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A great variety of natural phenomena follows some statistical distributions. In

epidemiology, such as for the current COVID 19 outbreak, it is essential to develop

reliable predictions of the evolution of an infectious disease. In particular, a statistical

projection of the time of maximum diffusion of infected carriers is fundamental in order to

prepare healthcare systems and organize a robust public health response. In this paper,

we develop a thermodynamic approach based on the infection statistics related to the

total citizenry of a country. It represents a novel tool for evaluating the time of maximum

diffusion of an epidemic or pandemic.

Keywords: SARS-Cov-2, Covid-19, coronavirus, epidemics-pandemics, non-equilibrium statistical

thermodynamics, epidemiology

1. INTRODUCTION

In the natural, social, economic, and physical sciences a large variety of phenomena are
characterized by regularities, which can be analytically described by a defined statistical distribution
[1]. Consequently, in any field of research, scientists, and engineers have always taken attention to
find the best statistical distribution to predict the systems behavior.

This is particularly true in epidemiology. Indeed, epidemics can occur in a community or region
by causing illness in excess of normal expectancy; pandemics are no more than a large-scale global
epidemic which determine a growth in morbidity and mortality over a wide geographic area [2, 3].
Some recent examples of pandemics are the 2003 SARS (Severe Acute Respiratory Syndrome),
the 2014 West Africa Ebola epidemic, and the present COVID-19 caused by the coronavirus
SARS-Cov-2. Moreover, epidemics and pandemics can cause also significant, widespread economic
hardship and potentially lead to social unrest. Consequently, the interest in forecasting the diffusion
of such global infectious disease threats is continuously increasing [2, 4, 5].

To implement effective public health measures in a timely manner and allocate scarce resources
according to geographic need, it is very important to forecast the diffusion or spread of the infection
amongst the population. Consequently, it is fundamental to develop a reliable analytical approach
that allows such predictive modeling.

Traditionally, epidemiological analyses are based on sigmoidal models, which indeed are useful
if the evolution of the epidemics follows well-established patterns. However, especially in the
beginning of any epidemics we have only partial access to validated data also because the number
of infected people is still rather small and follows a dynamic process. Scientists and engineers have
always searched for the best statistical distribution useful to predict the behavior of the systems
under consideration [6, 7]. Indeed, the usual statistical approach is based on the Kolmogorov’s
law of large numbers which requires the existence of the first finite moment, and the Lyapunov’s
version of the central limit theorem assumes an existence of the finite moment of an order higher
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than two. But, when the data are collected by a heavy-tailed
distribution, the mathematical bases of the usual statistics is
not satisfied. The existence of specific finite moments is closely
related to the concept of a tail index, and its estimation is one of
key problems in statistics. At present, there are a great number
of estimators of the tail-index [8–16], but, a generic approach is
required in order to generalize the statistical approach to complex
systems, such as in the case of epidemics or pandemics.

Furthermore, the spread of infection can be studied as the
evolution of an open thermodynamic system. In this context,
we note that Jaynes developed a non-equilibrium statistical
mechanics approach for the stationary state constraint, on
the basis of the principle of maximum entropy [17, 18]. He
maximized the Shannon entropy for information in relation
to the pathway followed in the thermodynamic phase space,
by considering the probability subject to the actual constraints
[19]. This results in finding the most probable macroscopic
pathway realized by the greater number of microscopic paths
compatible with the imposed constraints [19–24]. Entropy has
been proven to represent a fundamental key for the analysis of
some biosystems [25–32].

In this paper, we therefore extend a thermodynamic approach
of complex systems to the analysis of epidemics by introducing
entropy as a tool to predict the evolution of an infectious disease.

2. MATERIALS AND METHODS

First, we must consider a reference statistics for a human to be
infected. To do so, we consider the recent results obtained in
relation to the use of the logistic approach by Loum et al. [33];
the cumulative probability of infection vs. time t follows the
logistic shape:

P(t) =
exp(α + βt)

1+ exp(α + βt)
(1)

where P is the probability of infection, t is the time, α and β are
two constants. The shapes of SARS-Cov-2 expansion for China,
USA, Italy and Spain are shown in Figure 1.

On the other hand, in relation to the probability of infections,
by following the usual statistical thermodynamic approach, we
can define the Gibbs dimensionless entropy as [34, 35]:

S(t) = −f (t) ln f (t) (2)

where f is the frequency of the infected people on the total
citizenry of the country considered:

f =
n(t)

ntot(t)
(3)

where n(t) is the number of infected people at the time t and ntot
is the population at the time t.

For any system, the most probable state is reached when
the entropy (Equation 2) reaches its maximum, so, in
relation to epidemics/pandemics, we expect that the maximum
diffusion or expansion of the infectious disease occurs at the
maximum entropy.

