN that extends a traditional linear
autoregressive model [147] to be completely distribution-free. Thus, NAR is suitable
for non-linear time-series that report, for instance, unexpected spikes and fleeting
transient periods [185]. Consequently, we base the design phase on the assumption
detailed in Section 2.2.1. To design the NAR model, the starting point is the
selection of the lag-space, that in our application is the optimal number of past air-
temperature values to be used as regressors. For this purpose, we applied Lipschitz
methodology [211], that is a well-known approach in the analysis of input-output
models’ orders in non-linear dynamic systems that allows determining the number
of regressors of a system empirically. By applying this method as described in [6],
we found n = 13 as the best candidate. This value is not the final optimum of
our system, but a reference point for a more in-depth empirical analysis. Thus, we
implemented a grid search to find the optimal value, testing the performance of
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different ANNs varying the number of regressors within a 20-dimensional range of
values centred in n = 13. This approach was implemented for each selected room
and the whole building, respectively. In each configuration, we started with fully-
connected NAR ANNs, as shown in Figure 2.6, with the following characteristics:

1. one input layer with a variable number of regressors decided by our g¢rid
search;

2. one hidden layer with 30 neurons;

3. one output layer with one neuron.

This architecture is the result of our preliminary experiments with different net-
work structures, where we found that increasing the number of hidden layers (and
hence the complexity and computational costs of the training) did not provide sig-
nificant benefits in terms of prediction performance. For all the configurations, we
used hyperbolic tangent activation functions for the hidden neurons and a linear
activation function for the output neuron, as shown in Figure 4.5.

Input unit Hidden unit Output unit

Figure 4.5: Nonlinear autoregressive neural network: neuron models of the input,
hidden and output layers.

Then, we chose and implemented the Levenberg-Marquardt back-propagation
procedure (LMBP), which is a learning paradigm widely applied to NAR ANNs
in literature [271]. LMBP reduces the training speed compared to other back-
propagation techniques because it approximates second-order derivatives leveraging
a trust region approach [185] without computing the Hessian matrix. These models
were trained on the training set described in Section 4.5. We found that the best
training performance was obtained with 20, 19, 16 and 20 regressors for respectively
the classroom facing East, the classroom facing West, the corridor and the whole
building (see Section 4.5). The second column of Table 4.1 reports the normalized
sum of squared errors (nSSE) on the validation set obtained after the training phase
for all the different networks.

As it is widely known, ANNs with too many connections have longer training
procedure and may easily lead to over-fitting. To overcome this issue, we pruned
the initial fully-connected structures adopting the Optimal Brain Surgeon (OBS)
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Table 4.1: Validation error (nSSE) before and after OBS pruning.

NAR nSSE nSSE
Network Type before pruning after pruning
Classroom facing East (20 regressors) 9.95E-03 9.51E-03
Classroom facing West (19 regressors) 1.59E-02 1.54E-02
Corridor (16 regressors) 1.87E-02 1.85E-02
Whole building (20 regressors) 1.19E-02 1.17E-02

methodology [105]. The rationale of this operation is to remove redundant connec-
tions between neurons to obtain more efficient and compact models than the initial
ones, not affecting or possibly improving their prediction capability. OBS estimates
the increase in the training error when deleting weights, leveraging information in
the second-order derivatives of the error surface. This procedure works towards the
minimization of the error variation, computing the inverse Hessian matrix recur-
sively from the training data to achieve better approximations of the error function
(more details are provided in [105]). Dong et al. [70] demonstrated that OBS per-
forms better than other pruning techniques by removing more redundant neuron
connections.

After pruning, the four different ANNs were trained again with LMBP. The
new nSSE values provided by this second round of training are reported in the
third column of Table 4.1. The values if this table highlight that OBS pruning was
successful, as it further reduced the validation error of the four NAR models.

4.4.3 State-of-art neural network for time series forecasting
design

Once we consolidated the methodology based on the hybrid model, we designed

three other neural networks that represent the state-of-art time series forecasting:

i) an Echo State Neural Network (ESN), Long Short-Term Memory (LSTM), One-

dimensional Convolutional Neural Network (1D-CNN) (see Chapter 2).
First of all we split our data-set as shown in Table 4.2 In according to Kline [133],

Table 4.2: Data-set splitting.

Neural Networks implementation
Phase Training Validation Inference
Data | 70% Synthetic | 30% Synthetic | 100% Real

we opted for the implementation of multi-outputs models which is the best config-
uration to achieve better accuracy of the prediction, as detailed in 2.4. Thus, to
use the data-set as the input of our network, we have re-framed the data available
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(see Section 4.5) to be compatible with supervised learning algorithms, which have
to be transformed in a pair of input and output sequences. Since we use the multi-
outputs, for each sequence of input, we associated a sequence of outputs using the
sliding window algorithm as shown in Figure 4.6). Once the data are prepared

Sliding window

|||||||||||||||||||||||||||||||||||||||||||||

ty t5 ts |tz tg to tyo

ts tg t; tg tg tyo tqq

Figure 4.6: Re-framing samples methodology.

for training, we start defining all the the network structure and the associated
hyper-parameters.

1D-CNN

We exploit a 1D-CNN architecture based on [167]. Figure 4.7 details the architec-
ture structure.
In detail, the structure is composed as following;:

1. Input layer: it accepts an input of dimension (steps,features), where steps is
the prediction lag, which is the number of previous temperature values that
are used as regressors and features that in this case is one, the temperature.

2. Convolutional layer: it has a filter of dimension 2, than after the convolution
operation we have an output of length equal to input dimension minus 1. The
second dimensionality is equal to the number of filters, that is chosen based
on different trials.

3. Pooling layer: The pooling strategy used is the Max Pooling with pool size
equal to 2, which means that the dimension of the output is halved.
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input: [(7, 50, 17]
output: | [(7, 50, 1)]

conv1d_input: lnputLayer
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input: (2,50, 1)

output: | (2, 49, 128)

convld: ConvID

A

imput: | (%, 49, 128)
output: | (7, 24, 128)

max_pooling 1d: MaxPooling 1D

b
input: | (7, 24, 128)

output: | (7, 3072)
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\

input: | (7. 3072)
dense: Dense
output: | (7, 30)
L
input: | (7, 30)
dense_1: Dense P
output: | (7, 20)

Figure 4.7: 1D-CNN structure.

4. Flatten layer: a flatten layer is used because we have a multidimensional
output due to the multiple filers used. Than this layer is used to "unroll" the
data, in order to be fed to the dense layer.

5. Dense layer: an intermediate dense layer is used to improve the learning
ability of the network. The number of units of this layer is decided in the
tuning phase.

6. Output layer: finally, the output layer with a number of neurons equal to the
number of forecasting horizons.

In order to avoid overfitting, we adopt the Farly stopping technique [73] with a
patience of 8 epochs and a delta parameter equal to 0.003. For the activation,
we opted for ReLLU function for both Convolutional and Dense layers, while linear
function for the Output layer.

Tuning of hyper-parameters In order to find the best set of parameters of
the network, we adopt the trial-and-error strategy tuning the parameters in the
following order: i) prediction lag, ii) number of hidden neurons of the Dense layer,
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iii) batch size, iv) learning rate and finally v) number of filters. All experiments
are evaluated for each room as detailed in Section 4.5.

LSTM

Later, we implement a stateful vanilla LSTM, that is composed by a single layer of
LSTM cells. The structure is represented in Figure 4.8.

. DI
. DI

input: [(64, 5
Istm_input: InputLayer
output: | [(64. 5

input: | (64, 5, 1)
output: | (64, 50)

l

input: | (64, 50)
output: | (64, 20)

Istm: LSTM

dense: Dense

Figure 4.8: LSTM structure.

The network is composed by the following layers:
o Input layer: it accepts a shape of (batch size, lags, number of features).

o LSTM cell: it is composed by LSTM cells, whose number is decided in the
tuning phase.

o Qutput layer: it let the dimensionality of the LSTM layer to match the length
of the forecasting horizons. Its activation function is the linear function.

Tuning of hyper-parameters In order to find the best set of parameters of the
network, we staring set: i) the batch size equal to 256, ii) training epochs equal to
1005 ii) the number of LSTM cells equal to 50. We adopt this starting configuration
for each room (see Section 4.5), then we exploit a trial-and-error approach by
evaluating different inputs, finally choosing the most performing. Then, we tune
the number of epochs by analyzing the behaviour of loss during the training phase
and choosing. Finally, the batch size and the learning rate are optimized together,
due to their relationship, by creating a comparison grid with the couples of values
(learning rate, batch size).
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ESN

Finally, we design and implement a vanilla Echo State neural network composed
by an input layer, a hidden layer (the reservoir) and an output layer according to
Section 2.2.2.

Tuning of hyper-parameters As with previous models, we start optimizing
some hyper-parameters to find the best configuration. As far as the ESN model
is concerned, the key parameters are: i) the reservoir size, ii) the spectral radius,
iii) the state noise and iv) the sparsity of the reservoir connectivity. In detail, the
spectral radius is the largest eighenvector! of the weights matrix of the reservoir.
The state noise is a kind of noise, added to the reservoir states, able to stabilize
the solution. The connectivity of the reservoir determines the number of internal
connection between its nodes, it is the proportion of recurrent weights set to zero.
The strategy we adopted was first to optimize the number of regressors, than con-
junctively optimize the spectral radius and the noise, and finally, the sparsity with
the reservoir size.

Lastly, the output activation function adopted is the identity, while the hidden-
to-hidden layer has a Tanh activation.

4.4.4 Exogenous inputs investigation

All the models previously described in the Sub-section 4.4.3 are implemented
considering only the indoor-air temperature values as input.

Consequently, we decided to investigate how the models would react by inserting
some exogenous inputs: in detail, labels showing i) the hour of the day and ii) the
day of the week, as depicted in Table 4.3 and Table 4.4 respectively.

Table 4.3: Time slots identification.

Hour | 4:30-6:00 | 6 - 19:30 | 19:30 - 22 | 22 - 4:30
Label 0 1 2 3

Table 4.4: Day of the week identification.

Day | Mon | Tue | Wed | Fri | Thu | Sat | Sun
Label | 0 1 2 3 4 5 6

'In algebra, an eigenvector is a nonzero vector that changes at most by a scalar factor when
that linear transformation is applied to it.
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We assume that by looking at the temperature behaviour (Figure 4.9), the impact
of the heating system during working hours is easily identifiable in cyclic patterns.
Figure 4.9a clearly shows the switch-on phase of the heating system (label 0), the
period of temperature maintenance during the hours of use of the spaces by the
users (label 1), the shutdown phase (label 3) and lastly the phase of non-use of
the heating system. Figure 4.9 shows, instead, that these behaviours are repeated
throughout the working days (except on Saturdays and Sundays when the building
is not in use).

The main goal is to try helping the neural network by feeding it with additional
information. In detail, labels that identify recurring patterns. For this aim, we
decide to exploit the 1D-CNN and LSTM architectures, with the same set of pa-
rameters identified for the single-input scenario. We decided to use only these two
models since we are interested in discovering the impact of exogenous inputs purely
and have a fair comparison of the results.
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Figure 4.9: Second feature extraction
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Table 4.5: Dataset exploitation in the different phases.

Neural Network implementation | Transfer Learning
Phase Training Validation Tuning | Inference
Data | 70% Synthetic | 30% Synthetic | 80% Real | 20% Real

4.4.5 Transfer Learning exploiting real data

Finally, after finding the best performing model, we introduce some Transfer
Leaning approach in order to specialize our network on real-world data provided
by our demonstrator. Consequently, we re-train the most promising model following
three different paths:

« re-training all the layers (see Figure 4.12);
« re-training only the input layer (see Figure 4.10);
« re-training only the output layer (see Figure 4.11).

This procedure shall be carried out in accordance with the procedure described in
Section 4.4.3.

Then, the real data-set, previously adopted entirely for the inference phase of
the hybrid models, now is split into 2 parts: i) one used to fine-tune the network
and ii) the other one to test it, as shown in Table 4.5).
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Figure 4.10: Freezing Layers technique - First layer re-trained.
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4.5 Case Study

All the steps of this methodology are based on a real-world demonstrator. The
building under analysis is a secondary school located in Turin, north-west of Italy. It
is composed of about 14’500 m? and two floors. The interest in this building is given
by the fact that it is connected to the district heating distribution network and is not
equipped with a conditioning system. Windows on brick walls facades are double
glazed. Both east- and west-oriented facades receive substantial contributions of
thermal energy due to solar radiation. Besides, this building presents the structural
information stored at the real estate registry office but does not have a system for
the collection of indoor air-temperature values, this results in a lack of a historical
data-set.

Following our methodology, to obtain a suitable data-set for the study, we first
analyzed the structural information of the building (i.e. geometry, materials, ther-
mal and physical properties of building components) and then we built its BIM
model, that is reported in Figure 4.13. To provide a thorough analysis, we decided

¥ Indoor sensor
Outdoor sensor

, Classroom West

-

Corridor @

[:l Qutdoor sensor

Classroom East x

Figure 4.13: Case-study building - BIM model (reference rooms are highlighted in
light-blue).

to focus our study on the building as a whole, as well as three representative rooms,
chosen based on symmetrical shapes and regular internal distribution:
 a classroom facing west;

 a classroom facing east;

e the corridor at the main entrance.
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Both classrooms are comparable in terms of size, internal characteristics, use and
occupants and differ only in the orientation. Hence, they reasonably represent two
opposed thermal conditions of the same type of classroom. A constant occupancy
does not characterize the corridor during working hours. Nonetheless, it is consid-
ered significant for this study because it is a vast environment located in a central
position of the building, with many openings and glazed windows.

In order to monitor and collect the air-temperature trends, in the real-world
building, we deployed 13 IoT devices based on ST-Microelectronics STM32 Nucleo-
64 boards [238] equipped with a low power transceiver module SPIRIT1 [237] with
a sampling rate of 15 minutes. In Figure 4.13 shows the arrangement of the internal
sensors (in red) and the external sensor (in green). This configuration allowed us
to collect a data-set of 7777 samples in total. However, this is not large enough to
exploit a prediction model efficiently based on neural networks. Thus, we generated
an enlarged data-set by simulating the thermal energy behaviour of the building
with EnergyPlus, exploiting the BIM model together with real weather data of
about six years (TMY data), from 2010 to 2015. Indeed, by exploiting real weather
information, the methodology can provide indoor air-temperature trends (in the
form of time-series) with a lower error rate. In this way, we obtain a realistic
synthetic data-set with values sampled every 15 minutes. In detail, we considered
all the values between November and March that is the operational period of the
building heating systems in the north of Italy. Then, the synthetic data was split
into two independent subsets for training and testing purposes, containing about
70% and 30% of the initial samples, respectively. The training set (71901 samples
in total) was used to train the prediction models and optimize their parameters,
while the test set (14303 samples) was used to assess the prediction performance.
The data-set with the real measurements (7777 samples at 15 minutes sampling
rate) was then employed, for inference purposes and fine-tuning processes of the
most promising neural architecture found.

4.6 Results

This Section shows all the characterizing results obtained for all the phases
that compose the methodology presented. At first, how we obtain the realistic
synthetic data-set is described. Subsequently, the Section highlights the advantages
of using a consistent synthetic data-set in the training phase and real data from
[oT sensors, installed in the building, for the inference phase. For this purpose we
model and optimize a Non-linear Regressive Neural Network. Once validated the
advantages of using a synthetic data-set through the results, the Section describes
the design and optimization processes performed on state-of-art neural networks
for time-series prediction exploited. At the same time, we try to introduce time
labels (i.e. time of day and day of the week) within the data-set, to improve the
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time prediction performance of the models implemented. Finally, we identify the
most promising neural model and apply different fine-tuning methodologies. In this
way, we demonstrate how to gradually change the model trained with the realistic
synthetic data-set into a model based entirely on a real data-set. All without
negatively affecting prediction performances. All this managing to improve the
prediction time horizons present in the Literature.

4.6.1 Design of a indoor air-temperature consistent syn-
thetic data-set

As case study, the methodology described in Section 4.4.1 has been applied on
a primary school. It is a public building of about 14,500 m? spread on two floors
(see Figure 4.2 and Figure 4.3) with brick walls facades, double glazed windows and
pitched roofs. The building is connected to the district heating distribution system.
During working-days, the heating system cycle is from 4:00 a.m. to 7:30 p.m.. To
ensure a comfortable environment for users the ignition of Monday is anticipated
on previous Sunday at 11:00 p.m.

The building has been equipped with 13 IoT devices, 12 indoor and 1 outdoor
(see Figure 4.13), to send air temperature and relative humidity. Sensors have
been installed in the most meaningful building zones according to its intended use,
construction type and floors number (i.e. main entrance, classrooms, gym and
student canteen). The Wireless Sensor Network has been evaluated to optimize
the employed IoT devices with respect to the good result of the energy simulation.
In this study, indoor devices have been placed in comparable rooms in terms of
use and dimension characterized by a different orientation. Instead the outdoor
device has been placed at the worst solar exposure to detect the minor outdoor
temperature. The symmetrical shapes and the regular internal distribution of the
building have allowed us to select some reference rooms to collect enough data for
energy analysis.

The energy simulation has been performed for the whole heating season. In
the following, we present the results from January 9" to January 15® 2017. The
validation model is achieved by comparing the Temperature trends, as described
in Section 4.4.1. For this purpose, we have analysed three selected rooms in the
building (see Figure 4.13). These rooms have been chosen in relation to building
shape and their occupancy during the week, as described in the following:

e« Room 1 is a classroom in the east part of the building occupied by 21 people.
It is located in correspondence of thick trees that act as solar shield for the
building.

e« Room 2 is a classroom in the west part of the building occupied by 22 people.
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o Corridor is at the entrance of the school in a central position of the building.
It is characterized by a very large environment with many openings and glazed
windows. It does not have a constant occupancy during the day.

Both east- and west-oriented facades receive substantial contributions of thermal
energy due to solar radiation. This is an advantage during winter season. Vice-
versa, this translates into increased heat load during summer season, which would
necessitate air conditioning. As the school is not equipped with such conditioning
system, our simulations cover only the winter period.
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Figure 4.14: Simulated and measured indoor air temperature trends between 9*-
15" of January 2017.

Figure 4.14 reports three air temperature trends for the observation period:
i) measured data coming from IoT devices (green line), i) simulated with TMY
Weather condition (red doted line) and i) simulated with real-weather conditions
(blue dashed line). The daily trends identifies the different phases of the heating
cycle: i) ignition of the heating system (04:00 a.m.); i7) school entering (8:30 a.m.);
it1) lunch break with opening windows for air circulation (12:30 a.m.); 7v) school ex-
iting (4:30 p.m.); v) shut-down of the heating system (07:30 p.m.). The air temper-
ature chart highlights that measured data and simulation results with real-weather
conditions have similar trends. On the contrary, the trend of TMY simulation re-
sults has the worst correlation with real samples. Especially during night hours, the
temperature trend decreases to around 10 °C' with TMY simulations, while both
measured and real-weather trends reaches about 16 °C'. This because TMY refers
to meteorological conditions, in terms of temperature and solar radiation, signifi-
cantly different to daily weather samples. Both simulations with real-weather data
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and TMY show a quicker slope of increase and decrease in the temperature trend
when the heating system is switched on and off. This quicker response is related
with the modelled heating capacity of the building. Indeed in the development of
the BIM model the stratigraphy of the walls has been hypothesized following the
suggestions in [207]. Those hypothesis were necessary due to a lack of information
on real wall stratigraphy data in the building documentation.

To evaluate the performance of our simulations three indicators of dispersion
have been used:

o Mean Bias Difference (M BD) measures the average squares of errors between
simulated and measured values;

e Root Mean Square Difference (RMSD) represents the standard deviation of
differences between simulated and measured values;

o Mean Absolute Difference (M AD) is defined as the average of the absolute
difference of two variables X and Y.

Table 4.6 details the error rates given comparing measured data with simulations
performed with both real-weather and TMY conditions. As shown in Table 4.6,

Table 4.6: Dispersion indicators of simulated indoor temperature against real mea-
sured values

) Real-weather Sim | TMY Sim vs
Rooms | Indicator [7)] vs Measured Measured
MAD 8.02 16.82
Room 1 MBD 2.18 -16.64
RMSD 9.78 19.01
MAD 9.07 18.55
Room 2 MBD 0.10 -18.34
RMSD 10.83 20.74
MAD 9.35 16.94
Corridor MBD -0.17 -16.06
RMSD 11.52 20.85

real-weather information improves the simulation results drastically with respect
to TMY. Indeed, MAD, MBD and RMSD have lower values with real-weather
conditions. In particular in Room 1, we obtain a M AD of 8.02% against 16.82%;
a MBD of 2.18% against —16.64%; a RMSD of 9.78% against 19.01%. Similar
results have been obtained for the other two rooms.
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4.6.2 Synthetic data-set exploitation

The purpose of our methodology is to make predictions of indoor air temperature
values in buildings in order to enable new energy policies. To achieve this target,
the predictions need to be as accurate as possible while providing the longest time
horizon possible. To assess the ability of our system to achieve this goal, we split
the experimental assessment into two different phases, as detailed in Figure 4.1:
i) test, where the model was tested on a large set of simulated data in order to
obtain a reliable estimate of the prediction accuracy and prediction window; ii) ez-
ploitation, where the same model trained on synthetic data was tested on a smaller
data-set of real measured data. This second assessment provides information about
the robustness of the model in real-life conditions, as well as on the reliability of
the simulations that were used for the training. For the two phases, we used the
data-sets described in Section 4.5 that are both completely independent from the
one used to train and optimize the model.

In both cases, the goodness of the predictions was first established by measuring
the similarity between the predicted and the observed values, used as the ground
truth. For this purpose, we adopted metrics that are widely used in statistical
analysis and more specifically in time-series analysis literature [99]:

o Mean Absolute Difference (MAD), defined as the average absolute difference
between predicted and observed values;

e Root Mean Square Difference (RMSD), defined as the standard deviation of
differences between predicted and observed values.

Test on Simulated Data

In our first set of experiments, the model trained on simulated data was tested on
an independent data-set, even in this case obtained by simulations. As already dis-
cussed in Section 4.5, our overall simulations included 6-year indoor air-temperature
values at 15 min intervals, obtained with the strategy presented in [34]. As the test-
case building contains a total number of 115 rooms, including uninhabited areas
such as basements and attic, we decided to focus our study on three most represen-
tative rooms (facing East, facing West and Corridor) as well as on the building as a
whole, obtained as the average of all the 115 time-series. This implies that the four
NAR models described in Section 4.4.2 were trained on a training set containing the
temperature time-series corresponding to the four different environments and then
tested on the corresponding test sets. We made experiments at different prediction
windows, up to a maximum of 270 min.

In Figure 4.15 we report the values of MAD and RMSD obtained at different
prediction windows (see first column of the figure), separately for the three rooms
of interest and for the whole building. As the building of our case-study is a public
school, we focused our analysis on the only working hours.
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By analyzing the values reported in the figure, we can make the following con-
siderations.

o As expected, the prediction performance worsens as the prediction horizon
increases with more or less the same trend for the four different scenarios.

e The prediction accuracy is comparable for the three individual rooms with
MAD and RMSD values differing by few fractions of degree at best, which is
a variation that would be hardly perceived by the human occupants. This is
quite remarkable, if we consider that the three rooms are very different from
each other in terms of thermal conditions.

e When considering the whole building, the prediction accuracy is better than
the one achieved on the three individual rooms. This can be easily explained
if we consider that the temperature values of the building were obtained by
averaging the temperatures of all the 115 rooms. The averaging smoothes off
temperature spikes that might be present in the individual rooms, especially
if these rooms are at the extremes of the temperature distributions of the
whole building, like the three ones that were analyzed in our study.
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Ifa: 2::;12'; ng:ai:l:(\)l\(;:;t Corridor Whole Building
Time MAD RMSD MAD RMSD MAD RMSD MAD RMSD
[min] [°cl [°c [cl [l [*cl [°cl [*cl [c
15 0,06 0,39 0,07 0,43 0,07 0,39 0,06 0,43
30 0,13 0,45 0,15 0,50 0,14 0,49 0,12 0,48
45 0,21 0,52 0,24 0,59 0,22 0,60 0,17 0,53
60 0,30 0,60 0,33 0,67 0,30 0,71 0,23 0,59
75 0,39 0,70 0,41 0,76 0,37 0,82 0,29 0,65
90 0,48 0,80 0,49 0,84 0,45 0,97 0,35 0,72
105 0,58 0,91 0,56 0,92 0,52 1,08 0,40 0,79
120 0,67 1,04 0,63 1,00 0,58 1,18 0,45 0,85
135 0,77 1,17 0,69 1,07 0,65 1,31 0,50 0,91
150 0,87 1,31 0,75 1,13 0,72 1,44 0,55 0,99
165 0,96 1,43 0,80 1,19 0,77 1,46 0,60 1,03
180 1,04 1,55 0,85 1,25 0,85 1,57 0,65 1,11
195 1,13 1,66 0,90 1,31 0,93 1,78 0,71 1,19
210 1,20 1,77 0,94 1,37 1,02 1,89 0,77 1,26
225 1,27 1,86 0,99 1,41 1,11 2,03 0,83 1,37
240 1,34 1,94 1,03 1,46 1,20 2,24 0,89 1,48
255 1,40 2,03 1,06 1,51 1,28 2,31 0,95 1,55
270 1,47 2,13 1,11 1,59 1,38 2,51 1,01 1,65

Figure 4.15: Prediction performance on the simulated data-set. Blue and green lines
correspond to the maximum prediction horizons that guarantee acceptable thermal
comfort, respectively for the individual rooms and the whole building models.

According to most standards and literature studies, to guarantee no impact on
the thermal comfort perceived by the occupants, the operative temperatures should
never fluctuate more than 1.1 °C (2.0 °F) within 15 min, nor change more than
2.2 °C (4.0 °F) within 1 h [83, 17]. Upon these considerations, in our study we
established a value of MAD of about 1 °C as the maximum acceptable threshold
for our temperature predictions. Based on this conservative threshold, we assessed
the maximum prediction horizons that can be guaranteed by our models. As it
can be seen in Figure 4.15, this prediction horizon is 180 min when considering the
individual rooms (see blue-coloured line) and 270 min for the whole building (see
green-coloured line), which is quite a remarkable time-window. Compared to our
previous work [9], we were able to improve MAD and RMSD performance index on
average by 21% and 13%, respectively.

125



4 — Indoor air-temperature forecasting

Exploitation on Real Data

In our second set of experiments, the models trained on the simulated data were
exploited on a small data-set of real temperature measurements that was described
in Section 4.5. This data-set was sampled by temperature sensors operating in a
range between —40 °C and +120 °C with a temperature sensitivity and accuracy
of 0.016 °C and 40.5 °C respectively. The sampling frequency is 15 min and there
are no missing values. Even though this second data-set is very limited in terms of
number of data samples, and hence less significant for the performance evaluation,
it can still provide very meaningful insights into the robustness of the predictions in
real-life conditions, as well as into the reliability of the simulations that were used
to generate the training data. The overall results obtained on the real data-set are
shown in Figure 4.16 with the same content and format of the ones obtained on
the simulated data.

The prediction performance obtained on the real data-set is lower than the one
obtained on the simulated data-set. This is reasonably due to some intrinsic differ-
ences between the real measurements data and the simulated ones. For example,
due to some unpredictable actions of the human occupants (e.g., opening/closing
windows), which might considerably change some temperature values.

If we establish again a value of about 1 °C as the maximum acceptable thresh-
old on MAD, we obtain that the maximum prediction horizons of our models on
the real data are 105 and 180 min, respectively for the individual rooms (blue line
in Figure 4.16) and the whole building (green line in Figure 4.16). While these
horizons are lower than the ones estimated on the simulated data, they are still re-
markably long, which confirms the wide usability of the model in Demand Response
applications [226, 61, 272].

All the other considerations made on the simulated data-set are still valid.
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:; :?:;12'; F(a:i:ai;:?l\(l):;t Corridor Whole Building

Time MAD RMSD MAD RMSD MAD RMSD MAD RMSD
[min] [°cl [°c [l [°cl [*cl ["cl [*cl [°c
15 0,15 0,23 0,13 0,30 0,11 0,16 0,08 0,12
30 0,29 0,43 0,26 0,51 0,21 0,32 0,17 0,23
45 0,42 0,61 0,39 0,71 0,34 0,49 0,25 0,33
60 0,54 0,75 0,51 0,90 0,49 0,66 0,35 0,46
75 0,64 0,89 0,62 1,06 0,69 1,26 0,45 0,58
90 0,75 1,03 0,73 1,16 0,86 1,34 0,54 0,70
105 0,86 1,17 0,84 1,30 1,01 1,50 0,63 0,82
120 0,98 1,31 0,95 1,50 1,17 1,80 0,73 0,95
135 1,10 1,45 1,05 1,73 1,34 2,18 0,82 1,08
150 1,20 1,58 1,11 1,64 1,48 2,46 0,90 1,19
165 1,30 1,68 1,20 1,92 1,59 2,82 0,95 1,25
180 1,38 1,78 1,26 1,87 1,79 3,52 1,03 1,35
195 1,45 1,86 1,35 2,06 1,91 3,66 1,13 1,46
210 1,51 1,94 1,41 2,16 2,02 3,68 1,21 1,57
225 1,58 2,03 1,48 2,20 2,26 4,44 1,28 1,67
240 1,65 2,11 1,56 2,43 2,40 4,28 1,33 1,75
255 1,70 2,17 1,59 2,36 2,54 4,51 1,39 1,83
270 1,76 2,25 1,73 2,81 2,80 4,86 1,46 1,93

Figure 4.16: Prediction performance on the real-measurements data-set. Blue and
green lines correspond to the maximum prediction horizons that guarantee accept-
able thermal comfort, respectively for the individual rooms and the whole build-
ing models.

Besides the traditional assessment based on prediction performance, the good-
ness of a temperature prediction model can be evaluated indirectly by estimating
the impact that a temperature change w.r.t. the observed values would eventually
have on the well-being of the occupants. To do so, in our work we exploited the
method described in [83], which is implemented in most international standards for
the design, operation, and commissioning of occupied spaces [121, 17|, on our real
measurements data-set.

This method leverages upon the quantification of the following two metrics:

o Predicted Mean Vote (PMV), a —3 to +3 index estimating the state of well-
being of a group of individuals, where —3 means feeling too cold, +3 means
feeling too hot and 0 represents a perfect thermal well-being.
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o Percentage of Person Dissatisfied (PPD), a 0 to 100 value estimating a per-
centage of people dissatisfied by the thermal conditions of the environment.

More specifically, in our analysis we exploited the well-known sensation scale
defined in [83], which puts in relation the values of PMV and PPD and defines
the thermal comfort area as the range of values for which —0.5 < PMV < +0.5.
As reported by [83], this range is associated to the maximum probability of having
at least 90% of the population of occupants completely satisfied by the thermal
conditions of the environment.

More specifically, we applied the following procedure:

1. We computed PMV /PMD indices for all the target environments of our real-
world demonstrator. Again, we focused only on the working hours, which are
the ones that are significant for the temperature predictions.

2. For each prediction horizon, we computed the percentage of predicted values
that are within the +0.5 PMV thermal comfort area.

The obtained results are reported in Figure 4.17, separately for the three indi-
vidual rooms and the whole building models. The first row of the table in figure (at
time 0, red coloured) shows the thermal comfort values obtained on the observed
data, which can be used as a reference. The following rows of the table in figure
report the thermal comfort values obtained on the predicted data at increasing pre-
diction horizons. The rationale of the experiment is: the closer the thermal comfort
values to the corresponding reference values at time 0, the better the prediction.
The blue and green areas in the figure correspond to the prediction windows that
were identified as reliable in our previous prediction performance analysis on the
same data (respectively up to 105 min for the individual rooms and 180 min for
the whole building).
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Values within the £0.5 thermal comfort area [%]

Time Classroom Classroom Corridor Whole
[min] Facing East Facing West Building
0 77,5 90,5 91,3 90,7
15 76,9 90,5 91,5 95,8
30 75,8 89,1 92,1 94,7
45 74,0 88,7 91,3 93,9
60 74,0 88,9 90,9 93,3
75 72,8 88,1 89,6 92,7
90 72,9 87,4 87,8 92,5
105 73,1 86,0 85,6 91,5
120 72,0 84,2 83,3 90,5
135 71,4 82,5 81,8 90,7
150 69,8 80,7 80,6 89,9
165 67,9 80,2 80,1 89,1
180 66,1 79,2 79,1 87,7
195 64,2 78,2 77,2 86,7
210 61,9 76,9 74,0 83,6
225 59,9 75,3 71,2 81,4
240 58,4 74,8 67,3 77,8
255 56,4 74,0 64,8 74,5
270 55,2 73,1 62,1 71,7

Figure 4.17: PMV/PPD evaluation on real data: percentage of predicted values
within the £0.5 thermal comfort area. The first row (in red) represents reference
percentages, computed on the observed temperature values. The following rows
report percentages computed on the predicted values, at increasing prediction hori-

zZons.

If we look at the blue and green areas, we can observe that the values are
generally high, with a difference with respect to the reference values that is always
below 6% for the individual rooms and below 3% for the whole building. As for
the prediction performance metrics, the percentage of predicted values within the
thermal comfort zone tends to decrease with the prediction horizon, even though

with some minor oscillations. Figure 4.18 clearly shows this trend.
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Figure 4.18: PMV/PPD evaluation graph on real data.

Nonetheless, the values do not have a sudden drop even outside the nominal
prediction windows of 105 and 180 min, which confirms that our thresholds were
conservative enough. Again, the performance of the models in different types of
environments are comparable.