3. RESULTS

Entropy is a function which allows us to determine the time of
maximum diffusion or spread of the infections. In order to use
such a thermodynamic approach, we must obtain medical data,
usually collected by the health authorities. However, at the start of
outbreak, available data are rare, and so we can obtain only a tail
shape of the entropy function; still, we must try to obtain a best
fit of the entropy shape by using at least 5–8 days of observational
data to evaluate the interpolation function by a tail Taylor power
development [36, 37].

Once we are able to obtain the function fitting the
entropy shape vs. time, we can forecast the maximum of the
entropy and, consequently, the corresponding time point of
maximum infections amongst the citizenry. In summary, the
epidemiological forecasting tool that we suggest consists in:

• Finding the occurrence frequency distribution in time;
• Finding the cumulative value of the occurrence frequency

distribution in time;
• Evaluating the entropy through the Equation (2);
• Evaluating the best fit for the entropy obtained at the previous

point;
• Determining its maximum and the related time, directly by the

shape or by mathematical methods [36, 37].

To demonstrate the utility of the model, we have represented
the shapes of the evolution of entropy for the USA, China, Italy,
and Spain in Figure 2 (using the data summarized in Table 1);
depicted is the interpolation function that is used to evaluate
the maximum entropy which in turn relates to the time of
maximum SARS-Cov-2 infection among a countrys citizens. We
can highlight that:

• For China: the time of maximum expansion of the coronavirus
infection results 23 days after January 17th (around February
11th). The slight discrepancy with the value reported in the
Table (i.e., February 13) is due to the function used for
fitting (the better the fit, the more accurate is the forecasting);
Moreover, China declared a correction on April 17, 2020.

• For Italy it results 34 days after February 22nd (March 27th),
which corresponds exactly with the observed time point
reported in the Table 1;

• For Spain it results 36 days after February 25th (April
1st), which again corresponds precisely with the observed
time point;

• For the USA it results 58 days after March 2nd, i.e., around
April 28th, which is prospective at the time this manuscript
has been submitted;

• As an example that this approach also has applicability at a
higher spatial granularity, for New York City (Table 2 and
Figure 3), for instance, it results 38 days after March 17th, i.e.,
around April 25th, also prospective at this point.

4. DISCUSSION

The method suggested here is a novel thermodynamic approach
for forecasting large-scale infectious disease outbreaks based on
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FIGURE 1 | Cumulative number of SARS-Cov-2 infected people (blue) vs. deaths (orange) per country as of the beginning of April, 2020. Data recoiled on https://

www.ecdc.europa.eu/sites/default/files/documents/COVID-19-geographic-disbtribution-worldwide.xlsx (April 8th, 2020).

FIGURE 2 | Entropy shape for newly SARS-Cov-2 infected people in relation to the total number of citizens. The best fit allows evaluating the data for maximum

infection probability. For the USA this yields new infections to peak on or close to April 28th, for China it results around February 11th; for Italy it yields March 27th; for

Spain it results in April 1st. Data recoiled on https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-geographic-disbtribution-worldwide.xlsx (April 8th,

2020).
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TABLE 1 | Data of SARS-Cov-2 infections for the USA, China, Italy, and Spain, in

2020, recoiled on https://www.ecdc.europa.eu/sites/default/files/documents/

COVID-19-geographic-disbtribution-worldwide.xlsx (April 8th, 2020).