4.6.3 Neural Networks implementation and optimization

The results presented in Section 4.6.2 allow us to state that the exploitation
of a hybrid model in the context of the prediction of indoor air-temperatures in
buildings is valid both quantitatively and qualitatively. Consequently, we start
designing and implementing the most promising state-of-art neural network for
time-series prediction to find the best model for this framework.

1D-CNN

Inputs We start evaluating the 1D-CNN with different time-steps values (i.e.
16,32,64,96 and 128). Then we investigate others hyper-parameters: i) the batch
size: 128, ii) the filters: 64, iii) the forecasting horizon: 7,5 hours and iv) the
hidden neurons: 100. Figure 4.19 shows the results obtained results. Clearly as
much input we fed, the most accurate is the prediction, thus we decide to test
until 120 inputs, that are 30 hours before. We believe that this value represents
the maximum limit applicable because, generally, exploiting bigger value would
add complexity, increasing both the training time and the risk of overfitting. The
number of regressors chosen is for all the characterizing rooms 96, except for Room
1D that is 64. Note that even though 120 inputs guarantee a smaller error, the
negligible improvement it adds does not worth the increased training time.
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Figure 4.19: 1D CNN - MAE variation against regressors number.

Neurons After having identified the number of regressors, we evaluated the effect
of changing the number of hidden neurons in the first Dense layer. Therefore, all
the other parameters are unchanged. Figure 4.20 shows the results. The red circles
highlight the best number of neurons to be adopted. We can see that increasing the
number of neurons does not produce a considerable reduction of the error, whose
value is fluctuating within the very small range of 0.03 °C', hence we chose a number
of neuron that is a trade-off between training time and accuracy.

Batch and learning rate Then we start optimizing the batch and the learning
rate, doing it jointly, due to their relationship. Indeed, the former affects the
number of iteration while the latter the "speed" of convergence. Therefore, we
expect that a smaller batch size with a lower learning rate can achieve comparable
results with large batch and learning rate. Figure 4.21 depicts the obtained results.
Consequently, we choose the parameters that allow us to achieve better accuracy,
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Figure 4.20: 1D-CNN - MAE variation against number of neurons.

but as we can see the values are all comparable, which could be a reasonable choice
also to choose the more straightforward (and faster trainable) model, which is the
one with the bigger batch size and learning rate).

Filter optimization Finally, the number of filters used in the convolution has
been optimized. With all the parameters chosen, as explained in the previous para-
graphs, we evaluate the network with a different number of filters. The results
obtained are shown in Figure 4.22. As in the neurons identification case, we select
several filers that produce an excellent performance without increasing the complex-
ity of the network. In Room 1D and Whole building, we notice that the increased
number of filters degraded the performance, maybe a principle of overfitting occurs.

Summarizing, in Table 4.7 reports the best configuration of hyper-parameters
for all the characterizing rooms and the whole building.
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Figure 4.21: 1D-CNN - MAE variation against batch and learning rate.
Table 4.7: 1D-CNN hyper-parameters configurations.
Zone Regressors | Neurons | Batch | Learning rate | Filters
Corridor 96 75 256 0.001 16
Whole Building 96 50 64 0.001 64
Room 2A 96 75 32 0.001 16
Room 1D 64 100 32 0.001 64
LSTM

In according to the considerations of the previously discussed 1D-CNN case, we
start optimizing the i) inputs, ii) batches and iii) learning rate for the LSTM.
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Figure 4.22: 1D-CNN - MAE variation against filters number.

Inputs The first parameter we optimized is the number of regressors. In this
case, the number of inputs can be smaller than in the 1D-CNN, thanks to the cell
mechanism that allows to "memorize" the state of the previous batches. Therefore,
we evaluated the network for 1, 3,5, 7, 9 and 11 timesteps. The other parameters
used are characterized as following: i) batch size: 256, ii) forecasting horizon:
7,5 hours, iii) training epochs: 100; iv) number of LSTM cells: 50. With this
configuration for each room and the whole building, we tried different inputs and
chose the most performing in terms of prediction accuracy. Figure 4.23 shows the
experimental results.

Epochs In order to identify when stopping the training phase, to avoid the risk
of overfitting, we investigate the loss values at each epoch. This allows us to
understand when learning capacity becomes negligible, and it is reasonable to stop
it. The results are shown in Figure 4.24, where the yellow line is the epoch we chose
as the limit. This experiment was carried out using a batch size of 256, which is the
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Figure 4.23: LSTM - MAE variation against regressors number.

maximum we are going to test in the next step, so the stopping point is conservative
since with a smaller batch size there will be more iterations until that point.

Batch and learning rate Progressively, we started optimizing the batch size
and the learning rate, testing the values 32, 64, 128 and 256 for the batch size,
while 0.01, 0.001, 0.0001 for the learning rate respectively. The results are reported
in Figure 4.25, with a red circle that highlight the best parameters value found.
We can notice a high variability in the accuracy, with the best values reached with
small learning rates combined with small batch sizes.

Neurons optimization Lastly, we evaluate the effect of changing the number
of LSTM cell units. In according to the previous characterization settings, we try
changing number of units as following: 50, 100, 150, 200, 250, 300. Figure 4.26
shows all the results, which highlighted the value correspondent to the number of
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Figure 4.24: LSTM - Epochs loss evaluation.

neurons chosen. We see that increasing the number of LSTM units after a certain
value, let the error increase, probably due to overfitting problem.

Table 4.8 show the best configuration of hyper-parameters for all the character-
izing rooms and the whole building.

Table 4.8: LSTM hyper-parameters configurations.

Zone Regressors | Epochs | Batch | Learning rate | Units
Corridor 3 50 64 0.001 100
Whole Building 3 30 64 0.001 100
Room 2A 5 40 128 0.0001 150
Room 1D 7 40 64 0.0001 150
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Figure 4.25: LSTM - MAE variation against batch and learning rate.
ESN

Finally, we start implementing and optimizing the last model: the ESN.

Input Optimization As in the previous cases, we start optimizing the number
of regressors. Thus, we evaluated the network with 16, 32, 64, 96 and 128 timesteps.
The other hyper-parameter are initialized as following: i) reservoir nodes: 200, ii)
spectral radius: 4, iii) noise: 0.01 and iv) sparsity: 0.1. Figure 4.27 shows the re-
sults. For all the implemented networks, we adopt 96 regressors, which corresponds
to a smaller error.

Noise and Spectral radius As the second step, we tried different state noises
and spectral radius values. The value tested are respectively: i) the noises: 0.005,
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Figure 4.26: LSTM - MAE variation against cells number.

0.01, 0.05, 0.1, 0.5, ii) the spectral radius: 0.001, 0.1, 1, 4, 10. Usually, the spectral
radius is set around 1, but for long-term prediction, a higher value is desirable [25].
Results are shown in Figure 4.28. In this case, the choice of parameters is a math-
ematics trick. Indeed, in Figure 4.28, we can see that noise contribution is almost
negligible, and the difference, even though really small, in the accuracy is princi-
pally due to the variation of the spectral radius.

Reservoirs and sparsity Finally, we investigate the values of the size of the
reservoir and the sparsity, respectively. We expect that increasing the reservoir size
the accuracy improves. On the other hand, increasing the sparsity, the percentage
of connections set to zero should degrade the performance. Figure 4.29 highlights
these trends. We can see that the error increases according to the reservoir size,
instead, the sparsity does not affect the performance significantly.

Table 4.9 summarizes the best configuration of hyper-parameters for all the
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Figure 4.27: ESN - MAE variation against regressors number.

characterizing rooms and the whole building.

Table 4.9: ESN hyper-parameters configurations.

Zone Regressors | Noise | Radius | Hidden nodes | Sparsity
Corridor 96 0.05 4 200 0.2
Whole Building 96 0.5 10 400 0.1
Room 2A 96 0.05 4 200 0.05
Room 1D 96 0.1 4 100 0.05

4.6.4 Univariate vs Multivariate

In this section, we discuss and compare the prediction results of all the imple-
mented neural networks. Once the sets of the parameter are chosen, we train the

139



4 — Indoor air-temperature forecasting

-111

- 076 - 11085 1.1064 1.1063 1.1059 1abibales

0.01
0.01

-110
-0.75

- 11069 1.1049 11022 1.1025 1.1107

0.1

= o
3 w3 1.09
he] 0.74
s ®
= 3 3 3 = 1.08
— 0o 0.7314 0.7314 0.7331 0.7353 —_ o
M 5 © 5
- —
— 0.73 =1
o 2 107
[} o
n o 0.7258 T

= 0.72 bl

1.06
P 07214 07215 07223 07224 07040 071 P 10597 10598 10591  1.0581 3 1.05
] g
0.005 0.01 0.05 0.1 0.5 0.05
noise noise
(a) Whole Building (b) Room 2A

-132

- 13116 13017 1.3108 1.3105 1.3203 10327 1.0346 1.0361

0.01
0.01

-1.31 - 108

- 13105 13104 1.3094 1.3100 1.3183 1.0300 1.0337

0.1
0.1

1.06

1.0169 1.0165 1.0191 1.0208 1.0458

1.0

104

spectral radius
spectral radius
1

4.0

1.0088 102

1.00

0.0
=
]
-

0.0

1

0.05
noise noise

(c) Room 1D (d) Corridor

0.05

Figure 4.28: ESN - MSE for varying noises and spectral radius.

networks for multiple-time horizons, as described in Section 4.4, and we evaluate
the analytical and qualitative metrics: the MAD (or MAE), RMSE and PMV/PPD
respectively, in according to Section 2.5. As stated in Literature [82, 17], in order to
not alter perceived thermal comfort of occupants, the operative temperature should
not vary more than 1.1 °C, in the time range of 15 minutes and nor more than 2.2
°C within 1h respectively. According to these directives, we fixed at 2 °C the MAE
threshold below which we consider our prediction acceptable.

Univariate

Firstly, we compared all the implemented neural networks in the univariate case.
This means that the neural models receive only the indoor air-temperature values
of the buildings as input. Figures 4.30 and 4.31 show in detail the results w.r.t.
MAE and R? index, respectively.
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Figure 4.29: ESN - MAE variation against hidden nodes and sparsity.

Figure 4.30 clearly show that, for all the environments, the state-of-art neural
networks outperform our benchmark NAR hybrid model, for which we have only
predictions up to 270 minutes from Section 4.6.2. In Room 2A and Corridor, 1D-
CNN outperforms the other networks for all the prediction horizons, while for Room
1D, for shorter predictions has a slightly worse accuracy but for forecasting of at
least 825 minutes, 1D-CNN confirms to be the best architecture. Regarding the
whole building, all networks have a similar behaviour of error, even though the
1D-CNN guarantees a more stable prediction. Resuming we are able to predict

with a maximum error of 2 °C:
o Whole Building; 133 steps a-head (33,25 hours), with a MAE of 2.00 °C;
« Room 1D; 113 steps a-head (28,75 hours), with a MAE of 2.03 °C;
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Figure 4.30: Hybrid models - MAE comparison
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 Corridor: 121 steps a-head (30,25 hours), with a MAE of 2.01 °C;
« Room 2A: 140 steps a-head (35,25 hours), with a MAE of 1.91 °C;

MAE cannot give a complete understanding of the fitting because it is an av-
erage of the error, this means that even though we have a MAE of about 2 °C,
we could have both values that are perfectly predicted and others with large er-
rors. Consequently, to validate these results, we perform the residual plot of some
significant prediction time horizons of the characterizing Room 2A, as depicted in
Figure 4.32. These residual plots highlight the distance of the blue points (the
predicted values) from the red line that represents the error of the prediction. Ana-
lyzing the state-of-art networks for 300 and 975 minutes prediction we can see that
in both cases, 1D-CNN is the one with the bigger concentration of points along the
red line, which means a lower variance of the error, therefore less amount of 'large"
eITors.

Finally, in order to validate the results of our 1D-CNN, we evaluate occupant’s
perception of comfort. Therefore, for all prediction horizons (until 149 steps ahead),
we computed the Predicted Mean Vote (PMV) value for all the time steps and
the Percentage Person Dissatisfied (PPD) (i.e. in the range of £0.5, that is our
benchmark comfort range, as explained in Section 4.6.2). The complete results for
all the rooms are shown in Tables 4.10, 4.11, 4.12 and 4.13. These Tables report
the percentage values within the +0.5 thermal comfort area into prediction steps
(i.e. a single k-step is equal to 15 minutes), for all the environments. The red cell
in the tables represents the forecasting horizons for which the MAE is above 2 °C.
Therefore, according to our assumptions, the values in the red zone are inaccurate.
Moreover, the Figure 4.33 compares all the trends reported in tables. As depicted in
Figure 4.33, initially, the trends rapidly decrease as the prediction horizon increases,
for all the hybrid models. After a period, the values became almost stationary,
with an unstable behaviour for long forecasting horizons. Whole Building is the
prediction affected by the major worsening, with the percentage of comfortable
temperature reduced up to 50% from the reference value (measured temperature).
For all Rooms, instead, we can note that around the day-horizon (about 24 hours),
the comfort level starts decreasing faster.

Multivariate

As introduced in Section 4.4.4, we decided to investigate how the neural net-
works react by inserting some exogenous inputs (i.e. time labels). Thus, we adopted
only our hybrid LSTM and 1D-CNN;, that are the most promising networks in terms
of prediction accuracy, for this multivariate scenario. We used the same set of pa-
rameters of finding into the univariate scenario (see Section 4.6.4).

Consequently, as deeply detailed in Section 4.4.4, we added a second variable
describing the time period, both for the time slot and for the day of the week.
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Figure 4.32: Observed vs predicted value for Room 2A.

As shown in Figure 4.34 and in 4.35 for the 1D-CNN and the LSTM respectively,
adding this second variable does not lead to an improvement of the predictions, but
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Table 4.10: Whole Building - PMV/PPD evaluation on real data: percentage of
predicted values within the £0.5 thermal comfort area for all prediction horizons
(k-step = 15 min.).

k | PPD | k PPD I k PPD | k PPD | k | PPD
0] 91.2 | 30| 68.3 |60 79.1 | 90 | 80.7 | 120 | 574
| 90.8 | 31| 80.9 | 61| 783 | 91 | 70.4 | 121 | 46.2
2 915 |32 744 |62 TL8 | 92 | V9.5 | 122 54.7
3 899 | 33| 788 |63 824 | 93 | 7h6 | 123 | 5H1.2
4 | 889 (34| 783 (64 TO8 | 94 | 81.1 | 124 | 59.2
D | 874 | 35| 665 |65 TRO | 95 | 77.8 | 125 | 5H1.5
6| 846 | 36| 76.4 |66 733 | 96 | T4T | 126 | 39.6
T | 819 | 37| 7H8 |67 THA | 97 | 66.4 | 127 | 51.2
8 832 | 38| 774 |68 B24 | 98 | 725 | 128 | 478
91 75 |39 750 |69 797 | 99 | 63.7 | 120 39.1
10 80.3 |40 77.3 |70 836 | 100 | 66.6 @ 130 44.7
11| 776 |41 | 792 | 71| 785 | 101 | 71.1 131 | 33.7
12 78.6 |42 70.0 |72 80.6 | 102 | 654 @ 132| 43.7
13| 78.0 |43 | 66.2 | 73| 808 | 103 | 67.2 | 133 | 434
14| 7h4 | 44| 7.1 | 74| 773 | 104 | 639 | 134 | 41.1
15| 76.0 | 45| 77.3 |75 77.1 | 105 | 60.4 | 135 | 46.3
16| 68.8 |46 | 77.3 |76 79.5 | 106 | 56.5 | 136 | 41.0
17| 688 |47 | 714 |77 | 77.7 | 107 | 64.6 | 137 | 43.7
I8 689 |48 | 73.0 | 78| 824 | 108 | 58.5 | 138 | 46.9
19| 67.2 |49 | 68.3 | 79| 748 | 109 | 584 | 139 | 45.0

20| 75.5 | 50| 747 | 80| 829 | 110 | 554 | 140 | 45.9
21| 67.4 | 5L | BO.5 | 81| 844 | 111 | 56.6 | 141 | 36.0
22| 741 |52 V8.3 | 82| T9.5 | 112 60.0 | 142 | 59.2
23| 747 | B3| 733 83| 844 | 113 | 522 | 143 | 574
24| 742 | 54| BO.2 | 84| 82.0 | 114 | 52.0 | 144 | 67.1
25| TL4 | 55| T9.2 | 85| 803 | 115 | 56.6 | 145 | 57.6
260 706 | 56| T44 86| 782 | 116 | 479 146 | 54.5
27| 78.6 | 57| Th2 | 87| T6SH | 117 | 48.7 | 147 | 47.8
28| 792 | A8 | T2 | B8] T76.2 | 118 | 474 | 148 | 57.1
29 756 | 59| 0.9 | 89| V7.1 | 119 56.2 | 149 | 56.5

even it makes them worse.

By analyzing the results, we can state that adding further complexity to our
hybrid model the performance gets worse. We believe that the reason is to be found
in the fact that the hybrid models are already able to extrapolate the information
of the recurring patterns and seasonality. As a result, they ignore the temporal
relationship added by the exogenous time-labels.
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Table 4.11: Room 1D - PMV /PPD evaluation on real data: percentage of predicted
values within the +0.5 thermal comfort area for all prediction horizon (k-step = 15
min. ).

k |[PPD| k PPD k PPD k PPD k |PPD
01937 [30] 76.7 60| 829 | 90 [ 81.1 | 120| 80.5

1 {935 |31 80.2 |61| 830 | 91 | 81.8 | 121 | 914
2 928 |32 TO.7 |62 TEO | 92 | B0.2 | 122 | 848
31925 |33 823 (63 805 | 93 | 80.8 | 123 | 89.5
4 1922 (34| 820 |64 323 | 94 | 81.2 | 124 | 927

e}

922 (35| 799 |65 | BL.7T | 95 | 824 | 125 | 90.2
6 | 895 |36 865 |66 833 | 96 | 823 | 126 | 85.3
T | 86.9 | 37| 824 |67 8L7 | 97 | 827 | 127 | T9.8
8 |90.2 | 38| 822 68 82.0 | 98 | 87.7T | 128 | &7.0
9 | 827 |39 80.1 |69 814 | 99 | B4.8 | 120 | 844
10| 782 |40 80.7 |70 814 | 100 | 909 | 130 | 82.2
11 | 756 | 41| 81.1 | 71| 827 | 101 | 90.3 | 131 | 84.2
12 | 74.0 | 42| 8B2.7 |72 82.6 [ 102 | 935 | 132 | 914
13| 746 |43 849 (73| 8L.7 | 103 | 89.8 | 133 | 86.9
14 | 71.7 |44 | 844 | 74| 835 | 104 | R80.2 | 134 | B5.6
15| 759 |45 | B28 | 75| 821 | 105 | B4.8 | 135 | 87.2
16 | 704 |46 | 854 |76 815 | 106 | 88.9 | 136 | 89.6
17 | 68.5 | 47| 829 | 77| 827 | 107 | 76.5 | 137 | 84.9
IR | 786 |48 | 803 |78 811 | 108 | 679 | 138 | 93.2
19| 773 |49 82.1 |79 808 | 109 | 88.0 | 139 | B2.6
20| 72.0 0] 834 | 80| 821 | 110 | 83.2 | 140 [ 90.3
21 | 67.2 832 | 81| 80.5 | 111 | 824 | 141 | 89.5
22 | 68.5 844 | 82| T64 | 112 789 | 142 | 86.1

[

[

5

H

5
23| 7hS | B3| 820 | 83| V6.5 | 113 | 82.1 | 143 | 89.2
24 | 7Hh8 | b4 | 828 | 84| 9.2 | 114 | 80.3 | 144 [ 8.2
20 | 729 | 55| BL3 | 85| 824 | 115 848 | 145 | 843
26 | 737 |66 | BB |86 T9.l | 116 | 858 | 146 | T8.3
27 | 603 [ 5T | 8L5 | &7 | 803 | 117 | &3.8 | 147 | 82.8
28 | 745 | B8 | B26 | 88| 79.7 | 118 | 853 | 148 | T4.6
29 | 736 (B9 TEE | 89| TEH | 119 90.2 | 149 | 82.9

4.6.5 1D-CNN fine-tuning

As stated in Section 4.6.4, our hybrid 1D-CNN results the most promising solu-
tion that performs better both in analytical and qualitative terms. Consequently,
we decided to exploit this model for the subsequent fine-tuning experiments. The
goal is to specialize our hybrid model on real-world data coming from the IoT
devices installed in the demonstrator. In this way, the prediction model will be
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Table 4.12: Room 2A - PMV /PPD evaluation on real data: percentage of predicted
values within the +0.5 thermal comfort area for all prediction horizon (k-step = 15
min. ).

k |PPD k PPD k PPD k PPD k |PPD
0858 [30] 732 | 60| 818 | 90 | 81.8 | 120 | 80.3

1 (838 (31| 859 |61 792 | 91 | 783 | 121 | 84.6
2 | 86.8 (32| 820 (62| 771 | 92 | 84.2 | 122 | 874
J [8b4 (33| T6.T |63 THhE | 93 | 823 | 123 | BT.6
4 | 837 | 34| 842 (64| T6.1 | 94 | Bl.4 | 124 | 825

&n

833 (35| 795 |65 824 | 95 | V7.2 | 125 | BH.G
6 | 759 |36 827 (66| 789 | 96 | 816 | 126 | 89.0
T (819 (37| 794 |67 T6.4 | 97 | T9.0 | 127 | 86.1
8 | &8l.l J8 | 830 (68| 77O | 98 | TO.7 | 128 | 919
91790 (39| 748 (69| 750 | 99 | 828 | 129 | 75
10| 763 |40 806 | 70| 812 | 100 [ 84.1 | 130 | 84.5
11| 78.1 41 | 803 |71 832 | 101 | 86.0 | 131 | 33.3
121769 |42 788 | 72| 764 | 102 | 810 | 132 | 39.6
13750 |43 69.7 | 73| 785 | 103 | 844 | 133 | 7T2.6
14674 | 44| 776 | 74| 7.7 | 104 | 781 | 134 | B6.8
L5 | 750 |45 .2 | 75| 833 | 105 | 79.7 | 135 | 84.5
6| 69.6 |46 | 803 |76 833 106 [ 79.0 | 136 | T4.2

I7 | 703 |47 764 |77 77.7 | 107 | 824 | 137 | 68.1
I8 | 713 |48 | 80.2 |78 79.2 | 108 | 79.6 | 138 | 837
19670 |49 7856 |7 738 | 109 76.7 | 139 | 73.0
20755 | 50| 83.0 | 80| 0.6 | 110 | T84 | 140 | T4.2
21 | 802 |[HL| 79.1 | 81| 802 | 111 | 724 | 141 | 72.1
22 | 83.1 52 | TR.3 | 82| B27 | 112| Bl.9 | 142 | T6.9
23| 76.8 [ 53| T6.5 | 83| 832 | 113 | BL3 | 143 | T2.2
24 | 814 |54 | 802 | 84| T6.1 | 114 | 824 | 144 | 743
25 | 779 | 5BH | TT.T | 85| 820 | 115 | BL5H | 145 | 654
26| 76.2 | B6G | TR.O | 86| T8Z2 116 | TT.3 | 146 | TI.8
27 | 76.8 | 57 | T9.2 | 87| 8L7T | 117 | 86.1 | 147 | 65.2
28| 794 |58 | 742 | 88| B09 | 118 | R0.2 | 148 | B4.7
29| 76.7 |59 | T6.2 | 89| TH.T | 119 | B7.0 | 149 | 64.4

increasingly accurate.

Therefore, we apply the Transfer Learning methodology described in Section 4.4.5.
Figure 4.36 shows the forecasting performances of our hybrid model in terms of
prediction accuracy, exploiting the analytical MAE index, for all the environments.
Our hybrid model is on average able to predict more than one day of indoor air-
temperature values (i.e. about 24 hours). Room 2A represents an exception: the
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Table 4.13: Corridor - PMV/PPD evaluation on real data: percentage of predicted
values within the +0.5 thermal comfort area for all prediction horizon (k-step = 15
min. ).

k PPD| k PPD k PPD k PPD k PPD
0943 [30] 79.2 (60| 753 | 90 | 76 | 120] 65.7

1 (939 (31| 74 |61 70.2 | 91 | ¥h.5 | 121 | 73.9
2 (939 |32 773 |62 753 | 92 | T44 | 122 | 64.9
3| 931 J3 | TR2 |63 V6.8 | 83 | 739 | 123 | 66.3
4 | 921 4| T8I (64| TLE | 94 | V5O | 124 77

g |

924 (35| BOS |65 TH6 | 95 | T6.9 | 125 70

6| 919 |36| 7.1 |66 764 | 96 | TERT | 126 | T0.3
T 1909 |37 824 | 67| 742 | 97 | Th.5 | 127 | 62.5
B 1906 |38 738 (68| 738 | 98 | V6.8 | 128 lit!]

9 | 888 |39 TO.7 69| T3 99 | 775 | 129 | 64.1
10 | 885 |40 782 | 70| 75 | 100 | 744 | 130 | 724
11| 858 |41 | 773 |71 738 | 101 | 73.1 | 131 | 69.2
12 | 86.8 | 42| 78S | 72| T4.2 | 102 | 785 | 132 | 659
13862 (43| 78 | 73| 748 [ 103 | 754 | 133 | 66.2
14 (865 | 44| 765 | 74| TL8 | 104 | 781 | 134 | 68.4
15 | 86.4 | 45| 76.8 | 75| 729 | 105 | 7L.1 | 135 | 64.3
16| 87.8 |46 802 [ 76| 744 | 106 | 73.9 | 136 | 65.6
17 | 86.2 |47 | 806 | 77| 726 | 107 | 66.2 | 137 | 60.4
18 (844 | 48| 733 | 78| 747 | 108 | 78.2 | 138 | 62.4
19| 86.7 |49 764 | 79| 744 | 109 70.5 | 139 | 628

20842 | 50| V7.3 | 80| 748 | 110 | 74.2 | 140 | 63.6
21 (795 |51 | 80.3 | 81| 759 | 111 | 77.1 | 141 | 56.3
221834 | 52| T8.8 | 82| 7h8 | 112 | 856 | 142 62

23 (813 |53 7.7 |83 T4l | 113 T44 | 143 | 66.2
24 | 7T8.1 4| 76T |84 V7.1 | 114 | V0.6 | 144 | 5H8.2
25 | 837 | 55| T6.2 | 85| T42 | 115 | 69.7 | 145 | 63.2
26 | 829 |56 T3.9 | 8| TL.8 | 116 | 72.4 | 146 71

27 | 7.1 a7y | 767 | 87| 738 | 117 | V5.9 | 147 | 65.9
28 [80.8 | B8 | 73.2 | 88| TH8 | 118 | 735 | 148 | 67.3
29| 773 |B9| 7.6 | 89| 744 | 119 | 71.3 | 149 | T3.7

model can predict further until 35 hours.

Thus, according to Section 4.4.5, we applied three different transfer learning tech-
niques. We split the real data-set into two parts, 80% is used to retrain the network
and the other 20% for testing purpose. Figure 4.37 compares the previous 1D-CNN
hybrid model (i.e. called pre-trained model) and the three 1D-CNN model with the
Transfer Learning techniques (i.e. called tuned models).
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Figure 4.33: 1D-CNN - Values within the £0.5 thermal comfort area over time.

We can state that, for all the environments, at least one Transfer Learning tech-
nique can improve the prediction performance. Furthermore, we notice a different
behaviour according to the prediction horizon. Indeed, for shorter times retraining
all the network layers is always the best choice, but for longer ones, retraining only
the last layer outperforms the other techniques (i.e. Figure 4.37a, Figure 4.37¢ and
Figure 4.37d) with improvements up to 1 °C. Moreover, retraining only the first
or the last layers, always led to improve, even though sometimes negligible. In all
the cases, the effect of Transfer Learning becomes more relevant as the prediction
horizon increase.

Lastly, we performed the Fanger analysis to obtain a qualitative validation.
Therefore, we applied the analysis to our best techniques (i.e. last layer fine-tuned)
which is the one with better accuracy for long horizons. Figure 4.38b shows consis-
tent improvements for the whole building and rooms. In detail, we can move the
maximum acceptable average prediction limit from 24 hours to 28 hours. Further-
more, in short- and medium-time (i.e. until 13 hours ahead), we can achieve a more
comfortable prediction. Indeed, for all the environments, the thermal satisfaction
is always above 80%, as depicted in Figure 4.39.
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Figure 4.34: 1D CNN - Multivariate MAE comparison.
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4.7 Discussion and Remarks

In this Chapter, we proposed a methodology to forecast indoor air-temperature
of existing or newly constructed Smart Buildings (i.e. buildings without a con-
sistent set of historical data). Indeed, the aim of our methodology is trying to
compensate for the lack of real-world data in the context of energy simulations for
the energy-efficient management of Smart Buildings. As a matter of fact, buildings
are very rarely equipped with suitable temperature sensors and, even in the case
the sensors are available, the amount and significance of historical data might not
be enough to train a prediction model. Moreover, our solution provides building-,
facility- and energy-managers with tools for: i) (near-) real-time visualization of
energy consumption information; ii) simulations of temperature trends and energy
consumption. Through simulations, the managers can also check and evaluate the
efficiency performance of the building, energy behaviours of users and possible re-
furbishment actions.

In our methodology, BIM and meteorological data are exploited to construct of
a realistic and consistent dataset of indoor air-temperature values. The presented
experimental results showed that our solution simulates with a good accuracy the
heating performance of the case-study building. With respect to literature solutions
that consider TMY weather data, our results highlighted that the integration of real
weather information into the simulation process strongly increases the accuracy of
the simulation itself. Thus, exploiting realistic synthetic data to train prediction
models, we are able to implement hybrid model that use real-world data in the
inference phase. To validate this, we have specially designed some models (i.e one
for each environment of our demonstrator) based on a NAR architecture with a
high number of regressors by discussing the prediction accuracy by analyzing the
inference results both on synthetic and real data. As demonstrated by our case
study, our models provide accurate predictions with time horizons in the order of
3 h for individual rooms and 4 h for the entire building.

At the same time, we tried to add additional information as input to our hybrid
models (i.e. time labels). By analyzing the experimental results, we can state that
adding further complexity the performance gets worse. The reason is to be found
in the fact that the hybrid models are already able to extrapolate the information
of the recurring patterns and seasonality. As a result, they ignore the temporal
relationship added by the exogenous time-labels.

We then applied Transfer Learning techniques in order to specialize the hybrid
models with real data provided by IoT sensors installed in the demonstrator. For
this purpose, we have specially designed, implemented and compared some state-of-
art neural networks for time-series forecasting. In detail, these are: i) NAR (i.e. the
benchmark model), ii) FNN, iii) LSTM and iv) 1D-CNN. For all these models, we
initially used the synthetic data for the training phase and the real-world data for
the inference phase. Then, we compared all the obtained models in analytical and
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qualitative way. The experimental results showed that the most promising hybrid
model for this scenario was 1D-CCN. As a result, we have applied 3 fine-tuning
techniques for the specialization on real data. We find that by re-training the last
layer (i.d. Freezing Layer techniques) we are able to predict until 28 hours head
without introducing thermal discomfort for the occupants. However, the real-world
dataset available is very limited. Looking at the trend graphs comparing Transfer
Learning techniques, we are convinced that by using a more consistent dataset we
could achieve further improvements.

Summarizing, the predictions provided by our models can be exploited for the
design of control policies for the energy-efficient management of Smart Buildings
(e.g., Demand Response, Demand Side Management and peak-shaving, which are
all based on thermal behaviours forecasting), especially for those scenarios where
real sensors data are unavailable or insufficient.
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Chapter 5

Blood glucose forecasting

Continuous Glucose Monitoring Systems (CGMSs) allow measuring the blood
glycaemic value of a diabetic patient at a high sampling rate, producing considerable
amount of data. This data can be effectively used by machine learning techniques
to infer future values of the glycaemic concentration, allowing the early prevention
of dangerous hyperglycaemic or hypoglycaemic states and a better optimisation
of the diabetic treatment. Most of the approaches in literature learn a prediction
model from the past samples of the same patient, which needs extensive calibrations
and limits the usability of the system. This Chapter investigates prediction models
trained on glucose signals of a large and heterogeneous cohort of patients and then
applied to infer future glucose level values on a completely new patient. Next, we
study how these neural networks can specialize on the individual patient.

5.1 Introduction

The human body, through the appropriate organs, breaks down carbohydrates
into glucose. Insulin, a peptide hormone produced by beta cells of the pancreatic
islets, plays a key role in this process, regulating the way the cells absorb glucose
and use it as an energy source [222]. Defects in either insulin secretion or insulin
sensitivity (or both) lead to diabetes, that is a chronic disease characterised by high
glucose levels in the blood (i.e. hyperglycaemia) [18]. This is a severe condition,
that is known to at least double a person’s risk of early death.

Diabetes can be categorised into three main categories. Type I diabetes, that
affects about 10% of the diabetic patients, usually develops since childhood due
to a loss of beta cells, that are mistakenly attacked and killed by the immune
system [163, 19], resulting in a loss of insulin. Type II diabetes occurs when the
body does not make proper use of the released insulin (i.e. insulin insensitivity) or
does not produce enough insulin [49]. This is the most common form of diabetes
(about 90% of the diabetic population [163]) and usually develops in adulthood.
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Gestational diabetes, a temporary condition occurring only during pregnancy, af-
fects between 3 and 20% of mothers-to-be, with increased risks of developing future
chronic diabetes for both mother and child [45].