Date China Italy Spain USA Date China Italy Spain USA

January, 17 4 − − − March, 1 574 240 32 −

January, 18 17 − − − March, 2 205 561 17 20

January, 19 136 − − − March, 3 127 347 31 14

January, 20 19 − − − March, 4 119 466 37 22

January, 21 151 − − − March, 5 117 587 49 34

January, 22 140 − − − March, 6 170 769 61 74

January, 23 97 − − − March, 7 101 778 113 105

January, 24 259 − − − March, 8 46 1,247 56 95

January, 25 441 − − − March, 9 45 1,492 159 121

January, 26 665 − − − March, 10 20 1,797 615 200

January, 27 787 − − − March, 11 29 977 435 271

January, 28 1,753 − − − March, 12 24 2,313 501 287

January, 29 1,466 − − − March, 13 22 2,651 864 351

January, 30 1,740 − − − March, 14 19 2,547 1,227 511

January, 31 1,980 − − − March, 15 22 3,497 1,522 777

February, 1 2,095 − − − March, 16 25 2,823 2,000 823

February, 2 2,590 − − − March, 17 43 4,000 1,438 887

February, 3 2,812 − − − March, 18 23 3,526 1,987 1,766

February, 4 3,237 − − − March, 19 44 4,207 2,538 2,988

February, 5 3,872 − − − March, 20 99 5,322 3,431 4,835

February, 6 3,727 − − − March, 21 52 5,986 2,833 5,374

February, 7 3,160 − − − March, 22 65 6,557 4,946 7,123

February, 8 3,418 − − − March, 23 138 5,560 3,646 8,459

February, 9 2,607 − − − March, 24 69 4,789 4,517 11,236

February, 10 2,974 − − − March, 25 78 5,249 6,584 8,789

February, 11 2,490 − − − March, 26 102 5,210 7,937 13,963

February, 12 2,028 − − − March, 27 94 6,153 8,578 16,797

February, 13 15,141 − − − March, 28 119 5,959 7,871 18,695

February, 14 4,156 − − − March, 29 113 5,974 8,189 19,979

February, 15 2,538 − − − March, 30 98 5,217 6,549 18,360

February, 16 2,007 − − − March, 31 84 4,050 6,398 21,595

February, 17 2,052 − − − April, 1 54 4,053 9,222 24,998

February, 18 1,890 − − − April, 2 100 4,782 7,719 27,103

February, 19 1,750 − − − April, 3 70 4,668 8,102 28,819

February, 20 394 − − − April, 4 62 4,585 7,472 32,425

February, 21 891 − − − April, 5 48 4,805 7,026 34,272

February, 22 826 14 − − April, 6 67 4,316 6,023 25,398

February, 23 647 62 − − April, 7 56 3,599 4,273 30,561

February, 24 218 53 − −

February, 25 515 97 1 −

February, 26 410 93 4 −

February, 27 439 78 5 −

February, 28 329 250 13 −

February, 29 428 238 9 −

Bold and underlined are referred to maximum.

themaximum entropy variation, obtained by using an occurrence
frequency approach for a finite size statistical population.

There are some thermodynamic applications to epidemiology,
but, in comparison to the approach introduced here, these
previously reported concepts are based on the SIS dynamicmodel
and on maximum entropy [38]. While generally intriguing from

TABLE 2 | Data of SARS-Cov-2 infections for New York City, recoiled on https://

www1.nyc.gov/site/doh/covid/covid-19-data-archive.page (April 10th, 2020).

Date Cases

March, 17 923

March, 18 1,086

March, 19 1,945

March, 20 1,729

March, 21 2,432

March, 22 2,649

March, 23 2,355

March, 24 2,478

March, 25 4,414

March, 26 1,862

March, 27 4,824

March, 28 2,461

March, 29 3,150

March, 30 5,779

March, 31 3,684

April, 1 3,936

April, 2 4,000

April, 3 6,582

April, 4 4,561

April, 5 4,105

April, 6 3,821

April, 7 5,825

April, 8 13,124

April, 9 6,684

FIGURE 3 | Depicted is the entropy shape for newly SARS-Cov-2 infected

people in New York City, in relation to the total number of citizens. From the

curve’s best fit, one can evaluate the data of maximum infection probability.

For New York City the maximum spread of coronavirus infection is forecasted

to occur on the 38th day after March 27th, i.e., on April 25th Data recoiled on

https://www1.nyc.gov/site/doh/covid/covid-19-data-archive.page (April 11th,

2020).

a mathematics perspective, these models are strongly dependent
on the statistics used because the basic reproduction number
introduced is a valid predictor in structured populations only
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when size is infinite [39], which represents the usual constraint
of a great number of statistics.

We have therefore developed an approach based on fitting of
the entropy in order to obtain its empirical-like approximation
of the spontaneous occurrence of epidemics/pandemics. In this
way, we analytically describe the expansion of an infectious
disease without introducing any a priori statistics. In relation
to other non-statistical-based thermodynamic models [39, 40],
we refrain from introducing any variables or rate evaluation,
and we only fit the Gibbs entropy shape; as such, we obtain
the real empirical behavior, as it unfolds, without any restriction
related to a mathematical model, as introduced in the other
approaches [39].We note that our approach, much like any other,
depends on the availability of reliable diagnostic testing which
has been heterogeneously deployed across countries and regions
with regards to test modality, availability and accuracy; still,
while better test performance and the forthcoming availability
of longitudinal data through ongoing population studies in the
EU and the US would be desirable, based on currently available
data, regardless of their limitations, our model already accurately
predicted the date of maximum expansion of coronavirus
infections in countries such as Italy and Spain.

In conclusion, we have obtained a novel, useful tool to
aid much needed projections in large-scale infectious disease
outbreaks, based only on an applied physical approach. Most
importantly, the utility of the model has been confirmed
in the context of the current COVID-19 pandemic caused
by SARS-Cov2.

4.1. Resource Identification Initiative
To take part in the Resource Identification Initiative, please
use the corresponding catalog number and RRID in your

current manuscript. For more information about the project
and for steps on how to search for an RRID, please click
http://www.frontiersin.org/files/pdf/letter_to_author.pdf.

4.2. Life Science Identifiers
Life Science Identifiers (LSIDs) for ZOOBANK registered names
or nomenclatural acts should be listed in the manuscript
before the keywords. For more information on LSIDs
please see Inclusion of Zoological Nomenclature section of
the guidelines.
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5. NOMENCLATURE

Latin symbols

f frequency of occurrence
n number of infected
P infection probability
S adimensional entropy
t time
Greek symbols

α Constant
β Constant
Subscript

tot population
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