Diabetes in all its forms is among the most widely diffused chronic disorders
worldwide, with ever-increasing diffusion trends in both women and men. Hence,
there are growing efforts directed towards the development of therapies as well as
of better ways of keeping the effects of this disease under control. In this work, we
focus especially on Type I diabetes. Nonetheless, our study can be easily generalised
to the other forms of pathology. In a normal subject, glycaemia typically oscillates
between 70 — 100 mg/dl in a fasting state and does not exceed 140 mg/dl after
a meal. Conversely, diabetic subjects have fasting values higher than 126 mg/dl,
and may encounter either hyperglycaemia (when the glycaemic value in the blood
exceeds 180—200 mg/dl) or hypoglycaemia (when the glycaemic value is much lower
than 70 mg/dl), that are both life-endangering situations. Such events need to be
timely detected in order to take all possible countermeasures to save the patient’s
life.

Traditionally, diabetic patients are monitored by measuring their glycaemic
value multiple times in a day (four or more, for a Type I diabetes) using a fin-
gerstick blood glucose meter, often accompanied by fixed insulin infusions. This
type of monitoring has a significant disadvantage, in that it cannot detect fluctu-
ations of the glycaemia that may be caused by intense physical activity, sudden
emotional stress or food assumption. As a result, insulin injections are often over-
or under-dosage concerning the actual need [46].

Today, thanks to the widespread use of increasingly intelligent and low-cost
technological devices, the medical sector is moving more and more towards the
concept of smart healthcare [89]. In this scenario, diabetic patients, especially
Type I, are subjected to constant monitoring and appropriate and timely insulin
treatment, employing Continuous Glucose Monitoring Systems (CGMS) [88]. Using
sensors applied to the skin, CGMS can measure the glycaemic value of a subject
at a rate of up to one sample per minute. This generates a considerable amount of
data that can be either stored or sent to a processing system, and used to infer the
future values of glycaemic concentration within different prediction horizons, with
a two-fold benefit: i) better prevention of potentially dangerous hyperglycaemic
or hypoglycaemic states and ii) optimisation of the insulin dose that needs to be
injected [205]. On top of that, the patient can be subjected to continuous remote
monitoring by the primary care physicians, triggering automatic alert mechanisms
and, whenever needed, faster hospitalisation procedures [140, 199].

Since the introduction of CGMS, literature has proposed several approaches
for short-time glucose prediction, that can be broadly categorised into two main
groups: i) approaches based on apriori physiological models, that try to reproduce
the metabolic response of a patient using equations that mathematically describe
glucose kinetics [62, 154]; ii) data-driven approaches [72, 169], that infer the future
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values of glucose concentration by applying machine learning techniques trained
on real glycaemic data (see [190] for a review of some recent methods). As they
do not depend on fixed parameters, machine learning techniques promise higher
flexibility and generalisation capability of a fixed physiological model, especially in
the presence of unpredictable variability of glucose kinetics due to either internal
(e.g. different device calibrations) or external factors (e.g. physical activities, food
intake, sudden stress, etc.). Hence, thanks to the higher availability of data, the
data-driven approaches are generally preferred in the last few years.

5.2 Related Works

The idea of predicting the future trend of glucose level by using its past values
as the only input was first exploited in [37] and then refined in most recent years,
taking advantage of more robust and accurate data recording devices and more
sophisticated machine learning models. The most common approaches provided by
literature are either based on time-series autoregressive models (AR) or artificial
neural networks (ANN) [190]. In [231], a first-order AR model is proposed and
compared with a first-order polynomial model. In the same years, a method based
on Kalman filtering is used to predict hypoglycaemic events [192] based on glucose
monitoring signal. Nonetheless, these methods have still significant prediction er-
rors and a minimal forecasting window (maximum 45 and 30 min, respectively).
In [194, 195], ANN approaches were used to predict glycaemia for up to 3 hours.
Nonetheless, the accuracy of the prediction considerably decreases when the pre-
diction horizon increases. Better accuracy values, albeit on different test sets, were
shown by the most recent works, either based on ANN or support vector regres-
sion techniques [94, 273, 5, 102]. A common trait of these works is that they are
usually calibrated on individual patients (i.e. the prediction for a specific patient
is built on top of the past glucose level signal recorded from the same patient).
While this approach has the obvious advantage of creating a personalised model
that perfectly fits the characteristics of a specific patient and a recording device,
it also has multiple disadvantages: i) it limits the usability of the device, in that
the system cannot be used on a patient until the calibration is fully performed,
ii) it limits the generalisation capabilities of the system and increases the risks of
overfitting. Conversely, learning a model from a heterogeneous set of patients and
recording devices increases in principle the robustness of the model to unpredictable
and unseen changes of the input signal [109]. On top of that, the device can be
used on a new patient immediately, without re-training.

Fewer studies in literature explored the idea of creating a generalisable glucose
level prediction model from a multi-patient training cohort. In [90, 91] the authors
propose an AR model with fixed coefficients (applying data filtering and Tikhonov
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regularisation [30]) and compare three different configurations: respectively i) mod-
els trained on each individual subject, ii) a model trained on different subjects using
the same CGMS device, and iii) a model trained on different subjects using dif-
ferent devices. Their experimental results show comparable prediction errors for
the three scenarios on a forecasting horizon of 30 min. Further developments of
the same idea are presented by [202], this time using model based on feed-forward
ANN;, and by [10], using a recurrent neural network (RNN). Nonetheless, the fore-
casting accuracy obtained by these works is still modest, and the data used for the
training is poor both in terms of number and type of patients (e.g. age categories),
which intrinsically limits their generalisation capability.

While the most consolidated works are generally based on shallow neural net-
works, few recent studies started proposing deep learning techniques [169, 276,
146] (e.g. Convolutional Neural Networks). Nonetheless, these methods are typi-
cally very demanding, both in terms of training data and computational resources.
Hence, the proposed predictors suffer limitations due to the lack of annotated CGM
signals used for training the networks, both in terms of number and type of patients
considered in the analysis, as well as the type of recording devices.

5.2.1 Contributions

In this work, we continue on the path of learning a model from a multi-patient
dataset and using this model to predict the future glucose level values of a new
patient. By doing so, we try to improve the previous works in two ways: i) by
refining the formulation of the neural network used for the prediction, and ii) by
considerably enlarging the dataset used for learning the model. The aim is to
improve the prediction accuracy, possibly on a much larger forecasting horizon,
and to increase the generalisation and robustness of the model.

As of point i), we designed and compared two different solutions, that were
successfully applied to other time-series forecasting problems. The first solution
exploits a Non-Linear Autoregressive Neural Network (NAR). This model extends
and refines traditional linear AR architectures, in that it is not intrinsically limited
by the assumption of linearity, and overcomes the stability problems of past for-
mulations [29]. The second solution exploits a Long Short-Term Memory (LSTM)
network, that is generally acknowledged as one of the best for time series predic-
tion, thanks to its versatility and flexibility [98, 230]. This model can overcome the
well-known problems of exploding and vanishing gradient that typically affect tra-
ditional RNN architectures and to maintain long-term information over time [196,
125]. While, to the best of our knowledge, NAR was never applied before to the
problem of glucose profile prediction, few recent works exploited LSTM, eventu-
ally embedded into deep learning frameworks [276, 146, 239]. These works show
promising results of LSTM model compared to other approaches, but they are still
limited by a lack of training data.
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As of point ii), we trained and tested our new solutions on an extensive set of
CGMS signals, with unprecedented variability both in terms of the type of subjects
and recording devices. This choice stems from the consideration that a higher
variability of the training set is known to improve the generalisation capabilities of
the prediction model and to reduce the risks of overfitting.

To evaluate the forecasting accuracy and robustness of our solutions, we assessed
our results in comparison with other multi-patient techniques, exploiting traditional
AR, feed-forward ANN and RNN formulations, respectively. For a fair comparison,
we re-implemented the architectures proposed by previous works [91, 202, 10] and
performed experiments on the same dataset as our proposed solutions, both for
training and testing purposes.

Progressively, as second analysis, we focus on patient-specialized blood glucose
prediction system exploiting a data-driven approach. Thus, we designed and imple-
mented our solution based on Long Short-Term Memory (LSTM). Consequently,
we tested and evaluated our solution capabilities and performances to improve the
prediction accuracy, possibly on a much larger forecasting time horizon. For a fair
validation of our methodology, we exploited the very same dataset for training and
testing the two most significant state-of-art neural networks in blood glucose pre-
diction (i.e. [202] and [10]). Then, to evaluate the performance of the models, we
exploited different quantitative and qualitative performance indexes to identify the
most promising.

The solution proposed in this work is part of a broader framework introduced
previously. That is the realization of a glucose prediction algorithm that, equipped
in a modern CGM system, can be able to make direct predictions without a long
period of data collection and training on the patient itself. With the first phase of
our proposed methodology, we have demonstrated the possibility of designing an
effective multi-patient data-driven blood glucose prediction model able to predict
the future glucose level values of a new patient. This model allows the realization
of a robust and pre-trained system. In this second phase of our methodology,
we want to investigate how our LSTM solution works on the individual patient.
Proved its potentialities on individual patients, as future works, we plan to apply
some techniques, such as Transfer Learning [256], to personalize the multi-patients
neural network according to glycaemia behaviours of each patient to monitor.

5.3 Case Study

In the following, this Section describes in details the datasets used to train and
test our prediction system for multi-patient and single-patient specialized data-
driven methodologies.
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5.3.1 Multi-patients dataset

As anticipated in Section 5.1, our first aim is a generalisable CGMS, that learns
a prediction model from a fixed set of subjects and then can predict glucose level
values on a new patient without needing any re-calibration. To do so, the system
needs to be trained on a broad set of CMGS signals, possibly representing a very
wide range of possible outcomes. This inherently reduces the risks of learning a
model that is too simple or unfit to deal with unseen data. More specifically, the
training set should represent wide variations of glucose dynamics and reflect dif-
ferences due to either different subject categories (e.g. adults and children, female
and male, etc.) or different recording systems. On top of that, to ensure a good
representation of glucose dynamics, the training samples should be acquired con-
tinuously for a sufficiently long monitoring period, with a rate that is high enough
to represent glycaemic fluctuations. Supported by past literature, we identified 5
min as the minimum sampling rate for the CGMS (lower frequency is acceptable
only during the sleeping time when the signal is less subject to fluctuations), two
days as the minimum monitoring time per subject and 30 samples as the minimum
length of a monitoring sequence for it to be considered significant [203, 218].

Based on the considerations above, we decided to use the RT _CGM dataset [111]
that is freely available for research purposes, in anonymised form in order to protect
patients’ privacy. This dataset includes glycaemia trends of a heterogeneous pop-
ulation of 451 patients affected by Type I diabetes, already randomised. Patients
have different ethnic origins and gender (45% male and 55% female, respectively),
and belong to three different age categories (respectively, adults > 25, adolescents
and young adults 15 — 24 and children 8 — 14). The data consist of glucose level
samples acquired every 5 min using three different CGMS devices (provided by
Abbott Diabetes [68], DexCom [119] and Medtronic [204], respectively). On top
of that, patients take insulin in two different ways, either by injections or using a
micropump delivery system.

The original dataset was pre-processed to make it consistent for our analysis.
More specifically, we removed sequences with too many gaps as well as sequences
with less than 30 consecutive samples, due to device calibration or measurement
errors. Then, we randomly split the resulting data into two subsets for training and
testing purposes, containing about 70% and 30% of the initial samples, respectively.
The full characterisation of these two sets is reported in Table 5.1. The training
and test sets are completely independent in terms of patients (i.e. data from a
specific patient can be either in training or on the test set).

The training set was used to train the prediction models and optimise their
parameters, using a portion of the samples as validation set, whilst the test set was
solely used for assessing the final prediction performance.
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Table 5.1: Dataset characterisation.

A # of # of  # of hyperglyc. # of hypoglyc.
8¢ patients samples samples samples
Training >25 95
set 15-24 97 304450 142410 24827
8-14 124
Test >25 70
set 15-24 46 94128 34311 8253
8-14 19

5.3.2 Single-patient dataset

A second aim is to create patient-specialized predictive models. In this view, to
evaluate performance and accuracy, all the patient-specialized models are trained
and validated using the same dataset: OhioT1DM [156]. This dataset consists
of blood glucose level values sampled every 5 minutes, for about two months of
observation. Data refer to six Type-I diabetic patients (i.e. two men and four
women), with age ranging between 40 and 60 years. The sensor used to sample
the blood glucose level is the Medtronic Enlite CGM, combined with a Medtronic
530G insulin pump. The dataset is divided into two parts: around 80% of the data
for the training phase while the remaining 20% for the test and validation phase.

5.4 Multi-patients data-driven methodology
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Figure 5.1: Main phases of the study.

Figure 5.1 shows the main phases of the study. In the so-called training phase,
training samples first undergo a pre-processing filtering step. The filtered data
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are used as input to build a prediction model, either based on NAR or LSTM
neural networks. In the test phase, new unseen and unfiltered data are fed into
the trained models to obtain the final predictions. All the implementations were
done in Matlab (NNSYSID toolbox) and Python, using TensorFlow as back-end
and exploiting Scikit-learn, pyrenn and pandas libraries.

5.4.1 Pre-processing

Generally, CGMS sensors introduce some amount of noise during signal sam-
pling [218], [263], that needs to be attenuated or removed before the data can be
used either to train a prediction system or to infer new values from unseen data [28].

As it is well known from the literature, over-smoothing the glucose time series
data translates into a higher risk of missing out hypoglycaemia and hyperglycaemia
events. On the other hand, processing the data completely unfiltered might lead to
false alarms caused by a few unexpected sensing errors [28]. Hence, data filtering
should be performed, having as objective a reasonable compromise between these
two opposite effects.

In according to Section 3.4.2, as denoising pre-processing step, we applied to
the training data Tikhonov regularisation [122], that is widely used in time se-
ries analysis and glucose level prediction system. As demonstrated by [90, 91],
this method allows obtaining a filtered version of the signal without introducing
significant delays into the time series.

In Figure 5.2, we show an example of the effect of Tikhonov regularisation
applied to our CGMS training data. As it can be easily gathered from the plot, the
filter attenuates sudden spikes in the signal, without altering the trend and without
introducing delays, as already demonstrated by [90, 91].

5.4.2 Prediction model building

In the following, we present our glucose prediction models based on NAR and
LSTM neural networks, respectively. More specifically, for both the solutions we
describe i) how we selected and identified the final architecture and related pa-
rameters of the prediction models and ii) how we optimised such parameters in
order to boost the performance and robustness of the models, preventing the risk
of over-fitting.

Non-Linear Autoregressive Neural Network

As anticipated in Chapter 2, NAR extends traditional linear autoregressive
model [147], in that it is completely distribution-free. Hence, it can be applied
even to time series with intrinsic non-linearities, such as sudden spikes and fleeting
transient periods [185].
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Figure 5.2: Effects of Tikhonov regularisation on glucose level data: example.

A NAR model computes the value of a signal y at time ¢ using n past values of
y as regressors (also called feedback delays), as follows:

y(t) = fly(t = 1), y(t = 2),....y(t = n)) +e(t), (5.1)

where f is an unknown non-linear function and e(t) is the model approximation
error at the time t.

Function f(-) is computed by optimising a multi-layered neural network, whose
topology is depicted in Figure 5.3(a).

At the time ¢, the neural network is fed with the n past values of the signal y.
Such inputs are transferred through multiple layers of neurons, where each neuron
is a simple computational unit characterised by a set of weights W (one per each
input connection j), a bias b and an activation function h. Hence, the output of a
neuron ¢ is computed as follows:

J

where the optimal values of w; ; and b; are computed by back-propagation on the
training set [185].

As anticipated in Section 5.3, the minimum number of consecutive samples in
our dataset is 30. Keeping this in mind, we initially designed a very simple fully-
connected NAR as the one represented in Figure 5.3, with the following topology:

1. one input layer, with 30 units;
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(a)

Yt

(b)

Input unit Hidden unit Output unit

Figure 5.3: Non-linear autoregressive neural network. (a) Network topology. (b)
Neuron models of the input, hidden and output layers, respectively.

2. one hidden layer, again with 30 units;
3. one output layer, with one unit.

As reported in Figure 5.3(b), we used hyperbolic tangent activation functions
for the hidden units and a linear activation function for the output unit.

As a learning paradigm for the NAR network, we implemented a Levenberg-
Marquardt backpropagation procedure (LMBP), which is widely applied to NAR
models. This technique approximates second-order derivatives leveraging a trust
region approach [185], with no need to compute the Hessian matrix. This helps
reducing the training speed compared to traditional backpropagation techniques.

As it is widely known, models with too many parameters (i.e. too many neurons
and connections) are less fit for hardware implementation and may easily lead to
over-fitting. To overcome this problem, we adopted a two-steps design procedure,
as follows:

1. we applied an automated optimisation strategy based on Lipschitz method-
ology [211] to possibly reduce the number of regressors of our model (i.e. the
number of past glucose values to be given as input to the system).

2. we performed an automated pruning of the initial fully-connected structure,
based on Optimal Brain Surgeon (OBS) method [105].
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This two-steps procedure allowed us to design a more compact version of the net-
work compared to the one of Figure 5.3(a), obtaining a non-redundant NAR model
with optimal number of inputs and computational units.

As of point 1), we applied Lipschitz methodology for determining the optimum
lag-space, that in our case is the number of delayed glucose signals to be used as
regressors [211]. This method is successfully used for the analysis of Input-Output
Models orders in Non-linear Dynamic Systems in many applications. As initially
proposed by He and Asada [110], a reliable decision on the optimal order n of a
non-linear model characterised by training input-output pairs (x;,y;) can be made
based on so-called Lipschitz quotients:

o = lyi — v
Y s — ]

(5.3)

where in our case x; is a vector of inputs and y; is the corresponding output of
the system, with ¢ # j and ¢, = 1..N where N is the number of samples in the
training set. Hence, the superscript n stands here for the number of regressors of
the system.

Lipschitz order index L™ is defined as the geometric mean of the m largest
Lipschitz quotients, as follows:

3=

L = [ﬁ Vi W(k)] , (5.4)

where m is a positive number recommended to be ~ 0.01N and [™ (k) is the k-th
largest Lipschitz quotient among all qZ(Z-).

Finally, as demonstrated by [110], the optimal number of regressors can be found
by plotting Lipschitz order index at increasing values of n, in a forward sequential
way, and selecting the knee-points of the obtained curve. As reported in Figure 5.4,
by applying this procedure to our training data, we found n = 8 and n = 17 as the
best candidates for the number of regressors of our system.

Based on Lipschitz results, we implemented three fully-connected NAR mod-
els, respectively with 30 (that is the minimum number of consecutive samples of
our dataset, and hence the upper-bound of the input size), 17 and 8 regressors.
These three models were trained on the training set described in Section 5.3, using
LMBP as the learning algorithm. To assess the goodness of the training and the
generalisation capabilities of the three models after this first design phase, in the
second column of Table 5.2 we report the normalised sum of squared errors (nSSE)
obtained after training the 30, 17 and 8 regressors models, respectively. These val-
ues were computed on a portion of the training set solely used for validation and
optimisation purposes. (i.e. validation set). As it can be easily gathered from the
table, the model with 8 regressors is the one obtaining the best performance.
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Figure 5.4: Evaluation of Order Index criterion for different lag-space.

As of point 2) of our two-steps design procedure, each of the fully-connected
models obtained after Lipschitz underwent automated pruning. The objective of
this second design phase is to eliminate redundant connections between the neurons,
and hence obtain more efficient and compact models than the initial ones, possibly
improving or at least not impacting on their prediction capability. For this purpose,
we implemented an Optimal Brain Surgeon (OBS) methodology, as first introduced
by [105]. The main idea behind this procedure is to estimate the increase in the
training error when deleting weights, leveraging information in the second-order
derivatives of the error surface. More specifically, the strategy works towards the
minimisation of the error variation, leveraging a recursive calculation of the inverse
Hessian matrix from the training data to obtain better approximations of the error
function (see [105] for details). This strategy has been demonstrated to eliminate
more redundant neuron connections than other pruning techniques, yielding to
models with improved generalisation capabilities [70].

The three pruned models (respectively with 30, 17 and 8 regressors) were trained
again with a Levenberg-Marquardt backpropagation procedure (LMBP). The nSSE
values obtained after this second round of training are reported in the third column
of Table 5.2.

Table 5.2: Validation error (nSSE) before and after OBS pruning.

NAR nSSE nSSE
Network Type before pruning after pruning

30 regressors 30.49 25.83

17 regressors 28.60 27.05

8 regressors 26.24 25.89
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From the analysis of this table, we can see that OBS pruning further reduced the
validation error of the three models. As it was reasonable to expect, the model that
benefited the most from the pruning is the 30 regressors one. On the other hand, the
8 regressors NAR is the one that had the best compromise between generalisation
error (that is comparable with the one obtained by the 30 regressors after pruning)
and simplicity of the model, which guarantees the lowest risks of over-fitting. Based
on these considerations, we decided to select the pruned network with 8 regressors
as the final NAR model for glucose level predictions. The architecture of this model
is schematically represented in Figure 5.5.

Input layer Hidden layer Output layer

Figure 5.5: NAR final architecture

Long Short-Term Memory Neural Network

As anticipated in Chapter 2, LSTM represents an evolution of the classic Re-
current Neural Networks improving its limitations.

For our specific problem of glucose level prediction, we designed a LSTM net-
work consisting of a layer of 30 LSTM units and a single output layer (dense), with
a number of units equal to the future glucose samples that need to be predicted
(i.e. 18, corresponding to a 90 min prediction horizon at a 5 min sampling rate).
The architecture of the cells is the same that is depicted in Figure 2.8, consisting
of input, forget and output gates with sigmoidal gating functions.

As we did for the NAR module, before deciding the final architecture of the
LSTM model, we investigated the possibility of reducing the number of cells of the
network as well as the number of past glucose levels to be used as regressors for
the prediction. We run experiments with respectively 30 (our upper bound), 17
and 8 regressors, that represent the knee-points detected applying Lipschitz order
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index method to our training data (see Figure 5.4). In Figure 5.6, we show values
of the validation error, in the form of Root Mean Square Error on the validation
set, obtained by the 30, 17 and 8 regressors models, at increasing time prediction
windows (respectively from a minimum of 30 up to a maximum of 90 min). As it is
clear from the plot, the 30 regressors model is the one with the best performance.
As expected, for all the models the prediction error increases exponentially with
the prediction window. The 8 regressors model is consistently the one with the
lowest prediction accuracy.

In general, the 30 regressors model is the one that provides the best performance
for either short-time and long-time glucose level predictions.

35

—LSTM 30 regressors

30 e LSTM 17 regressors: |
LSTM 8 regressors

25

20

RMSE (mg/dl)

30 45 60 90
Time prediction steps (min.)

Figure 5.6: Validation error (RMSE) of LSTM models.

To optimise the hyper-parameters of our network and prevent either under-
fitting or over-fitting problems, we implemented a training procedure imposing an
initial learning rate equal to 0.001, with dropout. More specifically, at each training
stage individual nodes and corresponding links are randomly dropped out of the
model, leaving a reduced network [168]. This regularisation procedure helps reduc-
ing co-dependency of parameters, and hence prevents over-fitting. Then, we chose
Adam (Adaptive moment estimation) as the optimizer. This algorithm leverages
adaptive learning rates methods to set individual learning rates per each parameter,
combining this feature with the advantages of classical optimisation techniques such
as stochastic gradient descent and root mean square propagation. This technique
was demonstrated to be particularly suitable for non-stationary problems with lot
of noise [131]. The training steps for the learning procedure were set to 50000,
with a batch size of 100. In order to keep the computational costs of the training
under control without having to reduce the size of the training set, we implemented
a mini-batch training paradigm. More specifically, the training set was split into
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a number of small sub-sets of size 100, that were used to compute the model er-
ror. Each mini-batch was computed in parallel during each iteration. Then, the
average error over the mini-batches was used to update the model parameters at
each iteration. This method, besides considerably reducing computational time and
memory requirements, has been demonstrated to generally improve the model per-
formance [131]. To find a good compromise between a learning rate too low (which
may make the training too slow) or too high (which may lead to sub-optimal solu-
tions), we imposed a step decay schedule, that dropped the initial learning rate by
a 0.9 factor every 1000 iterations.

After running the learning algorithm on the training set, the so-obtained LSTM
model was used as-is to predict glucose level values on an independent test set, with
prediction horizons spanning from 30 up to 90 min.

5.5 Single-patient data-driven methodology

Progressively, we investigate a data-driven patient-specialized solution based on
LSTM neural network to forecast blood glucose level in short- and medium-term.
In Figure 5.7, we show the main phases of our study. In the so-called training
phase, training samples first undergo a pre-processing step. The unfiltered data
are used as input to build a prediction model. In the test phase, new unseen and
unfiltered data are fed into the trained models to obtain the final predictions.

i TRAINING PHASE ~ --------- | TTTTT TESTPHASE ~777
! Prediction model | 1 !
| building N 9 E :
P faw d i = '
L fewe, FNN L! ke i
e e ! !
| By | Pre-processing !
| 559 563 £ i
: [ [ ﬁ Raw data : : lRaw data E
]

P- g _Rewdata RNN i _ v
i 570 575 g_ \ |i—" Trained FNN ; E
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| 4 & o il Trained RNN ! g
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Figure 5.7: Methodology - Main phases of the study.

5.5.1 Data pre-processing

To evaluate performance and accuracy, all the models are trained and validated
using the OhioT1DM dataset, as described in Section 5.3.2.
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Following a preliminary phase check of the dataset, we noticed that patient mea-
surements present some gaps. These faults may be due to temporary malfunctions
or to the maintenance activities of the sensors. Such temporal lacks can lead to a
wrong evaluation by the algorithms with a consequent loss of accuracy of the pre-
diction. Consequently, we performed a pre-processing of the data by interpolating
and re-sampling linearly.

Finally, we organize the data as follows:

[Go Gi Gz ... Gar Gag G

trainy = Gz Gz Gz ... Gs7 Gsg Gxg (5.5)
[(Gz Gy Gs ... Gz G311 Gy

trainy = Gsz Gz G35 ... Geo Ge1 Geo (5.6)

where GG represents a value of the dataset. The trainyx matrix contains the input
values of the neural network. It is a matrix composed of 30 columns, i.e. the cur-
rent measurement plus the 29 previous measurements. Instead, the trainy matrix
contains the output values. The two matrices have the same size, however, trainy
is shifted by as many values as the prediction time horizon of interest. In the given
example, the trainy is shifted by a number of samples equal to the forecast horizon,
i.e. 15 minutes, then 3 samples, one every 5 minutes (sampling rate). Furthermore,
to avoid over-training, samples already used by the training network are no longer
used, which is why the measurements go from Gy to Gsg (see trainy). Test ma-
trices have the same structure as those for training. To avoid erroneous results,
the values within these files are never used for the training phase, but are given as
input to the network only when the performance of the final architecture is to be
evaluated.

5.5.2 Prediction models

In the following, we introduce our LSTM solution. Moreover, we present the
identified and re-implemented state-of-art models, a FNN [202] and a RNN [10],
respectively, as reported by authors. Indeed, starting from the original structure,
we try to optimize these models by modifying some hyperparameters, to obtain
even more robust and high-performance models according to our dataset. The
original FNN was composed of 30 inputs, two hidden layers of 10 and 5 units and
an output layer [202]. The structure of the RNN is similar but with two hidden
layers of 20 and 13 neurons, respectively [10]. For all the models, we selected the
best architecture with the best configuration. Thus, starting from the literature,
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we evaluated different architectures’ setups in terms of number of inputs, number
of units in the hidden layer and iterations through a trial-and-error approach.

As far as FNN and RNN are concerned, our re-implemented solutions always
consist of a single hidden layer. Indeed, we have managed to simplify the net-
works structures from a computational point of view, achieving similar or better
performance.

Long Short-Term Memory Neural Network

LSTM represents the powerful evolution of the classic RNN. This neural model,
particularly suitable for time series, is designed to overcome the limitations of the
RNN. Indeed, RNN architectures suffer the instability of long-term predictions due
to either vanishing or exploding gradient problems [95]. Often these problems arise
during the training of deep structures, when the error gradients are propagated
back in time to the initial layer, going through continuous matrix multiplications.
To overcome this limitation, the LSTM is designed as cells where specific gating
functions manage the memory, maintaining or erasing information at each time step.
The ability to remove or add information to the cell state is regulated by gates (i.e.
input, output, and forget) consisting of sigmoidal activation functions coupled with
point-wise multipliers. Each gate modulates how much of the corresponding signal
should be let through. In this way, LSTMs are able to remember values that are
passed through gates all in 1 state, regardless of how deep the network is.

To find the best neural structure, we investigated different structural combina-
tions with a trial-and-error approach. We found that the best structure consists of
30 inputs, a layer composed of 50 cells and an output layer. The number of opti-
mal iterations is 2000, and the learning rate is 0.001, with the Adaptive Moment
Estimation (Adam) as optimization algorithm [131].

Feed-forward Neural Network

This type of models represents the simplest type of ANN in which information
propagation is mono-directional. In other words, the information moves from the
input nodes to the output nodes, through the hidden layers [42]. Generally, this
model is characterized by a fully-connected structure. It is also famous for its low
computational costs [42]. Then, starting from the model architecture presented
in [202], we performed different structure combinations. Then, we found the best
structure that is composed of 30 inputs, 100 neurons in the hidden layer and only
one neuron for the output layer. We exploited the sigmoid as activation function and
the back-propagation as optimization, as generally recommended in literature [202].
Furthermore, we set the learning rate equal to 0.001, with an optimal number of
iterations of 1500.
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Recurrent Neural Network

The RNNs propagate the information in a bidirectional way. Indeed, they are
composed of recurrent units sharing the same parameters, with loops allowing to
propagate the information back to the same computational units. In this way,
each computational step takes into account not only the current input but also the
previous ones. As in the FNN case, starting from the model presented in [10], we
re-implemented the structure by investigating different configurations. The best
structure is configured as a follow: i) 30 input units, ii) 50 neurons in the hidden
layer and iii) a single output. We exploited the sigmoid as the activation function.
As the optimization method, we used Adam with a learning rate of 0.001 and a
number of iterations set to 3000.

5.6 Results

In the following, we present and discuss the experiments that were performed
to assess the prediction models described in Section 5.4. To obtain a thorough
evaluation of our methods, our analysis was divided into two main parts, according
to Section 2.5:

1. Analytical assessment. In this part, we assess the validity of the predictions
from a regression analysis point of view, by computing a set of metrics that
are widely used to quantify the similarity of a discrete time-series with a
reference ground truth;

2. Clinical assessment. In this part, we assess the validity of the predictions
from a clinical point of view. To do so, we use metrics that are specifically
designed to validate the clinical outcome of blood glucose measurements.

Both the assessments were performed on a test set (fully characterised in Sec-
tion 5.3) that is completely independent from the one that was used to design,
train and optimise the prediction models.

Solutions were compared with the results obtained by literature techniques. As
already anticipated in Section 5.1, the most prominent multi-patient data-driven
prediction techniques are based either on Autoregressive models (AR), dense Feed-
forward Neural Networks (FNN) or standard Recurrent Neural Networks (RNN).
Even though most of the works provide a quantitative assessment of these methods,
a fair comparison requires that all the predictors are trained and tested on the same
data. Hence, we re-implemented three states of the art glucose predictors based
respectively on AR, FNN and RNN;, strictly following the design reported in the
respective publications [91],[202] and [10]. Then, we trained, optimised and tested
the three models on our data, with the same procedure that was applied to our
proposed solutions.
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The experiments were run on a Linux computer equipped with an Intel®Core™
i7-8750H CPU with 2.20 GHz, 6 cores, 12 logical processors and 16,0 GB of installed
Physical Memory.

5.6.1 Analytical assessment on multi-patient models

To evaluate the prediction accuracy of the models, we exploited several metrics
that are widely used in descriptive statistics and in regression analysis to quantify
the similarity between predicted and observed time-series. More specifically we fo-
cused on a list of metrics that are more often used by blood glucose level predictions
literature [99]: i) RMSE, ii) R? Time lag, MAD and FIT as deeply described in
Section 2.5. Before assessing the prediction accuracy of the models in comparison
with literature approaches, we run few preliminary experiments to demonstrate the
goodness of the pre-processing stage based on Tikhonov regularisation applied to
the training data (see Section 5.4.1).

In the plot of Figure 5.8, we report the results of these experiments. More
specifically, we plot the RMSE values obtained by both the NAR and LSTM pre-
diction models on the test dataset, with different prediction horizons (from 30 up
to 90 min with steps of 15). The same experiments were performed training the
models first on raw data and then on filtered data. In both cases, the testing was
performed on the raw unfiltered data, as specified in the diagram of Figure 5.1.
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Figure 5.8: Impact of training data filtering on NAR and LSTM models predictions.

As it is visible from the plot, the filtering significantly decreased the prediction
error of both the models, with particular benefit for LSTM model. On top of that,
we can observe that the error trend against the prediction horizon was more or less
the same with or without filtering.
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In Table 5.3, we report the values obtained running all the prediction models
on the same test set, with our proposed NAR and LSTM networks highlighted in
grey and light blue, respectively. Each sub-section of the table shows the values of
all the figures of merit defined at the beginning of the section. Different columns
show values obtained at different prediction horizons, starting from 30 min (short-
term prediction) up to 90 min (very long-term prediction), at steps of 15 min. For
completeness, we show on the left the performance of the models trained on raw
data and the right the values obtained by the same models trained on filtered data
and validated on the unfiltered ones.

Table 5.3: Prediction performance indicators for all the tested models.

NOT FILTERED TRAINING SET FILTERED TRAINING SET
prediction horizon (min) prediction horizon (min)
30 ] 45 [ 1] [ o0 30 ] 45 [ 6l [ 90

RMSE (mg/dl) 2596 | 3416 | 4102 51.66 1'7.88 226 2831 41.66

B- .84 0.72 0.6(0 0137 (.92 (.58 0.zl 0.59

E Time lag (samplcs) 5.00 8.00 11.00 17.00 3.00 3.00 4.00 9.00
MAD (%) 980 13.90 1740 2297 3.64 519 8.57 15.64

FIT (%) 60.05 | 4743 | 3688 20.52 T248 65.22 | 56.44 359

RMSE (mg/dl) 26,75 | 3518 | 4239 53.95 21.1 296 3R.51 5495

- R (.83 0.71 0.57 .31 (.89 0.79 (.65 0.28
Z | Timc lag (samples) 5.00 .00 11.00 17.00 4.00 .00 .00 14.04)
= MAD (%) 10.60 1498 18.83 25.28 7.1 11.62 1647 | 2551
FIT (%) 5884 | 4586 | 3478 1699 67.53 5445 | 4074 1545

RMSE (mg/dl) 26006 | 3799 | 4828 57.07 18.22 2251 2678 | 3B.08

- B= (.84 (.66 0.45 023 (.92 S (.53 (.66
7 | Timc lag (samples) 5.00 8.00 1 1.00 17.00 3.00 3.00 3.00 3.00
= MAD (%) 941 13.45 16.88 22.10 4.02 4.60 5.80 13.06
FIT (%) 5975 | 41.55 25.72 12.19 T1.97 6536 | 5880 | 4141

RMSE (mg/dl) 2466 | 3233 | 3858 47 96 182 25.31 3312 | 4764

= R (.86 0.76 .66 047 (.92 0.85 0.75 0.48
« | Timc lag (samples) 5.00 8.00 11.00 17.00 3.00 4.00 6.00 10).04)
< | MAD (%) 1010 14.21 17.60 2270 596 996 14.41 22.57
FIT (%) 6266 | 51.04 | 41.59 27.37 7244 G6l.67 | 4984 | 2786

RMSE (mg/dl) 1947 | 2647 | 3238 41.54 5.93 T.18 13.21 28.57

R 091 (.83 0.74 (.58 ~1.00 0.99 0.96 (.80

E Time lag (samples) 3.00 6.00 9.00 15.00 0.00 000 1.00 .00
= MAD (%) 871 12.29 15.36 20.21 2.59 3.25 6.13 13.68
| FIT (%) 6963 | 5859 | 4943 3432 90.75 B8.79 | 7937 | 5525

From the values of Table 5.3, we can draw the following considerations:

o All the models benefited from pre-processing the training data with Tikhonov.
Hence, from now on, we will mainly focus on the analysis of this set of exper-
iments.

o the LSTM model is by far the one that obtained the best prediction perfor-
mance. This is consistently confirmed by all the figures of merit, for both
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short-term and long-term predictions. Remarkably, the time-lag observed for
this model was zero until a prediction horizon of 60 min. On the contrary,
all the other models had a time-lag of 3 samples (15 min) at best for the
short-term horizon.

o FNN is the model with the worst performance. On top of that, it is the one
presenting the most rapid decrease of prediction accuracy when increasing
the prediction horizon. The time lag is especially high, reaching 14 samples
for long-term predictions.

« NAR, AR and RNN methods seem to have a comparable behaviour, especially
for short-term predictions.

o When comparing NAR with AR, the latter obtained slightly better results
(e.g. RMSE was 17.88 against 18.2 mg/dl, at 30 min horizon). This difference
is even more remarkable at 45 min horizons. On the other hand, if we observe
the values obtained with unfiltered training data, we can see the opposite
(e.g. 25.96 mg/dl against 24.66 mg/dl obtained by NAR at 30 min). Most
reasonably, NAR is more robust to non-linearities in the training data when
compared to AR. Nonetheless, if we consider the overall figures of merit, the
performance of the two models in this specific application is almost equivalent.

To perform a more in-depth analysis of the results, in Figure 5.9, we show a plot
of the RSME values obtained by all the tested models, this time in %, reporting
the prediction horizon in the x-axis. To provide a better interpretation of the
obtained results, we highlighted in green the area of the plot within a 20% RMSE
range. In the absence of clear indications by past literature, we used this value as
an indicative threshold of acceptability for RMSE, consistent with the numerical
criteria for accuracy described by International Organisation for Standardisation
(ISO) [78, 235].

As it can be gathered from the plot, RSME consistently increases with the
prediction time, more or less with the same slope for all models. The plot confirms
the undisputed superiority of LSTM, which maintained RSME values at least 10%
better that all the other models, throughout all the tested prediction horizons. On
top of that, LSTM is the only one that provided RMSE always within the 20%
range, and below 15% up to a 60 min prediction horizon. The behaviour of NAR,
AR and RNN models do not have significant differences for short-term predictions
up to 30 min. The performance of NAR gets worse after that, still maintaining just
within the acceptability range up to 60 min prediction horizon. AR and RNN have
a similar behaviour up until the longest prediction window, with slightly better
performance for the AR model.

As a qualitative confirmation of the good prediction accuracy of LSTM, in the
following we show an example of glucose predictions performed by this model,
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Figure 5.9: Overall RMSE comparison.

respectively short-term (30 min) in Figure 5.10a and long-term (60 min) in Fig-
ure 5.10b. In both the plots, the predicted signal is shown in blue, and the corre-
sponding measured signal in red.

5.6.2 Clinical assessment on multi-patients models

Even though the metrics identified in Section 5.6.1 are essential to understand
the performance and prediction accuracy of the different models from a regression
analysis point of view, they are not able to identify the most significant outliers,
and they do not provide any information about the clinical impact of the prediction
errors and of their consequences on medical treatment decisions. Then, to provide
a more thorough picture of the models performance, we integrated our assessment
with Clarke Error Grid analysis (EGA) [53].

EGA is a semi-quantitative methodology introduced in 1987 that is nowadays
the most widely accepted tool for the analysis of clinical accuracy of blood glucose
estimations. It provides a clinical interpretation of the mapping between predicted
and measured blood glucose levels, that can be represented in a scatterplot with
five main regions (see Figure 5.11):

A: values within 20% of the reference;

B: values that, in spite of being outside 20% of the reference, do not lead to
inappropriate treatment of the patient;

C: values leading to inappropriate treatment, but without dangerous consequences
for the patient;
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Figure 5.10: LSTM predictions at different forecasting horizons.

D: values leading to potentially dangerous failure to detect hypoglycaemic or hy-

perglycaemic events;

E: values leading to treat hypoglycaemia instead of hyperglycaemia and vice-versa.

Hence, zones A and B are the ones with full clinical acceptability. D and E, on
the other hand, are the zones where prediction errors are most dangerous for a

patient [59].
The overall results of our Clarke Error Grid analysis are reported in Table 5.4.

More specifically, in each sub-section of this table we report the EGA results of
a tested model, with our designed NAR and LSTM highlighted in grey and light
blue, respectively. As for the analytical assessment, different columns of the table
refer to different prediction horizons (30 to 90 min, with steps of 15). Values in
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Figure 5.11: Clarke Error Grid Analysis: reference regions mapping.

different rows represent the percentage of values that fall within a specific zone of
the EGA map (A to E, respectively). Again, we show for completeness the values
obtained training the models on raw and on filtered data, respectively.

Table 5.4: Overall Clarke Error Grid results.

NOT FILTERED TRAINING SET FILTERED TRAINING SET
prediction horizon (min) prediction horizon (min)

307 45 ] 60 ] £ [ 45 [ a0 [ W
A [ 8701 [ 7699 | 6855 | 5630 | 97.74 | 96.33 | 918 | 71.68
B 11.4 2018 2735 37.1 1.49 2.47 6.4 2437
ﬁ [ .29 (.50 .78 1.38 .25 0.4 (.55 .99
D 1.15 2.09 2.949 4.67 .38 .59 (.94 247
L 0.15 (.24 .33 0.57 .14 (.22 .3 0.44
A B5.05 74.14 6d.62 566 94.41 B34 T(L.82 51.62
> B 13.41 2325 3147 42.71 4.68 14.94 26.5 42.41
F [ C 0.27 0.51 0.96 Z19 0.26 0.4z 072 24
= D 1.11 1.84 2.51 362 (L5 093 1.58 2.69
E .16 0.27 .44 (.52 .14 025 (.38 [I.1]
A w06 T7.96 6444 57.67 97.51 96.43 95.14 H2.04

o B 10.02 18.41 3.9 346 1.65 233 315 14.3
7z | C (.25 (.38 0.57 (.4 .26 .44 .62 .99
& D 1.54 305 4.44 634 .44 057 0.76 219
E 013 0.21 0.36 034 014 073 .32 .48
A | 8486 | 7296 | 6426 5292 9503 | 83444 | 73.06 | 5436
j - B 11.41 | 2061 | 2852 38.51 3.07 9.97 2022 | 37.34
- [ C .18 0.32 0.46 0.72 .16 0.28 0.44 1.02
Z [ D 3.49 6.04 6.66 7.64 1.64 552 6.17 7.04
E 0.07 0.07 0.11 0.21 0.09 0.09 0.11 0.24
A | B855 | 78.06 | 68.91 56.43 99.73 | 99.56 957 | 7353
= | B 9.88 18.73 | 26.28 36.73 0.21 0.36 3.76 227
= C 0.04 0.1 0.24 0.55 0.00 0.00 0.00 0.10
= | D 1.52 3.1 4.55 6.2 .06 0.09 0.54 3.66
E | «0.01 0.01 0.02 0.09 0.00 0.00 0.00 0.01
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From the analysis of Table 5.4, we can draw the following considerations:

o The benefit of pre-processing the training data is again confirmed by Clarke
EGA, for all the tested models. Hence, we will focus on these results.

o All the tested models had a satisfactory performance in short-term predic-
tions. More than 94% of the data in the 30 min prediction horizon lay in the
zone with best clinical outcome A. When considering a medium-term predic-
tion horizon of 45 min, about 95% of the predictions fall within borders of the
clinically acceptable zones A and B. Consistently with analytical assessment,
the performance got worse when increasing further the prediction horizon.

o Partially contradicting the outcome of the analytical assessment, when con-
sidering the clinical outcome, NAR model was outperformed by the other
methods. A possible interpretation of the discrepancy between the analytical
and the clinical assessments is that the latter is much more affected by the
presence of measurement spikes and outliers. Hence, while other prediction
methods (and especially FNN) provide predictions that are on average not
well-correlated with the observed measurements, they probably provided a
lower number of outliers in comparison with NAR. Nonetheless, as previously
observed, the short-term prediction performance of all the methods is quite
comparable even from a clinical point of view.

o The undisputed superiority of LSTM model, both for short-term and long-
term predictions, was confirmed even by EGA results. This model maintained
99% of the predicted values within the clinically acceptable zone up to 60 min
horizon window and more than 99% in zone A up to 45 min forecasting. No
other model showed comparable performance.

To have a better view of LSTM performance, in Figure 5.12, we show a graphical
representation of LSTM EGA, respectively for the short-term (30 min) predictions
and the long-term (60 min) predictions.

As it can be easily gathered from the plots, the data in Figure 5.12a distribute
along the bisector, which is the region of highest correlation possible with the
reference values. As expected, the data in Figure 5.12b have much higher dispersion.
Nonetheless, we can observe that, even though the forecasting window was in this
case extremely large (60 min), the wide majority of the values were still within the
borders of best clinical acceptability.

5.6.3 Analytical assessment on single-patient models

As for Section 5.6.1, to evaluate the prediction accuracy of the single-patient
models, we exploited a set of metrics that are often used by blood glucose level
predictions literature. These are: RMSE and R?, in according to Section 2.5.

183



5 — Blood glucose forecasting

400 400
= 350 1 = 350
=2 =2
£ 300 £ 300
= [ =
S 250 S 250
[ g
T 200 1 o 200
[¥) [¥)
= [ =
[=] [=]
=150 4 = 150
[ = =
= =
D 100 - £ 100
= =
o L]
& 574 & 5

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Reference Concentration (mg/dl) Reference Concentration (mg/dl)
(a) LSTM 30 min. (b) LSTM 60 min.

Figure 5.12: LSTM Clarke Error Grid analysis.

Table 5.5: Prediction performance indicators for FNN.

Patient ID
Index
559 | 563 | 570 | 575 | 588 | 591
£ | RMSE | 5527 | 2049 | 18553 | 25.13 | 2052 | 23.79
€ (mg/dl)
o
& p 088 | 0.79 | 092 | 0.80 | 0.80 | 0.79
£ | RMSE | 5808 | 31.49 | 24.74 | 31.68 | 27.00 | 30.29
€ (mg/dl)
wn
| <] r 081 | 055 | 0.86 | 0.72 | 0.65 | 0.65
=
" | = | RMSE 13394 | 3459 | 31.81 | 40.57 | 33.70 | 35.63
€ (mg/dl)
o
e | 073 | 047 | 077 | 055 | 0.46 | 0.49
£ | RMSE | 4343 | 40.25 | 44.16 | 51.59 | 41.71 | 42.85
€ (mg/dl)
o
&| R |o051 | 027|058 | 036 | 021 [ 029

Tables 5.5, 5.6 and 5.7 report all the experimental results obtained by performing
the re-implemented FNN and RNN architectures and our proposed LSTM solution.
In all three scenarios, we used raw data in training, validation and inference phase
for individual patients (marked with an identification code 559, 563, 570 575, 588,
591 respectively). Moreover, the forecast time horizons of interest are 30, 45, 60
and 90 minutes, respectively. For each prediction time horizon, we report values of
RMSE and R?. As these networks are patient-specialised, consequently, we carried
out the analysis of the results per patient.

Analyzing the analytical indices for all the patients, we found that state-of-art
RNN is more performant than the FNN in terms of prediction accuracy. This
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Table 5.6: Prediction performance indicators for RNN.

Patient ID
Index
559 | 563 | 570 | 575 | 588 | 591
S| RMSE | 1856 | 21.00 | 17.53 | 22.53 | 19.62 | 23.46
€ (mg/dl)
o
o 092 | 078 | 093 | 0.84 | 0.80 | 0.79
£ | RMSE | 5400 | 32.06 | 23.71 | 30.26 | 26.24 | 30.12
€ (mg/dl)
mn
= | <] P 086 | 054 | 087 | 0.74 | 0.65 | 0.65
=
o
£ | RMSE | 3405 | 35.48 | 30.87 | 37.15 | 33.04 | 35.61
£ (mg/dl)
o
8| p 077 | 045 | 078 | 0.62 | 046 | 0.49
S| RMSE | 4007 | 41.47 | 42.31 | 47.44 | 42.07 | 43.46
€ (mg/dl)
o
o 056 | 0.23 | 061 | 0.45 | 020 | 0.27

Table 5.7: Prediction performance indicators for our LSTM solution.

Patient ID
Index
559 | 563 | 570 | 575 | 588 | 591
£ | RMSE | 1152 [ 10.84 | 1020 | 9.29 | 11.55 | 10.56
€ (mg/dl)
o
a2 093 | 095 | 097 | 097 | 092 | 095
o | S| BMSE | 1958 | 12.05 | 16.14 | 18.32 | 19.86 | 16.91
9 € (mg/dl)
mn
S|<| n 090 | 094 | 094 | 090 | 0.79 | 087
@]
—
a | £ | RMSE | 55671 20,88 | 23.02 | 29.07 | 25.00 | 25.46
s | E| (mea
- | o
Q18| » 080 | 0.85 | 0.88 | 0.76 | 0.68 | 0.71
o | RMSE | 4399 | 36.03 | 34.24 | 49.89 | 30.95 | 41.44
£ | imeran
o
N 052 | 063 | 074 | 036 | 054 | 0.29

translates into smaller values of RMSE and R?, as described in Table 5.5 and
Table 5.6 respectively. However, this happens for all time horizons except for
Patient 563. In this specific case, the indices for each prediction time horizon are
slightly higher. This phenomenon occurs also for our proposed LSTM solution (see
Table 5.7). Also, for the patient 591, we noted that, except for a few specific time
horizons (i.e. 60 an 90 minutes), our LSTM solution achieve slightly worse results.
In our opinion, this is because the dataset at our disposal is minimal for adequate
training, especially for recurrent networks, which generally require a large enough
amount of data better to understand their trends and non-linear relationships [50].
However, even with this limitation due to the dataset, our LSTM achieves better
performance. For patients 559 and 588, the results are much better for each time
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horizon analyzed (i.e. from 30 min. to 90 min.). Instead, Patient 570 is the best
case found. In fact, for each time horizon, we lower the RMSE value from 6 mg/dl
to 8 mg/dl compared to RNN, which in turn performs better than FNN. Generally,
we can attest that our solution based on a neural network type LSTM results the
most promising architecture. In terms of prediction accuracy, compared to all the
investigated time horizons, we found improvements at every time horizon under
analysis.

Referring to the most recent literature, the maximum acceptable RMSE value
ranges from 19.32 mg/dl to 24.83 mg/dl in 30 min. predictions [160]. Using these
state-of-art limits as a benchmark, we can achieve good prediction accuracy up to
60 min. in the future for Patients 563 and 570. This limit can also be considered
suitable for Patients 588 and 591, as the maximum deviation is about 0.6 mg/dl.

28 Patients
a4 —559 563 ---570 575 -- 588 — 591

26 Maximum SOA limit - Worst case

-

RMSE (mg/dl)

Maximum SOA limit - Best case

30 45 60 90
Time prediction steps (min.)

Figure 5.13: LSTM predictions analysis.

Figure 5.13 shows a plot of the RSME values obtained by all patients for our
proposed LSTM solution. The horizontal continuous black lines represent the best
and the worst limit for 30 min. predictions, as described in [160]. Taking as
reference the most conservative limit (i.e. the lowest black line), we can affirm that
our model allows us to achieve good results up to 45 min. for all patients and up
to 60 min. ahead for Patients 588 and 591.

5.6.4 Clinical assessment on single-patient models

As introduced in Section 5.6.2, the identified analytical metrics are suitable
to understand the performances and the prediction accuracy of models from a
regression analysis point of view. However, these metrics are not appropriate to
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identify the most significant outliers, and they do not provide any information
about the clinical impact of the prediction errors and their consequences on medical
treatment decisions. Therefore, to give a more thorough picture of the models’
performance, we integrated our assessment with Clarke Error Grid analysis, as
detailed in Section 5.6.2.
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Figure 5.14: Clarke Error Grids for specialized LSTM network for Patient 575.

Figure 5.14 shows the EGA analysis performed for all time horizons (i.e. from
30 to 90 min.) for Patient 575. This represents the worst case we found, in terms
of prediction accuracy, especially for the 60 and 90 min. prediction horizons. The
EGA analysis confirms what was found analytically in the Section 5.6.3. Up to
45 minutes in the future, all values are concentrated in the zones fully clinical
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acceptable (i.e. A and B). Differently, for longer time horizons some values are
placed in zone D, therefore already potentially dangerous for the patient.

5.7 Discussion and Remarks

In this Chapter, we addressed the problem of automated glucose level prediction
leveraging multi-patient CGMS data. Our specific aim is to learn a generalisable
glucose level prediction model from a multi-patient training set, using this model
to predict the future glucose values of a new patient. This allows improving the
usability of models that are solely based on the past recordings of the same patient.

The main contribution of our work compared to past literature is two-fold:
i) we learn the prediction models using a broad set of CMGS data from a very
heterogeneous set of diabetic patients. This possibly increases the generalisation
capability of the model and minimises the risks of overfitting; ii) we design and
compare different types of prediction models, analysing the prediction outcome both
from the analytical and from the clinical point of view. To address the limitations of
literature approaches, we explored two types of models. The first solution exploits
a Non-Linear Autoregressive Neural Network (NAR) that is supposed to extend
the assumptions of linearity and overcome stability problems of traditional AR.
The second solution exploits Long Short-Term Memory (LSTM) that addresses the
exploding and vanishing gradient problems of classic RNN networks.

According to our experiments, the NAR network obtained satisfactory results
only for short-term predictions, within 30 min. Nonetheless, if we take into account
the model’s simplicity (the NAR is based on just 8 regressors against 30 of all the
other approaches), which makes it very convenient for hardware implementation, we
can still consider it a good solution for systems not requiring a very large forecasting
window. Finally, as confirmed by both the analytical and clinical assessment, our
LSTM network overcame by far the prediction accuracy of all the other models, for
both short-term and long-term predictions. Hence, we can conclude that LSTM is
the preferable approach for systems requiring a very long-term forecasting window.

In our future work, we will extend our multi-patient data-driven system by in-
tegrating real-time information. More specifically, we plan to perform a real-time
fine-tuning of the model, leveraging the glucose level measurements of the patient
that is currently using the system. Indeed, in this view, in the second part of our
methodology, we addressed the problem of automated glucose level prediction lever-
aging patient-specialized CGMs data. In detail, we have designed, implemented and
compared different specialized state-of-art models based on neural networks. Our
specific aim is to find the best neural solution that best fits the specialization on
the individual patient. Thus, starting with a deeply specialized dataset and some
neural solution in literature, we identify the best-optimized structure, with the best
prediction performance in terms of forecast accuracy.
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Chapter 6

Conclusion

In recent years, the research about energy waste and pollution reduction has
gained a strong momentum, also pushed by European and national funding initia-
tives. The primary purpose of this large effort is to reduce the effects of greenhouse
emission, climate change to head for a sustainable society. In this scenario, Infor-
mation and Communication Technologies (ICT) play a key role in reducing energy
consumption and to move forward to a more sustainable and smart society.

Consequently, moving towards smart and sustainable energy use, during my
research activities, I focused on the design and development of neural models for
the forecasting of time-series in Smart City scenario. Time-series represent the
heart of the "smart" philosophy, and therefore researchers and specialists have to
know how to manage and predict them to implement increasingly effective control
policies. In detail, with the support of my supervisors and the EDA research team, I
had the opportunity to address the issues of thermal modelling of Smart Buildings,
the prediction of GHI which is the energy component necessary for the development
of photovoltaic energy and, finally, I moved toward the person, by addressing the
theme of the prediction of blood glucose level for Type I diabetic patients. All the
studies were conducted following a bottom-up approach: starting from the analysis
and appropriate pre-processing of IoT data, to design neural models suitable for the
type of dataset and its characteristics and, finally, by comparing these new models
with the literature methodologies.

In the context of renewable, I developed a methodology that can make pho-
tovoltaic predictions starting from the physical phenomenon of GHI. I am also
investigating how to properly exploit exogenous inputs, related to the physical phe-
nomenon of solar radiation, to obtain increasingly accurate predictions. In detail,
the first part of the developed methodology focus on a newel solution to forecast
GHI in short-term period by implementing two different non-linear autoregressive
neural networks, NAR and NARMA, respectively. Both neural networks have been
implemented, trained and validated exploiting a dataset consisting of four years of
solar radiation values collected by a real weather station. Then, the results of these
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ANNSs have been given as input to a Photovoltaic simulator (PVsim) [35] to estimate
the energy production of photovoltaic systems. The accuracy of these results is also
acceptable, especially for time horizon from future 15 to 45 minutes. The second
part of the methodology, instead, focus on the development of state-of-art artificial
neural networks specifically on short- and mid-term GHI forecast. The main goal
was to identify the most performing solution that allows more accurate GHI pre-
dictions. In this view, I designed and optimized four ANN architectures based on
i) NAR, ii) FFN, iii) LSTM and iv) ESN. Contextually, using these architectures,
three different approaches were evaluated: i) the raw GHI was directly used to
train the networks and to make predictions; ii) the training set of the GHI series
was filtered with Tikhonov regularisation before performing the training procedure;
iii) the GHI time-series was transformed into the clear-sky index series, which was
then used to train the networks and make predictions. The obtained results suggest
that using a multi-output approach the accuracy significantly improves, specifically
when more than 60 min in the future is required. In our case, this means that for
forecast horizons of 45or 60 min and longer this approach is to be preferred over
a single-output model used iteratively. Considering that a single-output model is
simpler, it may be better to use the iterative approach when a long-term predic-
tion is not needed for the application. Futhermore, the ESN has given very good
results compared to other models, mainly when directly predicting GHI. Moreover,
compared to the other models, ESN needs a smaller number of regressors to give
very accurate results. This can be important in terms of availability. Given the
lack of research in the literature on GHI forecasting with ESN, these findings are
genuinely new results worthy of further studies. Another major achievement con-
cerns the use of Tikhonov regularisation. In detail, the results have shown that
the proposed model that uses Tikhonov regularisation to filter the training data
and uses the unfiltered GHI for the testing part, which is used successfully in other
fields involving time-series forecasting, like blood glucose predictions, does not ap-
pear suitable for GHI forecasting. Therefore, filtered data was used in input for
the testing part, too. This is not ideal since this method would require, when the
system is used for actual predictions "in the field", to filter the data every time
a new forecast is requested, which might limit the applicability of the method.
Moreover, the Tikhonov filter was applied to the whole testing set, divided into
long segments, but in a real application, using real-time data, this is not possible,
because new data would have to be filtered when it becomes available (e.g. in our
scenarios every 15min). The algorithm would have to be modified accordingly, and
the way it might affect the results needs to be studied more in detail. However, with
this approach (i.e. exploiting filtered data in the entire process, from training to
inference) the results were more interesting, showing that potentially, filtered data
allows maintaining a better accuracy for short- and mid-term forecast. Last but
not least, the obtained results have shown that the clear-sky index K. significantly
improves prediction accuracy when predicting many steps ahead, particularly for
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NAR, FFNN and LSTM networks. As already stated, the improvement for ESN
is small. However, using K. allowed the ESN to give better results with a smaller
reservoir, which is important in terms of memory usage. Finally, I investigated the
effectiveness of using exogenous inputs for short-term solar radiation forecasting.
In detail, with my research group, we identified a subset of relevant input variables
for predicting GHI by applying different feature selection techniques to a broader
set of variables. The results of feature selection revealed that the most significant
input variables for predicting solar radiation are: i) UV index, ii) cloud cover, iii)
temperature, iv) humidity, v) dew point, vi) wind bearing, vii) sunshine duration
and viii) hour of the day. To assess the usefulness of the selected features, we eval-
uated and compared the prediction performance of five different machine learning
models, namely i) a FNN), ii) an ESN), iii) a 1D-CNN, iv) LSTM and v) a Random
Forest. Overall, the LSTM demonstrated the best prediction performance among
the five models, producing acceptable forecasting errors up to 4 hours ahead. The
FNN and the 1D-CNN also demonstrated excellent prediction performance, compa-
rable to those of the LSTM for prediction horizons shorter than 2 hours. The ESN
presented the highest forecasting errors, revealing poor prediction performance in
modelling multivariate time series. The RF performed slightly better than the ESN,
showing promising results. Finally, in order to demonstrate the effectiveness of us-
ing exogenous inputs for short-term solar radiation forecasting, we compared the
multivariate models with their univariate counterparts. The results showed that
the adoption of exogenous inputs can significantly improve the forecasting perfor-
mance for prediction horizons greater than 15 min, while for shorter prediction
horizons the performance improvement due to exogenous inputs can be considered
as negligible. Overall, the results demonstrated the effectiveness of using exogenous
inputs for short-term solar radiation forecasting.

In the context of Smart Buildings, I developed a comprehensive methodology
that allows thermal modelling in both new generation and historic buildings. This
by exploiting the possibility of creating a very reliable synthetic dataset based on
BIM technology and real weather data. The achievement of hybrid models (i.e.
based on synthetic data for the opening and real data for the inference) allows
the thermal modelling of all those buildings with a lack of historical data. Conse-
quently, I investigated how to specialize hybrid models on real data (i.e., provided
by ToT devices embedded in a real demonstrator). For this purpose, I applied
different techniques of Transfer Leaning, in search of the best model for the case
study. In the proposed methodology, BIM and meteorological data are exploited to
construct of a realistic and consistent dataset of indoor air-temperature values. The
presented experimental results showed that the proposed solution simulates with a
good accuracy the heating performance of the case-study building. With respect to
literature solutions that consider TMY weather data, our results highlighted that
the integration of real weather information into the simulation process strongly
increases the accuracy of the simulation itself. Thus, exploiting realistic synthetic
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data to train prediction models, we are able to implement hybrid model that use
real-world data in the inference phase. To validate this, I have specially designed
some models (i.e one for each environment of demonstrator) based on a NAR archi-
tecture with a high number of regressors by discussing the prediction accuracy by
analyzing the inference results both on synthetic and real data. As demonstrated
by the case study, the models provide accurate predictions with time horizons in
the order of 3 h for individual rooms and 4 h for the entire building. At the same
time, in collaboration with the EDA group, we tried to add additional information
as input to our hybrid models (i.e. time labels). By analyzing the experimental
results, we can state that adding further complexity the performance gets worse.
The reason is to be found in the fact that the hybrid models are already able to
extrapolate the information of the recurring patterns and seasonality. As a result,
they ignore the temporal relationship added by the exogenous time-labels. Finally,
I tried to optimize the models by applying some Transfer Learning techniques in or-
der to specialize the hybrid models with real data provided by IoT sensors installed
in the demonstrator. For this purpose, I have specially designed, implemented and
compared some state-of-art neural networks for time-series forecasting. In detail,
these are: i) NAR (i.e. the benchmark model), ii) FNN;, iii) LSTM and iv) 1D-
CNN. For all these models, I initially used the synthetic data for the training phase
and the real-world data for the inference phase. Then, I compared all the obtained
models in analytical and qualitative way. The experimental results showed that
the most promising hybrid model for this scenario was 1D-CCN. As a result, I
have applied 3 fine-tuning techniques for the specialization on real data. We find
that by re-training the last layer (i.d. Freezing Layer techniques) the models are
able to predict until 28 hours head without introducing thermal discomfort for the
occupants.

Finally, I had the opportunity to address the problem of automated glucose level
prediction averaging multi-patient CGMS data. The aim is to learn a generalizable
glucose level prediction model from a multi-patient training set, using this model
to predict the future glucose values of a new patient. In practice, the objective is to
create a device that can be purchased and is ready to use, without the need for ini-
tial tuning. Besides, I started to evaluate techniques to specialize this methodology
by integrating real-time information to specialize the automated glucose predictor
specifically on a single end-user. The main contribution, compared to past liter-
ature, is two-fold: i) I learned the prediction models using a broad set of CMGS
data from a very heterogeneous set of diabetic patients. This possibly increases
the generalisation capability of the model and minimises the risks of overfitting;
ii) I designed and compared different types of prediction models, analysing the
prediction outcome both from the analytical and from the clinical point of view.
To address the limitations of literature approaches, I explored two types of mod-
els. The first solution exploits a Non-Linear Autoregressive Neural Network that is
supposed to extend the assumptions of linearity and overcome stability problems
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of traditional AR. The second solution exploits Long Short-Term Memory that ad-
dresses the exploding and vanishing gradient problems of classic RNN networks.
According to the experiments, the NAR network obtained satisfactory results only
for short-term predictions, within 30 min. Nonetheless, if we take into account the
model simplicity (the NAR is based on just 8 regressors against 30 of all the other
approaches), which makes it very convenient for hardware implementation, we can
still consider it a good solution for systems not requiring a very large forecast-
ing window. Finally, as confirmed by both the analytical and clinical assessment,
the proposed LSTM network overcame by far the prediction accuracy of all the
other models, for both short-term and long-term predictions. Hence, we can con-
clude that LSTM is the preferable approach for systems requiring a very long-term
forecasting window. In future, I would like to extend the proposed multi-patient
data-driven system by integrating real-time information. More specifically, I plan
to perform a real-time fine-tuning of the model, leveraging the glucose level mea-
surements of the patient that is currently using the system. Indeed, in this view, in
the second part of our methodology, I addressed the problem of automated glucose
level prediction leveraging patient-specialized CGMs data. In detail, I designed,
implemented and compared different specialized state-of-art models based on neu-
ral networks. The specific aim is to find the best neural solution that best fits the
specialization on the individual patient. Thus, starting with a deeply specialized
dataset and some neural solution in literature, I identify the best-optimized struc-
ture, with the best prediction performance in terms of forecast accuracy. In detail,
I designed a specialized performing solution based on Long Short-Term Memory
neural network. The proposed solution was then experimentally compared with
two literature approaches, respectively based on Feed-Forward and Recurrent neu-
ral networks. The experimental results have highlighted that the LSTM obtained
good performance both for short- and long-term glucose level inference (60 min.),
overcoming the other methods both in terms of correlation between measured and
predicted glucose signal and in terms of clinical outcome.
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In this paper, together with my colleagues, we present a software architecture
for management and simulation of energy behaviours in buildings that integrates
heterogeneous data such as BIM, IoT, GIS (Geographical Information System) and
meteorological services. This integration allows: ¢) (near-) real-time visualisation
of energy consumption information in the building context and ) building perfor-
mance evaluation through energy modelling and simulation exploiting data from
the field and real weather conditions. With respect to literature solutions that
consider TMY weather data, our results highlighted that the integration of real
weather information into the simulation process strongly increases the accuracy of
the simulation itself.
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In this paper, I presented the participatory design approach that I followed
to design and develop an energy-aware mobile application for user-awareness on
energy consumption for Smart Home monitoring. To engage end-users from the
early design stages, in an European project, I conduct two on-line surveys and a
focus group involving about 630 people. Results allowed on identifying functional
requirements and guidelines for mobile app design. The purpose of this research is
to increase user-awareness on energy consumption using tools and methods required
by users themselves.
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